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Preface

‘First, do no harm’ is a principle to which those whowould intervene in the lives of other
people are often called to ascribe. However, in this era of data deluge, it is not possible
for individual decision makers to ensure that their decisions are informed by the latest,
reliable, research knowledge; and without reliable information to guide them, they can
cause harm, even though their intentions may be good. This is the core problem that
the founder of Cochrane, Sir Iain Chalmers, aimed to address through the provision of
systematic reviews of reliable research.
By synthesizing the results of individual studies, systematic reviews present a sum-

mary of all the available evidence to answer a question, and in doing so can uncover
important knowledge about the effects of healthcare interventions. Systematic reviews
undertaken by Cochrane (Cochrane Reviews) present reliable syntheses of the results
of multiple studies, alongside an assessment of the possibility of bias in the results,
contextual factors influencing the interpretation and applicability of results, and other
elements that can affect certainty in decision making. They reduce the time wasted by
individuals searching for and appraising the same studies, and also aim to reduce
research waste by ensuring that future studies can build on the body of studies already
completed.
A systematic review attempts to collate all empirical evidence that fits pre-specified

eligibility criteria in order to answer a specific research question. It uses explicit, sys-
tematic methods that are selected with a view to minimizing bias, thus providing
more reliable findings from which conclusions can be drawn and decisions made.
The key characteristics of a systematic review are:

• a clearly stated set of objectives with pre-defined eligibility criteria for studies;

• an explicit, reproducible methodology;

• a systematic search that attempts to identify all studies that meet the eligibility
criteria;

• an assessment of the validity of the findings of the included studies, for example
through the assessment of risk of bias; and

• a systematic presentation, and synthesis, of the characteristics and findings of the
included studies.

For twenty-five years, Cochrane Reviews have supported people making healthcare
decisions, whether they are health professionals, managers, policy makers, or indivi-
duals making choices for themselves and their families. The Cochrane Handbook for
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Systematic Reviews of Interventions (the Handbook) provides guidance to authors
for this work.

About Cochrane

Cochrane is a global network of health practitioners, researchers, patient advocates
and others, with a mission to promote evidence-informed health decision making by
producing high quality, relevant, accessible systematic reviews and other synthesized
research evidence (www.cochrane.org). Founded as The Cochrane Collaboration in
1993, it is a not-for-profit organization whose members aim to produce credible, acces-
sible health information that is free from commercial sponsorship and other conflicts of
interest.
Cochrane works collaboratively with health professionals, policy makers and inter-

national organizations such as the World Health Organization (WHO) to support the
development of evidence-informed guidelines and policy. WHO guidelines on critical
public health issues such as breastfeeding (2017) and malaria (2015), and the WHO
Essential Medicines List (2017) are underpinned by dozens of Cochrane Reviews.
There are many examples of the impact of Cochrane Reviews on health and health

care. Influential reviews of corticosteroids for women at risk of giving birth prematurely,
treatments for macular degeneration and tranexamic acid for trauma patients with
bleeding have demonstrated the effectiveness of these life-changing interventions
and influenced clinical practice around the world. Other reviews of anti-arrhythmic
drugs for atrial fibrillation and neuraminidase inhibitors for influenza have raised
important doubts about the effectiveness of interventions in common use.
Cochrane Reviews are published in full online in the Cochrane Database of Systematic

Reviews, which is a core component of the Cochrane Library (www.thecochranelibrary.
com). The Cochrane Library was first published in 1996, and is now an online collection
of multiple databases.

The evidence for Cochrane methodology

While Cochrane was one of the earliest organizations to produce and publish system-
atic reviews, there are now many organizations and journals doing so. One of the key
elements that sets Cochrane apart is its rigorous methods, and Cochrane has played
a unique role in fostering the development of methodology for systematic reviews
throughout its history. Cochrane Methods Groups are voluntary collaborations of some
of the world’s leading methodological researchers in statistics, information retrieval,
bias, qualitative methods, and many other specialist areas (see https://methods.
cochrane.org). These Methods Groups support and disseminate methods research that
identifies the most effective and efficient methods for systematic reviews, minimizing
bias and increasing the appropriate analysis and interpretation of results.
The use of these rigorous methods is challenging and often time-consuming, but the

recommendations are not made for their own sake. As McKenzie and colleagues wrote,
“Our confidence in the findings of systematic reviews rests on the evidence base
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underpinning the methods we use. Just as there are consequences arising from the
choices we make about health and social care interventions, so too are there conse-
quences when we choose the methods to use in systematic reviews.” (McKenzie
et al, Cochrane Database of Systematic Reviews 2015; 7: ED00010)
With this in mind, the guidance in this Handbook has been written by authors who

are international leaders in their fields, many of whom are supported by the work of
Cochrane Methods Groups.

Ongoing challenges for systematic reviews

The landscape in which systematic reviews are conducted continues to evolve. Old and
emerging challenges continue to spark debate, research and innovation.
The time required to complete a full systematic review, which is often more than two

years, is a barrier both for author teams (representing a considerable commitment of
often volunteer time) and for decision makers (who often require evidence within much
shorter time frames). Methodology for undertaking reviews more rapidly is developing
quickly. However, difficult choices are required in the trade-off between rigour and
speed. The rise of technological solutions offers much potential, including collabora-
tion tools, online crowd sourcing and automation of many aspects of the review proc-
ess. Alongside consideration of appropriate ways to prioritize work, technology is also
supporting more efficient approaches to keeping reviews up to date, with some reviews
moving towards a ‘living’ systematic review model of very frequent, even continuous
updates.
Cochrane Reviews have always encompassed complex questions of multi-

component interventions, health systems and public health, and the challenging issues
that arise from many of these reviews have prompted considerable thought and effort.
Cochrane Reviews have always incorporated non-randomized studies where appropri-
ate to the question, and a wider range of data sources is increasingly relevant to
reviews, from the unpublished clinical study reports produced by pharmaceutical com-
panies, to novel challenges in appraising and interpreting ‘big data’ repositories. The
use of systematic reviews is expanding, and new methods developing, in areas such as
environmental exposure and prognosis.
These conversations will continue, and new questions will continue to arise.

Cochrane will continue to contribute actively to methodological development and
application in each of these areas, continually striving to improve both the validity
and usefulness of the reviews to decision makers.

Undertaking a Cochrane Review

Preparing a Cochrane Review is complex and involves many judgements. Authors work
closely with Cochrane editorial teams in the production of reviews, supplying a highly
structured format for both its protocols and reviews to guide authors on the informa-
tion they should report. Cochrane groups and other research groups increasingly use
priority-setting methods to engage stakeholders such as patients, the public, policy
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makers and healthcare professionals to understand from them the most important
uncertainties or information gap. Since its inception, Cochrane has advocated for rou-
tine updating of systematic reviews to take account of new evidence. In some fast-
moving topics frequent updating is needed to ensure that review conclusions remain
relevant.
While some authors new to Cochrane Reviews have training and experience in con-

ducting other systematic reviews, many do not. Training for review authors is delivered
in many countries by regional Cochrane groups or by the Cochrane Methods Groups
responsible for researching and developing the methods used on Cochrane Reviews.
In addition, Cochrane produces an extensive range of online learning resources.
Detailed information is available via https://training.cochrane.org. Training materials
and opportunities for training are continually developed and updated to reflect the
evolving Cochrane methods and the needs of contributors.

About this Handbook

Work on a handbook to support authors of Cochrane Reviews began in 1993, and the
first version was published in May 1994. Since then it has evolved and grown, through
the stewardship of several editorial teams, with regular updating of its contents being
punctuated bymajor new editions. This book represents Version 6 of the Handbook, the
first major revision since the first print edition of the Handbook was published in 2008.
The book is divided into three parts. Part One provides the core methodology for

undertaking systematic reviews on the effects of health interventions, with a particular
emphasis on reviewing randomized trials. Part Two provides considerations for tack-
ling these systematic reviews from different perspectives, such as when thinking about
specific populations, or complex interventions, or particular types of outcomes. Part
Three covers a range of further topics, including reviewing evidence other than straight-
forward randomized trials. The online version of the Handbook has an addition part,
describing the particular organizational and procedural considerations when working
specifically with Cochrane.
For this edition, each chapter that provides new or substantively updated guidance

has been rigorously peer reviewed to ensure the guidance presented reflects the state
of the science and is appropriate and efficient for use by Cochrane authors. The Hand-
book is updated regularly to reflect advances in systematic review methodology and
in response to feedback from users. Please refer to https://training.cochrane.org/
handbook for the most recent online version, for interim updates to the guidance
and for details of previous versions of the Handbook. Feedback and corrections to
the Handbook are also welcome via the contact details on the website.

What’s new in this edition

In this edition, every chapter of the Handbook has been extensively revised, new chap-
ters added, and authors familiar with previous versions will find it valuable to re-read
any chapter of interest.
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In particular, this edition incorporates the following major new chapters and areas of
guidance:

• Expanded advice on assessing the risk of bias in included studies (Chapter 7), includ-
ing Version 2 of the Cochrane Risk of Bias tool (Chapter 8) and the ROBINS-I tool for
assessing risk of bias in non-randomized studies (Chapter 25).

• New guidance on summarizing study characteristics and preparing for synthesis
(Chapters 3 and 9).

• New guidance on network meta-analysis (Chapter 11).

• New guidance on synthesizing results using methods other than meta-analysis
(Chapter 12).

• Updated guidance on assessing the risk of bias due to missing results (reporting
biases, Chapter 13).

• New guidance addressing intervention complexity (Chapter 17).

How to cite this book

Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors).
Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester
(UK): John Wiley & Sons, 2019.

Acknowledgements

We thank all of our contributing authors and chapter editors for their patience and
responsiveness in preparing this Handbook. We are also indebted to all those who
have contributed to previous versions of the Handbook, and particularly to past
editors Rachel Churchill, Sally Green, Phil Alderson, Mike Clarke, Cynthia Mulrow and
Andy Oxman.
Many contributed constructive and timely peer review for this edition. We thank

Zhenggang Bai, Hilda Bastian, Jesse Berlin, Lisa Bero, Jane Blazeby, Jacob Burns, Chris
Cates, Nathorn Chaiyakunapruk, Kay Dickersin, Christopher Eccleston, Sam Egger,
Cindy Farquhar, Nicole Fusco, Hernando Guillermo Gaitán Duarte, Paul Garner, Claire
Glenton, Su Golder, Helen Handoll, Jamie Hartmann-Boyce, Joseph Lau, Simon Lewin,
Jane Marjoribanks, Evan Mayo-Wilson, Steve McDonald, Emma Mead, Richard Morley,
Sylivia Nalubega, Gerry Richardson, Richard Riley, Elham Shakibazadeh, Dayane
Silveira, Jonathan Sterne, Alex Sutton, Özge Tunçalp, Peter von Philipsborn, Evelyn
Whitlock, Jack Wilkinson. We thank Tamara Lotfi from the Secretariat for the Global
Evidence Synthesis Initiative (GESI) and GESI for assisting with identifying peer referees,
and Paul Garner and Taryn Young for their liaison with Learning Initiative for eXperi-
enced Authors (LIXA).
Specific administrative support for this version of the Handbook was provided by

Laura Mellor, and we are deeply indebted to Laura for her many contributions. We
would also like to thank staff at Wiley for their patience, support and advice, including
Priyanka Gibbons (Commissioning Editor), Jennifer Seward (Senior Project Editor),
Deirdre Barry (Senior Editorial Assistant) and Tom Bates (Senior Production Editor).

Preface

xxvii



We thank Ella Flemyng for her assistance and Elizabeth Royle and Jenny Bellorini at
Cochrane Copy Edit Support for their assistance in copy editing some chapters of
the Handbook. Finally, we thank Jan East for copy editing the whole volume, and
Nik Prowse for project management.
This Handbookwould not have been possible without the generous support provided

to the editors by colleagues at the University of Bristol, University College London,
Johns Hopkins Bloomberg School of Public Health, Cochrane Australia at Monash
University, and the Cochrane Editorial and Methods Department at Cochrane Central
Executive. We particularly thank David Tovey (former Editor in Chief, The Cochrane
Library), and acknowledge Cochrane staff Madeleine Hill for editorial support, and
Jo Anthony and Holly Millward for contributing to the cover design.
Finally, the Editors would like to thank the thousands of Cochrane authors who

volunteer their time to collate evidence for people making decisions about health care,
and the methodologists, editors and trainers who support them.

The Handbook editorial team

Julian P.T. Higgins (Senior Editor) is Professor of Evidence Synthesis at the University
of Bristol, UK.

James Thomas (Senior Editor) is Professor of Social Research & Policy, and Associate
Director of the EPPI-Centre at UCL, London, UK.

Jacqueline Chandler (Managing Editor) is Evaluation Programme Manager (Qualitative
Evaluation) at Wessex Academic Health Science Network, University Hospital
Southampton, Southampton, UK.

Miranda Cumpston (Implementation Editor) is an Editor at Cochrane Public Health in
the School of Medicine and Public Health, University of Newcastle, and the School of
Public Health and Preventive Medicine, Monash University, Melbourne, Australia.

Tianjing Li (Associate Scientific Editor) is an Associate Professor of Epidemiology at
Johns Hopkins Bloomberg School of Public Health, Baltimore, USA. She is a Coordinat-
ing Editor for Cochrane Eyes and Vision.

Matthew J. Page (Associate Scientific Editor) is a Research Fellow in the Research
Methodology Division of the School of Public Health and Preventive Medicine, Monash
University, Melbourne, Australia.

Vivian A. Welch (Associate Scientific Editor) is Editor in Chief of the Campbell Collabo-
ration, Scientist at Bruyère Research Institute, Ottawa, Canada; Associate Professor at
the School of Epidemiology and Public Health, University of Ottawa, Canada.

Preface

xxviii



Part One

Core methods



1

Starting a review
Toby J Lasserson, James Thomas, Julian PT Higgins

KEY POINTS

• Systematic reviews address a need for health decision makers to be able to access
high quality, relevant, accessible and up-to-date information.

• Systematic reviews aim to minimize bias through the use of pre-specified research
questions andmethods that are documented in protocols, and by basing their findings
on reliable research.

• Systematic reviews should be conducted by a team that includes domain expertise
and methodological expertise, who are free of potential conflicts of interest.

• People whomight make – or be affected by – decisions around the use of interventions
should be involved in important decisions about the review.

• Good data management, project management and quality assurance mechanisms are
essential for the completion of a successful systematic review.

1.1 Why do a systematic review?

Systematic reviews were developed out of a need to ensure that decisions affecting
people’s lives can be informed by an up-to-date and complete understanding of the
relevant research evidence. With the volume of research literature growing at an
ever-increasing rate, it is impossible for individual decision makers to assess this vast
quantity of primary research to enable them to make the most appropriate healthcare
decisions that do more good than harm. By systematically assessing this primary
research, systematic reviews aim to provide an up-to-date summary of the state of
research knowledge on an intervention, diagnostic test, prognostic factor or other
health or healthcare topic. Systematic reviews address the main problem with ad
hoc searching and selection of research, namely that of bias. Just as primary research
studies use methods to avoid bias, so should summaries and syntheses of that
research.

This chapter should be cited as: Lasserson TJ, Thomas J, Higgins JPT. Chapter 1: Starting a review.
In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook
for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 3–12.
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A systematic review attempts to collate all the empirical evidence that fits
pre-specified eligibility criteria in order to answer a specific research question. It uses
explicit, systematic methods that are selected with a view to minimizing bias, thus
providing more reliable findings from which conclusions can be drawn and decisions
made (Antman et al 1992, Oxman and Guyatt 1993). Systematic review methodology,
pioneered and developed by Cochrane, sets out a highly structured, transparent and
reproducible methodology (Chandler and Hopewell 2013). This involves: the a priori
specification of a research question; clarity on the scope of the review and which
studies are eligible for inclusion; making every effort to find all relevant research
and to ensure that issues of bias in included studies are accounted for; and analysing
the included studies in order to draw conclusions based on all the identified research in
an impartial and objective way.
This Handbook is about systematic reviews on the effects of interventions, and

specifically about methods used by Cochrane to undertake them. Cochrane Reviews
use primary research to generate new knowledge about the effects of an intervention
(or interventions) used in clinical, public health or policy settings. They aim to provide
users with a balanced summary of the potential benefits and harms of interventions
and give an indication of how certain they can be of the findings. They can also
compare the effectiveness of different interventions with one another and so help users
to choose the most appropriate intervention in particular situations. The primary
purpose of Cochrane Reviews is therefore to inform people making decisions about
health or health care.
Systematic reviews are important for other reasons. New research should be

designed or commissioned only if it does not unnecessarily duplicate existing research
(Chalmers et al 2014). Therefore, a systematic review should typically be undertaken
before embarking on new primary research. Such a review will identify current and
ongoing studies, as well as indicate where specific gaps in knowledge exist, or evidence
is lacking; for example, where existing studies have not used outcomes that are
important to users of research (Macleod et al 2014). A systematic reviewmay also reveal
limitations in the conduct of previous studies that might be addressed in the new study
or studies.
Systematic reviews are important, often rewarding and, at times, exciting research

projects. They offer the opportunity for authors to make authoritative statements
about the extent of human knowledge in important areas and to identify priorities
for further research. They sometimes cover issues high on the political agenda and
receive attention from the media. Conducting research with these impacts is not
without its challenges, however, and completing a high-quality systematic review is
often demanding and time-consuming. In this chapter we introduce some of the key
considerations for review authors who are about to start a systematic review.

1.2 What is the review question?

Getting the research question right is critical for the success of a systematic review.
Review authors should ensure that the review addresses an important question to
those who are expected to use and act upon its conclusions.

1 Starting a review
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We discuss the formulation of questions in detail in Chapter 2. For a question about
the effects of an intervention, the PICO approach is usually used, which is an acronym
for Population, Intervention, Comparison(s) and Outcome. Reviews may have
additional questions, for example about how interventions were implemented,
economic issues, equity issues or patient experience.
To ensure that the review addresses a relevant question in a way that benefits users,

it is important to ensure wide input. In most cases, question formulation should
therefore be informed by people with various relevant – but potentially different –
perspectives (see Chapter 2, Section 2.4).

1.3 Who should do a systematic review?

Systematic reviews should be undertaken by a team. Indeed, Cochrane will not publish
a review that is proposed to be undertaken by a single person. Working as a team not
only spreads the effort, but ensures that tasks such as the selection of studies for
eligibility, data extraction and rating the certainty of the evidence will be performed
by at least two people independently, minimizing the likelihood of errors. First-time
review authors are encouraged to work with others who are experienced in the process
of systematic reviews and to attend relevant training.
Review teams must include expertise in the topic area under review. Topic exper-

tise should not be overly narrow, to ensure that all relevant perspectives are consid-
ered. Perspectives from different disciplines can help to avoid assumptions or
terminology stemming from an over-reliance on a single discipline. Review teams
should also include expertise in systematic review methodology, including statistical
expertise.
Arguments have been made that methodological expertise is sufficient to perform a

review, and that content expertise should be avoided because of the risk of preconcep-
tions about the effects of interventions (Gøtzsche and Ioannidis 2012). However, it is
important that both topic and methodological expertise is present to ensure a good
mix of skills, knowledge and objectivity, because topic expertise provides important
insight into the implementation of the intervention(s), the nature of the condition being
treated or prevented, the relationships between outcomesmeasured, and other factors
that may have an impact on decision making.
A Cochrane Review should represent an independent assessment of the evidence

and avoiding financial and non-financial conflicts of interest often requires careful
management. It will be important to consider if there are any relevant interests that
may constitute real or perceived conflicts. There are situations where employment,
holding of patents and other financial support should prevent people joining an author
team. Funding of Cochrane Reviews by commercial organizations with an interest in
the outcome of the review is not permitted. To ensure that any issues are identified
early in the process, authors planning Cochrane Reviews should consult the conflicts
of interest policy before starting the review. Authors should make complete
declarations of interest at the outset of the review, and refresh these throughout
the review life cycle (title, protocol, review, update) or at any point when their
circumstances change.

1.3 Who should do a systematic review?
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1.3.1 Involving consumers and other stakeholders

Because the priorities of decision makers and consumers may be different from those
of researchers, it is important that review authors consider carefully what questions are
important to these different stakeholders. Systematic reviews are more likely to be
relevant to a broad range of end users if they are informed by the involvement of people
with a range of experiences, in terms of both the topic and the methodology (Thomas
et al 2004, Rees and Oliver 2017). Engaging consumers and other stakeholders, such as
policy makers, research funders and healthcare professionals, increases relevance,
promotes mutual learning, improved uptake and decreases research waste.
Mapping out all potential stakeholders specific to the review question is a helpful first

step to considering who might be invited to be involved in a review. Stakeholders typ-
ically include: patients and consumers; consumer advocates; policy makers and other
public officials; guideline developers; professional organizations; researchers; funders
of health services and research; healthcare practitioners, and, on occasion, journalists
and other media professionals. Balancing seniority, credibility within the given field,
and diversity should be considered. Review authors should also take account of the
needs of resource-poor countries and regions in the review process (see Chapter 16)
and invite appropriate input on the scope of the review and the questions it will
address.
It is established good practice to ensure that consumers are involved and engaged in

health research, including systematic reviews. Cochrane uses the term ‘consumers’ to
refer to a wide range of people, including patients or people with personal experience
of a healthcare condition, carers and family members, representatives of patients and
carers, service users and members of the public. In 2017, a Statement of Principles for
consumer involvement in Cochrane was agreed. This seeks to change the culture of
research practice to one where both consumers and other stakeholders are joint
partners in research from planning, conduct, and reporting to dissemination. System-
atic reviews that have had consumer involvement should bemore directly applicable to
decision makers than those that have not (see online Chapter II).

1.3.2 Working with consumers and other stakeholders

Methods for working with consumers and other stakeholders include surveys, work-
shops, focus groups and involvement in advisory groups. Decisions about what meth-
ods to use will typically be based on resource availability, but review teams should be
aware of the merits and limitations of such methods. Authors will need to decide who
to involve and how to provide adequate support for their involvement. This can include
financial reimbursement, the provision of training, and stating clearly expectations of
involvement, possibly in the form of terms of reference.
While a small number of consumers or other stakeholders may be part of the review

team and become co-authors of the subsequent review, it is sometimes important
to bring in a wider range of perspectives and to recognize that not everyone has the
capacity or interest in becoming an author. Advisory groups offer a convenient
approach to involving consumers and other relevant stakeholders, especially for topics
in which opinions differ. Important points to ensure successful involvement include the
following.

1 Starting a review
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• The review team should co-ordinate the input of the advisory group to inform key
review decisions.

• The advisory group’s input should continue throughout the systematic review
process to ensure relevance of the review to end users is maintained.

• Advisory group membership should reflect the breadth of the review question, and
consideration should be given to involving vulnerable and marginalized people
(Steel 2004) to ensure that conclusions on the value of the interventions are well-
informed and applicable to all groups in society (see Chapter 16).

Templates such as terms of reference, job descriptions, or person specifications for
an advisory group help to ensure clarity about the task(s) required and are available
from INVOLVE. The website also gives further information on setting and organizing
advisory groups. See also the Cochrane training website for further resources to sup-
port consumer involvement.

1.4 The importance of reliability

Systematic reviews aim to be an accurate representation of the current state of knowl-
edge about a given issue. As understanding improves, the review can be updated. Nev-
ertheless, it is important that the review itself is accurate at the time of publication.
There are twomain reasons for this imperative for accuracy. First, health decisions that
affect people’s lives are increasingly taken based on systematic review findings. Current
knowledge may be imperfect, but decisions will be better informed when taken in the
light of the best of current knowledge. Second, systematic reviews form a critical com-
ponent of legal and regulatory frameworks; for example, drug licensing or insurance
coverage. Here, systematic reviews also need to hold up as auditable processes for
legal examination. As systematic reviews need to be both correct, and be seen to be
correct, detailed evidence-based methods have been developed to guide review
authors as to the most appropriate procedures to follow, and what information to
include in their reports to aid auditability.

1.4.1 Expectations for the conduct and reporting of Cochrane Reviews

Cochrane has developed methodological expectations for the conduct, reporting and
updating of systematic reviews of interventions (MECIR) and their plain language sum-
maries (Plain Language Expectations for Authors of Cochrane Summaries; PLEACS).
Developed collaboratively by methodologists and Cochrane editors, they are intended
to describe the desirable attributes of a Cochrane Review. The expectations are not all
relevant at the same stage of review conduct, so care should be taken to identify those
that are relevant at specific points during the review. Different methods should be used
at different stages of the review in terms of the planning, conduct, reporting and updat-
ing of the review.
Each expectation has a title, a rationale and an elaboration. For the purposes of pub-

lication of a review with Cochrane, each has the status of either ‘mandatory’ or ‘highly
desirable’. Items described asmandatory are expected to be applied, and if they are not
then an appropriate justification should be provided; failure to implement such items

1.4 The importance of reliability
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may be used as a basis for deciding not to publish a review in the Cochrane Database of
Systematic Reviews (CDSR). Items described as highly desirable should generally be
implemented, but there are reasonable exceptions and justifications are not required.
All MECIR expectations for the conduct of a review are presented in the relevant

chapters of this Handbook. Expectations for reporting of completed reviews (including
PLEACS) are described in online Chapter III. The recommendations provided in the
Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA)
Statement have been incorporated into the Cochrane reporting expectations, ensuring
compliance with the PRISMA recommendations and summarizing attributes of
reporting that should allow a full assessment of the methods and findings of the review
(Moher et al 2009).

1.5 Protocol development

Preparing a systematic review is complex and involves many judgements. To minimize
the potential for bias in the review process, these judgements should be made as far as
possible in ways that do not depend on the findings of the studies included in the
review. Review authors’ prior knowledge of the evidence may, for example, influence
the definition of a systematic review question, the choice of criteria for study eligibility,
or the pre-specification of intervention comparisons and outcomes to analyse. It is
important that the methods to be used should be established and documented in
advance (see MECIR Box 1.5.a, MECIR Box 1.5.b and below MECIR Box 1.5.c).

MECIR Box 1.5.a Relevant expectations for conduct of intervention reviews

C19: Planning the search (Mandatory)

Plan in advance the methods to be used for
identifying studies. Design searches to
capture as many studies as possible that
meet the eligibility criteria, ensuring that
relevant time periods and sources are
covered and not restricted by language or
publication status.

Searches should be motivated directly by
the eligibility criteria for the review, and it
is important that all types of eligible
studies are considered when planning the
search. If searches are restricted by
publication status or by language of
publication, there is a possibility of
publication bias, or language bias
(whereby the language of publication is
selected in a way that depends on the
findings of the study), or both. Removing
language restrictions in English language
databases is not a good substitute for
searching non-English language journals
and databases.

1 Starting a review
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MECIR Box 1.5.b Relevant expectations for the conduct of intervention reviews

C20: Planning the assessment of risk of bias in included studies (Mandatory)

Plan in advance the methods to be used for
assessing risk of bias in included studies,
including the tool(s) to be used, how the
tool(s) will be implemented, and the criteria
used to assign studies, for example, to
judgements of low risk, high risk and
unclear risk of bias.

Predefining the methods and criteria for
assessing risk of bias is important since
analysis or interpretation of the review
findings may be affected by the
judgements made during this process. For
randomized trials, use of the Cochrane
risk-of-bias tool is Mandatory, so it is
sufficient (and easiest) simply to refer to
the definitions of low risk, unclear risk and
high risk of bias provided in theHandbook.

MECIR Box 1.5.c Relevant expectations for conduct of intervention reviews

C21: Planning the synthesis of results (Mandatory)

Plan in advance the methods to be used to
synthesize the results of the included studies,
including whether a quantitative synthesis is
planned, how heterogeneity will be assessed,
choice of effect measure (e.g. odds ratio, risk
ratio, risk difference or other for dichotomous
outcomes), and methods for meta-analysis
(e.g. inverse variance or Mantel Haenszel,
fixed-effect or random-effects model).

Predefining the synthesis methods,
particularly the statistical methods, is
important, since analysis or
interpretation of the review findings may
be affected by the judgements made
during this process.

C22: Planning sub-group analyses (Mandatory)

Predefine potential effect modifiers (e.g. for
subgroup analyses) at the protocol stage;
restrict these in number, and provide
rationale for each.

Pre-specification reduces the risk that
large numbers of undirected subgroup
analyses will lead to spurious
explanations of heterogeneity.

C23: Planning the GRADE assessment and ‘Summary of findings’ table (Mandatory)

Plan in advance the methods to be used for
assessing the certainty of the body of
evidence, and summarizing the findings of
the review.

Methods for assessing the certainty of
evidence for the most important
outcomes in the review need to be pre-
specified. In ‘Summary of findings’ tables
the most important feature is to
predefine the choice of outcomes in order
to guard against selective presentation of
results in the review. The table should
include the essential outcomes for
decision making (typically up to seven),
which generally should not include
surrogate or interim outcomes. The
choice of outcomes should not be based
on any anticipated or observed
magnitude of effect, or because they are
likely to have been addressed in the
studies to be reviewed.



Publication of a protocol for a review that is written without knowledge of the avail-
able studies reduces the impact of review authors’ biases, promotes transparency of
methods and processes, reduces the potential for duplication, allows peer review of
the planned methods before they have been completed, and offers an opportunity
for the review team to plan resources and logistics for undertaking the review itself.
All chapters in the Handbook should be consulted when drafting the protocol. Since
systematic reviews are by their nature retrospective, an element of knowledge of
the evidence is often inevitable. This is one reason why non-content experts such as
methodologists should be part of the review team (see Section 1.3). Two exceptions
to the retrospective nature of a systematic review are ameta-analysis of a prospectively
planned series of trials and some living systematic reviews, as described in Chapter 22.
The review question should determine the methods used in the review, and not vice

versa. The question may concern a relatively straightforward comparison of one treat-
ment with another; or it may necessitate plans to compare different treatments as part
of a network meta-analysis, or assess differential effects of an intervention in different
populations or delivered in different ways.
The protocol sets out the context in which the review is being conducted. It presents

an opportunity to develop ideas that are foundational for the review. This concerns,
most explicitly, definition of the eligibility criteria such as the study participants and
the choice of comparators and outcomes. The eligibility criteria may also be defined
following the development of a logic model (or an articulation of the aspects of an
extent logic model that the review is addressing) to explain how the intervention might
work (see Chapter 2, Section 2.5.1).
A key purpose of the protocol is to make plans to minimize bias in the eventual find-

ings of the review. Reliable synthesis of available evidence requires a planned, system-
atic approach. Threats to the validity of systematic reviews can come from the studies
they include or the process by which reviews are conducted. Biases within the studies
can arise from the method by which participants are allocated to the intervention
groups, awareness of intervention group assignment, and the collection, analysis
and reporting of data. Methods for examining these issues should be specified in
the protocol. Review processes can generate bias through a failure to identify an unbi-
ased (and preferably complete) set of studies, and poor quality assurance throughout
the review. The availability of research may be influenced by the nature of the results
(i.e. reporting bias). To reduce the impact of this form of bias, searching may need to
include unpublished sources of evidence (Dwan et al 2013) (MECIR Box 1.5.b).
Developing a protocol for a systematic review has benefits beyond reducing bias.

Investing effort in designing a systematic review will make the process more manage-
able and help to inform key priorities for the review. Defining the question, referring to
it throughout, and using appropriate methods to address the question focuses the
analysis and reporting, ensuring the review is most likely to inform treatment decisions
for funders, policy makers, healthcare professionals and consumers. Details of the
planned analyses, including investigations of variability across studies, should be spe-
cified in the protocol, along with methods for interpreting the results through the sys-
tematic consideration of factors that affect confidence in estimates of intervention
effect (MECIR Box 1.5.c).
While the intention should be that a review will adhere to the published protocol,

changes in a review protocol are sometimes necessary. This is also the case for a
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protocol for a randomized trial, which must sometimes be changed to adapt to
unanticipated circumstances such as problems with participant recruitment, data
collection or event rates. While every effort should be made to adhere to a predeter-
mined protocol, this is not always possible or appropriate. It is important, however,
that changes in the protocol should not bemade based on how they affect the outcome
of the research study, whether it is a randomized trial or a systematic review. Post hoc
decisions made when the impact on the results of the research is known, such as
excluding selected studies from a systematic review, or changing the statistical analy-
sis, are highly susceptible to bias and should therefore be avoided unless there are rea-
sonable grounds for doing this.
Enabling access to a protocol through publication (all Cochrane Protocols are

published in the CDSR) and registration on the PROSPERO register of systematic
reviews reduces duplication of effort, research waste, and promotes accountability.
Changes to the methods outlined in the protocol should be transparently declared.
This Handbook provides details of the systematic review methods developed or

selected by Cochrane. They are intended to address the need for rigour, comprehen-
siveness and transparency in preparing a Cochrane systematic review. All relevant
chapters – including those describing procedures to be followed in the later stages
of the review – should be consulted during the preparation of the protocol. A more spe-
cific description of the structure of Cochrane Protocols is provide in online Chapter II.

1.6 Data management and quality assurance

Systematic reviews should be replicable, and retaining a record of the inclusion deci-
sions, data collection, transformations or adjustment of data will help to establish a
secure and retrievable audit trail. They can be operationally complex projects, often
involving large research teams operating in different sites across the world. Good data
management processes are essential to ensure that data are not inadvertently lost,
facilitating the identification and correction of errors and supporting future efforts
to update and maintain the review. Transparent reporting of review decisions enables
readers to assess the reliability of the review for themselves.
Reviewmanagement software, such as Covidence and EPPI-Reviewer, can be used to

assist data management and maintain consistent and standardized records of
decisions made throughout the review. These tools offer a central repository for review
data that can be accessed remotely throughout the world by members of the review
team. They record independent assessment of studies for inclusion, risk of bias and
extraction of data, enabling checks to be made later in the process if needed. Research
has shown that even experienced reviewers make mistakes and disagree with one
another on risk-of-bias assessments, so it is particularly important to maintain quality
assurance here, despite its cost in terms of author time. As more sophisticated
information technology tools begin to be deployed in reviews (see Chapter 4,
Section 4.6.6.2 and Chapter 22, Section 22.2.4), it is increasingly apparent that all review
data – including the initial decisions about study eligibility – have value beyond the
scope of the individual review. For example, review updates can bemademore efficient
through (semi-) automation when data from the original review are available for
machine learning.

1.6 Data management and quality assurance
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2

Determining the scope of the review
and the questions it will address
James Thomas, Dylan Kneale, Joanne E McKenzie, Sue E Brennan,
Soumyadeep Bhaumik

KEY POINTS

• Systematic reviews should address answerable questions and fill important gaps in
knowledge.

• Developing good review questions takes time, expertise and engagement with
intended users of the review.

• Cochrane Reviews can focus on broad questions, or be more narrowly defined. There
are advantages and disadvantages of each.

• Logic models are a way of documenting how interventions, particularly complex inter-
ventions, are intended to ‘work’, and can be used to refine review questions and the
broader scope of the review.

• Using priority-setting exercises, involving relevant stakeholders, and ensuring that the
review takes account of issues relating to equity can be strategies for ensuring that the
scope and focus of reviews address the right questions.

2.1 Rationale for well-formulated questions

As with any research, the first and most important decision in preparing a systematic
review is to determine its focus. This is best done by clearly framing the questions the
review seeks to answer. The focus of any Cochrane Review should be on questions that
are important to people making decisions about health or health care. These decisions
will usually need to take into account both the benefits and harms of interventions
(seeMECIRBox2.1.a).Goodreviewquestionsoften taketimetodevelop, requiringengage-
mentwith not only the subject area, butwith awide groupof stakeholders (Section 2.4.2).
Well-formulated questions will guide many aspects of the review process, including

determining eligibility criteria, searching for studies, collecting data from included

This chapter should be cited as: Thomas J, Kneale D, McKenzie JE, Brennan SE, Bhaumik S. Chapter 2:
Determining the scope of the review and the questions it will address. In: Higgins JPT, Thomas J, Chandler J,
Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions.
2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 13–32.
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studies, structuring the syntheses and presenting findings (Cooper 1984, Hedges 1994,
Oliver et al 2017). In Cochrane Reviews, questions are stated broadly as review ‘Objec-
tives’, and operationalized in terms of the studies that will be eligible to answer those
questions as ‘Criteria for considering studies for this review’. As well as focusing review
conduct, the contents of these sections are used by readers in their initial assessments
of whether the review is likely to be directly relevant to the issues they face.
The FINER criteria have been proposed as encapsulating the issues that should be

addressed when developing research questions. These state that questions should
be Feasible, Interesting,Novel, Ethical, and Relevant (Cummings et al 2007). All of these
criteria raise important issues for consideration at the outset of a review and should be
borne in mind when questions are formulated.
A feasible review is one that asks a question that the author team is capable of

addressing using the evidence available. Issues concerning the breadth of a review
are discussed in Section 2.3.1, but in terms of feasibility it is important not to ask a

MECIR Box 2.1.a Relevant expectations for conduct of intervention reviews

C1: Formulating review questions (Mandatory)

Ensure that the review question and
particularly the outcomes of interest,
address issues that are important to review
users such as consumers, health
professionals and policy makers.

Cochrane Reviews are intended to
support clinical practice and policy, not
just scientific curiosity. The needs of
consumers play a central role in
Cochrane Reviews and they can play an
important role in defining the review
question. Qualitative research, i.e.
studies that explore the experience of
those involved in providing and receiving
interventions, and studies evaluating
factors that shape the implementation
of interventions, might be used in the
same way.

C3: Considering potential adverse effects (Mandatory)

Consider any important potential adverse
effects of the intervention(s) and ensure
that they are addressed.

It is important that adverse effects are
addressed in order to avoid one-sided
summaries of the evidence. At a
minimum, the review will need to
highlight the extent to which potential
adverse effects have been evaluated in
any included studies. Sometimes data on
adverse effects are best obtained from
non-randomized studies, or qualitative
research studies. This does not mean
however that all reviews must include
non-randomized studies.

2 Determining the scope of the review
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question that will result in retrieving unmanageable quantities of information; up-front
scoping work will help authors to define sensible boundaries for their reviews. Likewise,
while it can be useful to identify gaps in the evidence base, review authors and stake-
holders should be aware of the possibility of asking a question that may not be answer-
able using the existing evidence (i.e. that will result in an ‘empty’ review, see also
Section 2.5.3).
Embarking on a review that authors are interested in is important because reviews

are a significant undertaking and review authors need sufficient commitment to see
the work through to its conclusion.
A novel review will address a genuine gap in knowledge, so review authors should be

aware of any related or overlapping reviews. This reduces duplication of effort, and also
ensures that authors understand the wider research context to which their review will
contribute. Authors should check for pre-existing syntheses in the published research
literature and also for ongoing reviews in the PROSPERO register of systematic reviews
before beginning their own review.
Given the opportunity cost involved in undertaking an activity as demanding as a sys-

tematic review, authors should ensure that their work is relevant by: (i) involving relevant
stakeholders in defining its focus and the questions it will address; and (ii) writing up the
review in such a way as to facilitate the translation of its findings to inform decisions. The
GRADE framework aims to achieve this, and should be considered throughout the review
process, not only when it is being written up (see Chapters 14 and 15).
Consideration of opportunity costs is also relevant in terms of the ethics of conduct-

ing a review, though ethical issues should also be considered primarily in terms of the
questions that are prioritized for answering and the way that they are framed. Research
questions are often not value-neutral, and the way that a given problem is approached
can have political implications which can result in, for example, the widening of health
inequalities (whether intentional or not). These issues are explored in Section 2.4.3 and
Chapter 16.

2.2 Aims of reviews of interventions

Systematic reviews can address any question that can be answered by a primary
research study. This Handbook focuses on a subset of all possible review questions:
the impact of intervention(s) implemented within a specified human population. Even
within these limits, systematic reviews examining the effects of intervention(s) can vary
quite markedly in their aims. Some will focus specifically on evidence of an effect of an
intervention compared with a specific alternative, whereas othersmay examine a range
of different interventions. Reviews that examinemultiple interventions and aim to iden-
tify which might be the most effective can be broader and more challenging than those
looking at single interventions. These can also be the most useful for end users, where
decision making involves selecting from a number of intervention options. The incor-
poration of network meta-analysis as a core method in this edition of the Handbook
(see Chapter 11) reflects the growing importance of these types of reviews.
As well as looking at the balance of benefit and harm that can be attributed to a given

intervention, reviews within the ambit of this Handbook might also aim to investigate
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the relationship between the size of an intervention effect and other characteristics,
such as aspects of the population, the intervention itself, how the outcome is meas-
ured, or the methodology of the primary research studies included. Such approaches
might be used to investigate which components of multi-component interventions are
more or less important or essential (andwhen). While it is not always necessary to know
how an intervention achieves its effect for it to be useful, many reviews will aim to artic-
ulate an intervention’s mechanisms of action (see Section 2.5.1), either by making this
an explicit aim of the review itself (see Chapters 17 and 21), or when describing the
scope of the review. Understanding how an intervention works (or is intended to work)
can be an important aid to decision makers in assessing the applicability of the review
to their situation. These investigations can be assisted by the incorporation of results
from process evaluations conducted alongside trials (see Chapter 21). Further, many
decisions in policy and practice are at least partially constrained by the resource avail-
able, so review authors often need to consider the economic context of interventions
(see Chapter 20).

2.3 Defining the scope of a review question

Studies comparing healthcare interventions, notably randomized trials, use the out-
comes of participants to compare the effects of different interventions. Statistical
syntheses (e.g. meta-analysis) focus on comparisons of interventions, such as a new
intervention versus a control intervention (which may represent conditions of usual
practice or care), or the comparison of two competing interventions. Throughout
the Handbook we use the terminology experimental intervention versus comparator
intervention. This implies a need to identify one of the interventions as experimental,
and is used only for convenience since all methods apply to both controlled and head-
to-head comparisons. The contrast between the outcomes of two groups treated dif-
ferently is known as the ‘effect’, the ‘treatment effect’ or the ‘intervention effect’; we
generally use the last of these throughout the Handbook.
A statement of the review’s objectives should begin with a precise statement of the

primary objective, ideally in a single sentence (MECIR Box 2.3.a). Where possible the
style should be of the form ‘To assess the effects of [intervention or comparison] for
[health problem] in [types of people, disease or problem and setting if specified]’. This

MECIR Box 2.3.a Relevant expectations for conduct of intervention reviews

C2: Predefining objectives (Mandatory)

Define in advance the objectives of the
review, including population,
interventions, comparators and outcomes
(PICO).

Objectives give the review focus and must
be clear before appropriate eligibility
criteria can be developed. If the review will
address multiple interventions, clarity is
required on how these will be addressed
(e.g. summarized separately, combined or
explicitly compared).

2 Determining the scope of the review
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might be followed by one or more secondary objectives, for example relating to differ-
ent participant groups, different comparisons of interventions or different outcome
measures. The detailed specification of the review question(s) requires consideration
of several key components (Richardson et al 1995, Counsell 1997) which can often be
encapsulated by the ‘PICO’ mnemonic, an acronym for Population, Intervention,
Comparison(s) andOutcome. Equal emphasis in addressing, and equal precision in defin-
ing, each PICO component is not necessary. For example, a review might concentrate on
competing interventions for a particular stage of breast cancer, with stage and severity of
the disease being defined very precisely; or alternately focus on a particular drug for any
stage of breast cancer, with the treatment formulation being defined very precisely.
Throughout the Handbook we make a distinction between three different stages in

the review at which the PICO construct might be used. This division is helpful for under-
standing the decisions that need to be made:

• The review PICO (planned at the protocol stage) is the PICO on which eligibility of
studies is based (what will be included and what excluded from the review).

• The PICO for each synthesis (also planned at the protocol stage) defines the ques-
tion that each specific synthesis aims to answer, determining how the synthesis will
be structured, specifying planned comparisons (including intervention and compar-
ator groups, any grouping of outcome and population subgroups).

• The PICO of the included studies (determined at the review stage) is what was actu-
ally investigated in the included studies.

Reaching the point where it is possible to articulate the review’s objectives in the above
form – the reviewPICO – requires time and detailed discussion betweenpotential authors
andusersof the review. It is important that those involved indeveloping the review’s scope
andquestionshaveagoodknowledgeof thepractical issues that the reviewwilladdressas
wellas the research field tobesynthesized.Developing thequestions isacritical partof the
researchprocess. As such, there aremethodological issues tobear inmind, including: how
todeterminewhich questions aremost important to answer; how to engage stakeholders
inquestion formulation;howtoaccount for changes in focusas the reviewprogresses; and
considerations about how broad (or narrow) a review should be.

2.3.1 Broad versus narrow reviews

The questions addressed by a review may be broad or narrow in scope. For example, a
review might address a broad question regarding whether antiplatelet agents in gen-
eral are effective in preventing all thrombotic events in humans. Alternatively, a review
might address whether a particular antiplatelet agent, such as aspirin, is effective in
decreasing the risks of a particular thrombotic event, stroke, in elderly persons with
a previous history of stroke. Increasingly, reviews are becoming broader, aiming, for
example, to identify which intervention – out of a range of treatment options – is most
effective, or to investigate how an intervention varies depending on implementation
and participant characteristics.
Overviews of reviews (online Chapter V), in which multiple reviews are summarized,

can be one way of addressing the need for breadth when synthesizing the evidence
base, since they can summarize multiple reviews of different interventions for the
same condition, or multiple reviews of the same intervention for different types of

2.3 Defining the scope of a review question
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participants. It may be considered desirable to plan a series of reviews with a relatively
narrow scope, alongside an Overview to summarize their findings. Alternatively, it may
bemore useful – particularly given the growth in support for networkmeta-analysis – to
combine comparisons of different treatment options within the same review (see
Chapter 11). When deciding whether or not an overview might be the most appropriate
approach, review authors should take account of the breadth of the question being
asked and the resources available. Some questions are simply too broad for a review
of all relevant primary research to be practicable, and if a field has sufficient high-
quality reviews, then the production of another review of primary research that dupli-
cates the others might not be a sensible use of resources.
Some of the advantages and disadvantages of broad and narrow reviews are summar-

ized in Table 2.3.a. While having a broad scope in terms of the range of participants has
the potential to increase generalizability, the extent to which findings are ultimately
applicable to broader (or different) populations will depend on the participants who have

Table 2.3.a Some advantages and disadvantages of broad versus narrow reviews

Broad scope Narrow scope

Choice of population

e.g. corticosteroid injection for
shoulder tendonitis (narrow)
or corticosteroid injection for
any tendonitis (broad)

Advantages:

Comprehensive summary of the
evidence.
Opportunity to explore
consistency of findings (and
therefore generalizability)
across different types of
participants.

Advantages:

Manageability for review team.
Ease of reading.

Disadvantages:

Searching, data collection,
analysis and writing may
require more resources.

Interpretation may be difficult
for readers if the review is large
and lacks a clear rationale
(such as examining consistency
of findings) for including
diverse types of participants.

Disadvantages:

Evidence may be sparse.

Unable to explore whether an
intervention operates
differently in other settings or
populations (e.g. inability to
explore differential effects that
could lead to inequity).

Increased burden for decision
makers if multiple reviews must
be accessed (e.g. if evidence is
sparse for the population of
interest).

Scope could be chosen by
review authors to produce a
desired result.

Mode of intervention

e.g. supervised running for
depression (narrow) or any
exercise for depression
(broad)

Advantages:

Comprehensive summary of the
evidence.
Opportunity to explore
consistency of findings across
different implementations of
the intervention.

Advantages:

Manageability for review team.
Ease of reading.

2 Determining the scope of the review
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actually been recruited into research studies. Likewise, heterogeneity can be a disadvan-
tage when the expectation is for homogeneity of effects between studies, but an advan-
tage when the review question seeks to understand differential effects (see Chapter 10).
A distinction should be drawn between the scope of a review and the precise ques-

tions within, since it is possible to have a broad review that addresses quite narrow
questions. In the antiplatelet agents for preventing thrombotic events example, a sys-
tematic review with a broad scope might include all available treatments. Rather than
combining all the studies into one comparison though, specific treatments would be
compared with one another in separate comparisons, thus breaking a heterogeneous
set of treatments into narrower, more homogenous groups. This relates to the three
levels of PICO, outlined in Section 2.3. The review PICO defines the broad scope of
the review, and the PICO for comparison defines the specific treatments that will be
compared with one another; Chapter 3 elaborates on the use of PICOs.
In practice, a Cochrane Reviewmay start (or have started) with a broad scope, and be

divided up into narrower reviews as evidence accumulates and the original review

Table 2.3.a (Continued)

Broad scope Narrow scope

Disadvantages:

Searching, data collection,
analysis and writing may
require more resources.

Interpretation may be difficult
for readers if the review is large
and lacks a clear rationale
(such as examining consistency
of findings) for including
different modes of an
intervention.

Disadvantages:

Evidence may be sparse.

Unable to explore whether
different modes of an
intervention modify the
intervention effects.

Increased burden for decision
makers if multiple reviews must
be accessed (e.g. if evidence is
sparse for a specific mode).

Scope could be chosen by
review authors to produce a
desired result.

Choice of interventions and
comparators

e.g. oxybutynin compared
with desmopressin for
preventing bed-wetting
(narrow) or interventions for
preventing bed-wetting
(broad)

Advantages:

Comprehensive summary of the
evidence.

Opportunity to compare the
effectiveness of a range of
different intervention options.

Advantages:

Manageability for review team.

Relative simplicity of objectives
and ease of reading.

Disadvantages:

Searching, data collection,
analysis and writing may
require more resources.

May be unwieldy, and more
appropriate to present as an
Overview of reviews (see online
Chapter V).

Disadvantages:

Increased burden for decision
makers if not included in an
Overview since multiple reviews
may need to be accessed.

2.3 Defining the scope of a review question
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becomes unwieldy. This may be done for practical and logistical reasons, for example
tomake updating easier as well as tomake it easier for readers to see which parts of the
evidence base are changing. Individual review authors must decide if there are
instances where splitting a broader focused review into a series of more narrowly
focused reviews is appropriate and implement appropriate methods to achieve this.
If a major change is to be undertaken, such as splitting a broad review into a series
of more narrowly focused reviews, a new protocol must be written for each of the com-
ponent reviews that documents the eligibility criteria for each one.
Ultimately, the selected breadth of a review depends upon multiple factors including

perspectives regarding a question’s relevance and potential impact; supporting theo-
retical, biologic and epidemiological information; the potential generalizability and
validity of answers to the questions; and available resources. As outlined in
Section 2.4.2, authors should consider carefully the needs of users of the review and
the context(s) in which they expect the review to be used when determining the most
optimal scope for their review.

2.3.2 ‘Lumping’ versus ‘splitting’

It is important not to confuse the issue of the breadth of the review (determined by the
review PICO) with concerns about between-study heterogeneity and the legitimacy of
combining results from diverse studies in the same analysis (determined by the PICOs
for comparison).
Broad reviews have been criticized as ‘mixing apples and oranges’, and one of the

inventors of meta-analysis, Gene Glass, has responded “Of course it mixes apples
and oranges… comparing apples and oranges is the only endeavour worthy of true
scientists; comparing apples to apples is trivial” (Glass 2015). In fact, the two concepts
(‘broad reviews’ and ‘mixing apples and oranges’) are different issues. Glass argues that
broad reviews, with diverse studies, provide the opportunity to ask interesting ques-
tions about the reasons for differential intervention effects.
The ‘apples and oranges’ critique refers to the inappropriate mixing of studies within a

single comparison, where the purpose is to estimate an average effect. In situations where
goodbiologicorsociologicalevidencesuggeststhatvarious formulationsofan intervention
behaveverydifferently or that variousdefinitionsof the conditionof interest areassociated
withmarkedlydifferenteffectsof the intervention, theuncriticalaggregationof results from
quite different interventions or populations/settings may well be questionable.
Unfortunately, determining the situations where studies are similar enough to com-

bine with one another is not always straightforward, and it can depend, to some extent,
on the question being asked.While the decision is sometimes characterized as ‘lumping’
(where studies are combined in the same analysis) or ‘splitting’ (where they are not)
(Squires et al 2013), it is better to consider these issues on a continuum, with reviews
that have greater variation in the types of included interventions, settings and popula-
tions, and study designs being towards the ‘lumped’ end, and those that include little
variation in these elements being towards the ‘split’ end (Petticrew and Roberts 2006).
While specification of the review PICO sets the boundary for the inclusion and exclu-

sion of studies, decisions also need to be made when planning the PICO for the
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comparisons to be made in the analysis as to whether they aim to address broader
(‘lumped’) or narrower (‘split’) questions (Caldwell and Welton 2016). The degree of
‘lumping’ in the comparisons will be primarily driven by the review’s objectives, but
will sometimes be dictated by the availability of studies (and data) for a particular com-
parison (see Chapter 9 for discussion of the latter). The former is illustrated by a
Cochrane Review that examined the effects of newer-generation antidepressants for
depressive disorders in children and adolescents (Hetrick et al 2012).
Newer-generation antidepressants include multiple different compounds (e.g. parox-

etine, fluoxetine). The objectives of this review were to (i) estimate the overall effect of
newer-generation antidepressants on depression, (ii) estimate the effect of each com-
pound, and (iii) examine whether the compound type and age of the participants (chil-
dren versus adolescents) is associated with the intervention effect. Objective
(i) addresses a broad, ‘in principle’ (Caldwell and Welton 2016), question of whether
newer-generation antidepressants improve depression, where the different com-
pounds are ‘lumped’ into a single comparison. Objective (ii) seeks to address narrower,
‘split’, questions that investigate the effect of each compound on depression sepa-
rately. Answers to both questions can be identified by setting up separate comparisons
for each compound, or by subgrouping the ‘lumped’ comparison by compound
(Chapter 10, Section 10.11.2). Objective (iii) seeks to explore factors that explain heter-
ogeneity among the intervention effects, or equivalently, whether the intervention
effect varies by the factor. This can be examined using subgroup analysis or meta-
regression (Chapter 10, Section 10.11) but, in the case of intervention types, is best
achieved using network meta-analysis (see Chapter 11).
There are various advantages and disadvantages to bear in mind when defining the

PICO for the comparison and considering whether ‘lumping’ or ‘splitting’ is appropriate.
Lumping allows for the investigation of factors that may explain heterogeneity. Results
from these investigations may provide important leads as to whether an intervention
operates differently in, for example, different populations (such as in children and ado-
lescents in the example above). Ultimately, this type of knowledge is useful for clinical
decision making. However, lumping is likely to introduce heterogeneity, which will not
always be explained by a priori specified factors, and this may lead to a combined effect
that is clinically difficult to interpret and implement. For example, when multiple inter-
vention types are ‘lumped’ in one comparison (as in objective (i) above), and there is
unexplained heterogeneity, the combined intervention effect would not enable a clin-
ical decision as to which intervention should be selected. Splitting comparisons carries
its own risk of there being too few studies to yield a useful synthesis. Inevitably, some
degree of aggregation across the PICO elements is required for a meta-analysis to be
undertaken (Caldwell and Welton 2016).

2.4 Ensuring the review addresses the right questions

Since systematic reviews are intended for use in healthcare decision making, review
teams should ensure not only the application of robust methodology, but also that

2.4 Ensuring the review addresses the right questions
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the review question is meaningful for healthcare decision making. Two approaches are
discussed below:

• Using results from existing research priority-setting exercises to define the review
question.

• In the absence of, or in addition to, existing research priority-setting exercises, engag-
ing with stakeholders to define review questions and establish their relevance to pol-
icy and practice.

2.4.1 Using priority-setting exercises to define review questions

A research priority-setting exercise is a “collective activity for deciding which uncertain-
ties aremost worth trying to resolve through research; uncertainties consideredmay be
problems to be understood or solutions to be developed or tested; across broad or nar-
row areas” (Sandy Oliver, referenced in Nasser 2018). Using research priority-setting
exercises to define the scope of a review helps to prevent the waste of scarce resources
for research by making the review more relevant to stakeholders (Chalmers et al 2014).
Research priority setting is always conducted in a specific context, setting and pop-

ulation with specific principles, values and preferences (which should be articulated).
Different stakeholders’ interpretation of the scope and purpose of a ‘research question’
might vary, resulting in priorities that might be difficult to interpret. Researchers or
review teams might find it necessary to translate the research priorities into an answer-
able PICO research question format, andmay find it useful to recheck the question with
the stakeholder groups to determine whether they have accurately reflected their
intentions.
While Cochrane Review teams are inmost cases reviewing the effects of an intervention

with a global scope, theymay find that the priorities identified by important stakeholders
(such as the World Health Organization or other organizations or individuals in a repre-
sentative health system) are informative in planning the review. Review authors may find
that differences between different stakeholder groups’ views on priorities and the rea-
sons for these differences can help them to define the scope of the review. This is par-
ticularly important for making decisions about excluding specific populations or settings,
or being inclusive and potentially conducting subgroup analyses.
Whenever feasible, systematic reviews should be based on priorities identified by key

stakeholders such as decision makers, patients/public, and practitioners. Cochrane has
developed a list of priorities for reviews led by review groups and networks, in consul-
tation with key stakeholders, which is available on the Cochrane website. Issues relat-
ing to equity (see Chapter 16 and Section 2.4.3) need to be taken into account when
conducting and interpreting the results from priority-setting exercises. Examples of
materials to support these processes are available (Viergever et al 2010, Nasser et al
2013, Tong et al 2017).
The results of research priority-setting exercises can be searched for in electronic

databases and via websites of relevant organizations. Examples are: James Lind Alli-
ance, World Health Organization, organizations of health professionals including
research disciplines, and ministries of health in different countries (Viergever 2010).
Examples of search strategies for identifying research priority-setting exercises are
available (Bryant et al 2014, Tong et al 2015).
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Other sources of questions are often found in ‘implications for future research’ sec-
tions of articles in journals and clinical practice guidelines. Some guideline developers
have prioritized questions identified through the guideline development process
(Sharma et al 2018), although these priorities will be influenced by the needs of health
systems in which different guideline development teams are working.

2.4.2 Engaging stakeholders to help define the review questions

In the absence of a relevant research priority-setting exercise, or when a systematic
review is being conducted for a very specific purpose (for example, commissioned
to inform the development of a guideline), researchers should work with relevant sta-
keholders to define the review question. This practice is especially important when
developing review questions for studying the effectiveness of health systems and poli-
cies, because of the variability between countries and regions; the significance of these
differences may only become apparent through discussion with the stakeholders.
The stakeholders for a review could include consumers or patients, carers, health

professionals of different kinds, policy decision makers and others (Chapter 1,
Section 1.3.1). Identifying the stakeholders who are critical to a particular question will
depend on the question, who the answer is likely to affect, and who will be expected to
implement the intervention if it is found to be effective (or to discontinue it if not).
Stakeholder engagement should, optimally, be an ongoing process throughout the

life of the systematic review, from defining the question to dissemination of results
(Keown et al 2008). Engaging stakeholders increases relevance, promotes mutual learn-
ing, improves uptake and decreases research waste (see Chapter 1, Sections 1.3.1 and
1.3.2). However, because such engagement can be challenging and resource intensive,
a one-off engagement process to define the review question might only be possible.
Review questions that are conceptualized and refined by multiple stakeholders can
capture much of the complexity that should be addressed in a systematic review.

2.4.3 Considering issues relating to equity when defining review questions

Deciding what should be investigated, who the participants should be, and how the
analysis will be carried out can be considered political activities, with the potential
for increasing or decreasing inequalities in health. For example, we now know that
well-intended interventions can actually widen inequalities in health outcomes since
researchers have chosen to investigate this issue (Lorenc et al 2013). Decision makers
can now take account of this knowledge when planning service provision. Authors
should therefore consider the potential impact on disadvantaged groups of the
intervention(s) that they are investigating, and whether socio-economic inequalities
in health might be affected depending on whether or how they are implemented.
Health equity is the absence of avoidable and unfair differences in health (Whitehead

1992). Health inequity may be experienced across characteristics defined by PROGRESS-
Plus (Place of residence, Race/ethnicity/culture/language, Occupation, Gender/sex,
Religion, Education, Socio-economic status, Social capital, and other characteristics
(‘Plus’) such as sexual orientation, age, and disability) (O’Neill et al 2014). Issues
relating to health equity should be considered when review questions are developed
(MECIR Box 2.4.a). Chapter 16 presents detailed guidance on this issue for review authors.
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2.5 Methods and tools for structuring the review

It is important for authors to develop the scope of their reviewwith care: without a clear
understanding of where the review will contribute to existing knowledge – and how it
will be used – it may be at risk of conceptual incoherence. It may mis-specify critical
elements of how the intervention(s) interact with the context(s) within which they oper-
ate to produce specific outcomes, and become either irrelevant or possibly misleading.
For example, in a systematic review about smoking cessation interventions in preg-
nancy, it was essential for authors to take account of the way that health service pro-
vision has changed over time. The type and intensity of ‘usual care’ in more recent
evaluations was equivalent to the interventions being evaluated in older studies,
and the analysis needed to take this into account. This review also found that the same
intervention can have different effects in different settings depending on whether its
materials are culturally appropriate in each context (Chamberlain et al 2017).
In order to protect the review against conceptual incoherence and irrelevance, review

authors need to spend time at the outset developing definitions for key concepts and
ensuring that they are clear about the prior assumptions on which the review depends.
These prior assumptions include, for example, why particular populations should be
considered inside or outside the review’s scope; how the intervention is thought to
achieve its effect; and why specific outcomes are selected for evaluation. Being clear
about these prior assumptions also requires review authors to consider the evidential
basis for these assumptions and decide for themselves which they can place more or
less reliance on. When considered as a whole, this initial conceptual and definitional
work states the review’s conceptual framework. Each element of the review’s PICO
raises its own definitional challenges, which are discussed in detail in the Chapter 3.
In this section we consider tools that may help to define the scope of the review and

the relationships between its key concepts; in particular, articulating how the interven-
tion gives rise to the outcomes selected. In some situations, long sequences of events
are expected to occur between an intervention being implemented and an outcome
being observed. For example, a systematic review examining the effects of asthma edu-
cation interventions in schools on children’s health and well-being needed to consider:

MECIR Box 2.4.a Relevant expectations for conduct of intervention reviews

C4: Considering equity and specific populations (Highly desirable)

Consider in advance whether issues of
equity and relevance of evidence to specific
populations are important to the review,
and plan for appropriate methods to
address them if they are. Attention should
be paid to the relevance of the review
question to populations such as low socio-
economic groups, low- or middle-income
regions, women, children and older people.

Where possible reviews should include
explicit descriptions of the effect of the
interventions not only upon the whole
population, but also on the
disadvantaged, and/or the ability of the
interventions to reduce socio-economic
inequalities in health, and to promote use
of the interventions to the community.
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the interplay between core intervention components and their introduction into differ-
ing school environments; different child-level effect modifiers; how the intervention
then had an impact on the knowledge of the child (and their family); the child’s
self-efficacy and adherence to their treatment regime; the severity of their asthma;
the number of days of restricted activity; how this affected their attendance at school;
and finally, the distal outcomes of education attainment and indicators of child health
and well-being (Kneale et al 2015).
Several specific tools can help authors to consider issues raised when defining review

questions and planning their review; these are also helpful when developing eligibility
criteria and classifying included studies. These include the following.

1) Taxonomies: hierarchical structures that can be used to categorize (or group)
related interventions, outcomes or populations.

2) Generic frameworks for examining and structuring the description of intervention
characteristics (e.g. TIDieR for the description of interventions (Hoffmann et al
2014), iCAT_SR for describing multiple aspects of complexity in systematic reviews
(Lewin et al 2017)).

3) Core outcome sets for identifying and defining agreed outcomes that should be
measured for specific health conditions (described in more detail in Chapter 3).

Unlike these tools, which focus on particular aspects of a review, logic models
provide a framework for planning and guiding synthesis at the review level (see
Section 2.5.1).

2.5.1 Logic models

Logic models (sometimes referred to as conceptual frameworks or theories of change)
are graphical representations of theories about how interventions work. They depict
intervention components, mechanisms (pathways of action), outputs, and outcomes
as sequential (although not necessarily linear) chains of events. Among systematic
review authors, they were originally proposed as a useful tool when working with eva-
luations of complex social and population health programmes and interventions, to
conceptualize the pathways through which interventions are intended to change out-
comes (Anderson et al 2011).
In reviews where intervention complexity is a key consideration (see Chapter 17),

logic models can be particularly helpful. For example, in a review of psychosocial group
interventions for those with HIV, a logic model was used to show how the intervention
might work (van der Heijden et al 2017). The review authors depicted proximal out-
comes, such as self-esteem, but chose only to include psychological health outcomes
in their review. In contrast, Bailey and colleagues included proximal outcomes in their
review of computer-based interventions for sexual health promotion using a logic
model to show how outcomes were grouped (Bailey et al 2010). Finally, in a review
of slum upgrading, a logic model showed the broad range of interventions and their
interlinkages with health and socio-economic outcomes (Turley et al 2013), and
enabled the review authors to select a specific intervention category (physical upgrad-
ing) on which to focus the review. Further resources provide further examples of logic
models, and can help review authors develop and use logic models (Anderson et al
2011, Baxter et al 2014, Kneale et al 2015, Pfadenhauer et al 2017, Rohwer et al 2017).
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Logic models can vary in their emphasis, with a distinction sometimesmade between
system-based and process-oriented logic models (Rehfuess et al 2018). System-based
logic models have particular value in examining the complexity of the system (e.g. the
geographical, epidemiological, political, socio-cultural and socio-economic features of
a system), and the interactions between contextual features, participants and the inter-
vention (see Chapter 17). Process-oriented logic models aim to capture the complexity
of causal pathways by which the intervention leads to outcomes, and any factors that
may modify intervention effects. However, this is not a crisp distinction; the two types
are interrelated; with some logic models depicting elements of both systems and proc-
ess models simultaneously.
The way that logic models can be represented diagrammatically (see Chapter 17 for

an example) provides a valuable visual summary for readers and can be a communi-
cation tool for decision makers and practitioners. They can aid initially in the develop-
ment of a shared understanding between different stakeholders of the scope of the
review and its PICO, helping to support decisions taken throughout the review process,
from developing the research question and setting the review parameters, to structur-
ing and interpreting the results. They can be used in planning the PICO elements of a
review as well as for determining how the synthesis will be structured (i.e. planned
comparisons, including intervention and comparator groups, and any grouping of out-
come and population subgroups). These models may help review authors specify the
link between the intervention, proximal and distal outcomes, and mediating factors. In
other words, they depict the intervention theory underpinning the synthesis plan.
Anderson and colleagues note the main value of logic models in systematic review as

(Anderson et al 2011):

• refining review questions;

• deciding on ‘lumping’ or ‘splitting’ a review topic;

• identifying intervention components;

• defining and conducting the review;

• identifying relevant study eligibility criteria;

• guiding the literature search strategy;

• explaining the rationale behind surrogate outcomes used in the review;

• justifying the need for subgroup analyses (e.g. age, sex/gender, socio-economic
status);

• making the review relevant to policy and practice;

• structuring the reporting of results;

• illustrating how harms and feasibility are connected with interventions; and

• interpreting results based on intervention theory and systems thinking (see
Chapter 17).

Logic models can be useful in systematic reviews when considering whether failure to
find a beneficial effect of an intervention is due to a theory failure, an implementation
failure, or both (see Chapter 17 and Cargo et al 2018). Making a distinction between
implementation and intervention theory can help to determine whether and how
the intervention interacts with (and potentially changes) its context (see Chapters 3
and 17 for further discussion of context). This helps to elucidate situations in which
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variations in how the intervention is implemented have the potential to affect the integ-
rity of the intervention and intended outcomes.
Given their potential value in conceptualizing and structuring a review, logic models

are increasingly published in review protocols. Logic models may be specified a priori
and remain unchanged throughout the review; it might be expected, however, that the
findings of reviews produce evidence and new understandings that could be used to
update the logic model in some way (Kneale et al 2015). Some reviews take a more
staged approach, pre-specifying points in the review process where the model may
be revised on the basis of (new) evidence (Rehfuess et al 2018) and a staged logic model
can provide an efficient way to report revisions to the synthesis plan. For example, in a
review of portion, package and tableware size for changing selection or consumption of
food and other products, the authors presented a logic model that clearly showed
changes to their original synthesis plan (Hollands et al 2015).
It is preferable to seek out existing logic models for the intervention and revise or

adapt these models in line with the review focus, although this may not always be pos-
sible. More commonly, new models are developed starting with the identification of
outcomes and theorizing the necessary pre-conditions to reach those outcomes. This
process of theorizing and identifying the steps and necessary pre-conditions continues,
working backwards from the intended outcomes, until the intervention itself is repre-
sented. As many mechanisms of action are invisible and can only be ‘known’ through
theory, this process is invaluable in exposing assumptions as to how interventions are
thought to work; assumptions that might then be tested in the review. Logic models
can be developed with stakeholders (see Section 2.5.2) and it is considered good prac-
tice to obtain stakeholder input in their development.
Logic models are representations of how interventions are intended to ‘work’, but

they can also provide a useful basis for thinking through the unintended consequences
of interventions and identifying potential adverse effects that may need to be captured
in the review (Bonell et al 2015). While logic models provide a guiding theory of how
interventions are intended to work, critiques exist around their use, including their
potential to oversimplify complex intervention processes (Rohwer et al 2017). Here,
contributions from different stakeholders to the development of a logic model may
be able to articulate where complex processes may occur; theorizing unintended inter-
vention impacts; and the explicit representation of ambiguity within certain parts of the
causal chain where new theory/explanation is most valuable.

2.5.2 Changing review questions

While questions should be posed in the protocol before initiating the full review, these
questions should not prevent exploration of unexpected issues. Reviews are analyses of
existing data that are constrained by previously chosen study populations, settings,
intervention formulations, outcome measures and study designs. It is generally not
possible to formulate an answerable question for a review without knowing some of
the studies relevant to the question, and it may become clear that the questions a
review addresses need to be modified in light of evidence accumulated in the process
of conducting the review.
Although a certain fluidity and refinement of questions is to be expected in reviews as

a fuller understanding of the evidence is gained, it is important to guard against bias in
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modifying questions. Data-driven questions can generate false conclusions based on
spurious results. Any changes to the protocol that result from revising the question
for the review should be documented in the section ‘Differences between the protocol
and the review’. Sensitivity analyses may be used to assess the impact of changes on
the review findings (see Chapter 10, Section 10.14). When refining questions it is useful
to ask the following questions.

• What is the motivation for the refinement?

• Could the refinement have been influenced by results from any of the included
studies?

• Does the refined question require a modification to the search strategy and/or reas-
sessment of any decisions regarding study eligibility?

• Are data collection methods appropriate to the refined question?

• Does the refined question still meet the FINER criteria discussed in Section 2.1?

2.5.3 Building in contingencies to deal with sparse data

The ability to address the review questions will depend on the maturity and validity of
the evidence base. When few studies are identified, there will be limited opportunity to
address the question through an informative synthesis. In anticipation of this scenario,
review authors may build contingencies into their protocol analysis plan that specify
grouping (any or multiple) PICO elements at a broader level; thus potentially enabling
synthesis of a larger number of studies. Broader groupings will generally address a less
specific question, for example:

• ‘the effect of any antioxidant supplement on …’ instead of ‘the effect of vitamin C
on …’;

• ‘the effect of sexual health promotion on biological outcomes’ instead of ‘the effect of
sexual health promotion on sexually transmitted infections’; or

• ‘the effect of cognitive behavioural therapy in children and adolescents on…’ instead
of ‘the effect of cognitive behavioural therapy in children on …’.

However, such broader questionsmay be useful for identifying important leads in areas
that lack effective interventions and for guiding future research. Changes in the group-
ing may affect the assessment of the certainty of the evidence (see Chapter 14).

2.5.4 Economic data

Decision makers need to consider the economic aspects of an intervention, such as
whether its adoption will lead to a more efficient use of resources. Economic data such
as resource use, costs or cost-effectiveness (or a combination of these) may therefore
be included as outcomes in a review. It is useful to break down measures of resource
use and costs to the level of specific items or categories. It is helpful to consider an
international perspective in the discussion of costs. Economics issues are discussed
in detail in Chapter 20.
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3

Defining the criteria for including studies and
how they will be grouped for the synthesis
Joanne E McKenzie, Sue E Brennan, Rebecca E Ryan, Hilary J Thomson,
Renea V Johnston, James Thomas

KEY POINTS

• The scope of a review is defined by the types of population (participants), types of
interventions (and comparisons), and the types of outcomes that are of interest.
The acronym PICO (population, interventions, comparators and outcomes) helps to
serve as a reminder of these.

• The population, intervention and comparison components of the question, with the
additional specification of types of study that will be included, form the basis of the
pre-specified eligibility criteria for the review. It is rare to use outcomes as eligibility
criteria: studies should be included irrespective of whether they report outcome data,
but may legitimately be excluded if they do not measure outcomes of interest, or if
they explicitly aim to prevent a particular outcome.

• Cochrane Reviews should include all outcomes that are likely to be meaningful and
not include trivial outcomes. Critical and important outcomes should be limited in
number and include adverse as well as beneficial outcomes.

• Review authors should plan at the protocol stage how the different populations, inter-
ventions, outcomes and study designs within the scope of the review will be grouped
for analysis.

3.1 Introduction

One of the features that distinguishes a systematic review from a narrative review is
that systematic review authors should pre-specify criteria for including and excluding
studies in the review (eligibility criteria, see MECIR Box 3.2.a).
When developing the protocol, one of the first steps is to determine the elements

of the review question (including the population, intervention(s), comparator(s) and
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outcomes, or PICO elements) and how the intervention, in the specified population,
produces the expected outcomes (see Chapter 2, Section 2.5.1 and Chapter 17,
Section 17.2.1). Eligibility criteria are based on the PICO elements of the review ques-
tion plus a specification of the types of studies that have addressed these questions.
The population, interventions and comparators in the review question usually translate
directly into eligibility criteria for the review, though this is not always a straightforward
process and requires a thoughtful approach, as this chapter shows. Outcomes usually
are not part of the criteria for including studies, and a Cochrane Review would typically
seek all sufficiently rigorous studies (most commonly randomized trials) of a particular
comparison of interventions in a particular population of participants, irrespective of
the outcomes measured or reported. It should be noted that some reviews do legiti-
mately restrict eligibility to specific outcomes. For example, the same intervention
may be studied in the same population for different purposes; or a review may specif-
ically address the adverse effects of an intervention used for several conditions (see
Chapter 19).
Eligibility criteria do not exist in isolation, but should be specified with the synthesis

of the studies they describe in mind. This will involve making plans for how to group
variants of the PICO elements for synthesis. This chapter describes the processes by
which the structure of the synthesis can be mapped out at the beginning of the review,
and the interplay between the review question, considerations for the analysis and
their operationalization in terms of eligibility criteria. Decisions about which studies
to include (and exclude), and how they will be combined in the review’s synthesis,
should be documented and justified in the review protocol.
A distinction between three different stages in the review at which the PICO construct

might be used is helpful for understanding the decisions that need to be made. In
Chapter 2 (Section 2.3) we introduced the ideas of a review PICO (on which eligibility
of studies is based), the PICO for each synthesis (defining the question that each spe-
cific synthesis aims to answer) and thePICO of the included studies (what was actually
investigated in the included studies). In this chapter, we focus on the review PICO and
the PICO for each synthesis as a basis for specifying which studies should be included
in the review and planning its syntheses. These PICOs should relate clearly and directly
to the questions or hypotheses that are posed when the review is formulated (see
Chapter 2) and will involve specifying the population in question, and a set of compar-
isons between the intervention groups.
An integral part of the process of setting up the review is to specify which character-

istics of the interventions (e.g. individual compounds of a drug), populations (e.g. acute
and chronic conditions), outcomes (e.g. different depression measurement scales) and
study designs, will be grouped together. Such decisions should be made independent
of knowing which studies will be included and the methods of synthesis that will be
used (e.g. meta-analysis). There may be a need to modify the comparisons and even
add new ones at the review stage in light of the data that are collected. For example,
important variations in the intervention may be discovered only after data are col-
lected, or modifying the comparison may facilitate the possibility of synthesis when
only one or few studies meet the comparison PICO. Planning for the latter scenario
at the protocol stage may lead to less post-hoc decision making (Chapter 2,
Section 2.5.3) and, of course, any changes made during the conduct of the review
should be recorded and documented in the final report.
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3.2 Articulating the review and comparison PICO

3.2.1 Defining types of participants: which people and populations?

The criteria for considering types of people included in studies in a review should be
sufficiently broad to encompass the likely diversity of studies and the likely scenarios in
which the interventions will be used, but sufficiently narrow to ensure that a meaning-
ful answer can be obtained when studies are considered together; they should be spe-
cified in advance (see MECIR Box 3.2.a). As discussed in Chapter 2 (Section 2.3.1), the
degree of breadth will vary, depending on the question being asked and the analytical
approach to be employed. A range of evidence may inform the choice of population
characteristics to examine, including theoretical considerations, evidence from other
interventions that have a similar mechanism of action, and in vitro or animal studies.
Consideration should be given to whether the population characteristic is at the level of
the participant (e.g. age, severity of disease) or the study (e.g. care setting, geographical

MECIR Box 3.2.a Relevant expectations for conduct of intervention reviews

C5: Predefining unambiguous criteria for participants (Mandatory)

Define in advance the eligibility criteria for
participants in the studies.

Predefined, unambiguous eligibility
criteria are a fundamental prerequisite
for a systematic review. The criteria for
considering types of people included in
studies in a review should be sufficiently
broad to encompass the likely diversity of
studies, but sufficiently narrow to ensure
that a meaningful answer can be
obtained when studies are considered in
aggregate. Considerations when
specifying participants include setting,
diagnosis or definition of condition and
demographic factors. Any restrictions to
study populations must be based on a
sound rationale, since it is important that
Cochrane Reviews are widely relevant.

C6: Predefining a strategy for studies with a subset of eligible participants (Highly
desirable)

Define in advance how studies that include
only a subset of relevant participants will
be addressed.

Sometimes a study includes some
‘eligible’ participants and some
‘ineligible’ participants, for example
when an age cut-off is used in the
review’s eligibility criteria. If data from
the eligible participants cannot be
retrieved, a mechanism for dealing with
this situation should be pre-specified.
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location), since this has implications for grouping studies and for the method of syn-
thesis (Chapter 10, Section 10.11.5). It is often helpful to consider the types of people
that are of interest in three steps.
First, the diseases or conditions of interest should be defined using explicit criteria

for establishing their presence (or absence). Criteria that will force the unnecessary
exclusion of studies should be avoided. For example, diagnostic criteria that were
developed more recently – which may be viewed as the current gold standard for diag-
nosing the condition of interest – will not have been used in earlier studies. Expensive
or recent diagnostic tests may not be available in many countries or settings, and time-
consuming tests may not be practical in routine healthcare settings.
Second, the broad population and setting of interest should be defined. This

involves deciding whether a specific population group is within scope, determined by
factors such as age, sex, race, educational status or the presence of a particular condition
such as angina or shortness of breath. Interest may focus on a particular setting such as a
community, hospital, nursing home, chronic care institution, or outpatient setting.
Box 3.2.a outlines some factors to consider when developing population criteria.
Whichever criteria are used for defining the population and setting of interest, it is

common to encounter studies that only partially overlap with the review’s population.
For example, in a review focusing on children, a cut-point of less than 16 years might be
desirable, but studies may be identified with participants aged from 12 to 18. Unless the
study reports separate data from the eligible section of the population (in which case
data from the eligible participants can be included in the review), review authors will
need a strategy for dealing with these studies (see MECIR Box 3.2.a). This will involve
balancing concerns about reduced applicability by including participants who do not
meet the eligibility criteria, against the loss of data when studies are excluded. Arbitrary
rules (such as including a study if more than 80% of the participants are under 16) will
not be practical if detailed information is not available from the study. A less stringent
rule, such as ‘the majority of participants are under 16’ may be sufficient. Although
there is a risk of review authors’ biases affecting post-hoc inclusion decisions (which
is why many authors endeavour to pre-specify these rules), this may be outweighed
by a common-sense strategy in which eligibility decisions keep faith with the objectives
of the review rather than with arbitrary rules. Difficult decisions should be documented
in the review, checked with the advisory group (if available, see Chapter 1), and

Box 3.2.a Factors to consider when developing criteria for ‘Types of participants’

• How is the disease/condition defined?

• What are the most important characteristics that describe these people
(participants)?

• Are there any relevant demographic factors (e.g. age, sex, ethnicity)?

• What is the setting (e.g. hospital, community, etc)?

• Who should make the diagnosis?

• Are there other types of people who should be excluded from the review (because
they are likely to react to the intervention in a different way)?

• How will studies involving only a subset of relevant participants be handled?
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sensitivity analyses can assess the impact of these decisions on the review’s findings
(see Chapter 10, Section 10.14 and MECIR Box 3.2.b).
Third, there should be consideration of whether there are population characteris-

tics that might be expected to modify the size of the intervention effects (e.g. dif-
ferent severities of heart failure). Identifying subpopulations may be important for
implementation of the intervention. If relevant subpopulations are identified, two
courses of action are possible: limiting the scope of the review to exclude certain sub-
populations; or maintaining the breadth of the review and addressing subpopulations
in the analysis.
Restricting the review with respect to specific population characteristics or settings

should be based on a sound rationale. It is important that Cochrane Reviews are glob-
ally relevant, so the rationale for the exclusion of studies based on population charac-
teristics should be justified. For example, focusing a review of the effectiveness of
mammographic screening on women between 40 and 50 years old may be justified
based on biological plausibility, previously published systematic reviews and existing
controversy. On the other hand, focusing a review on a particular subgroup of people
on the basis of their age, sex or ethnicity simply because of personal interests, when
there is no underlying biologic or sociological justification for doing so, should be
avoided, as these reviews will be less useful to decision makers and readers of the
review.
Maintaining the breadth of the reviewmay be best when it is uncertain whether there

are important differences in effects among various subgroups of people, since this
allows investigation of these differences (see Chapter 10, Section 10.11.5). Review
authors may combine the results from different subpopulations in the same synthesis,
examining whether a given subdivision explains variation (heterogeneity) among the
intervention effects. Alternatively, the results may be synthesized in separate compar-
isons representing different subpopulations. Splitting by subpopulation risks there
being too few studies to yield a useful synthesis (see Table 3.2.a and Chapter 2,
Section 2.3.2). Consideration needs to be given to the subgroup analysis method,

MECIR Box 3.2.b Relevant expectations for conduct of intervention reviews

C13: Changing eligibility criteria (Mandatory)

Justify any changes to eligibility criteria or
outcomes studied. In particular, post-hoc
decisions about inclusion or exclusion of
studies should keep faith with the
objectives of the review rather than with
arbitrary rules.

Following pre-specified eligibility criteria
is a fundamental attribute of a systematic
review. However, unanticipated issues
may arise. Review authors should make
sensible post-hoc decisions about
exclusion of studies, and these should be
documented in the review, possibly
accompanied by sensitivity analyses.
Changes to the protocol must not be
made on the basis of the findings of the
studies or the synthesis, as this can
introduce bias.
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Table 3.2.a Examples of population attributes and characteristics

Population
attributes

Examples of population characteristics (and
their subpopulations)

Examples of examination of population characteristics in
Cochrane Reviews

Intended recipient
of intervention

Patient, carer, healthcare provider (general
practitioners, nurses, allied health
professionals), health system, policy maker,
community

In a review of e-learning programmes for health professionals, a subgroup analysis
was planned to examine if the effects were modified by the type of healthcare provider
(doctors, nurses or physiotherapists). The authors hypothesized that e-learning
programmes for doctors would be more effective than for other health professionals,
but did not provide a rationale (Vaona et al 2018).

Disease/condition
(to be treated
or prevented)

Type and severity of a condition In a review of platelet-rich therapies for musculoskeletal soft tissue injuries, a
subgroup analysis was undertaken to examine if the effects of platelet-rich therapies
weremodified by the type of condition (e.g. rotator cuff tear, anterior cruciate ligament
reconstruction, chronic Achilles tendinopathy) (Moraes et al 2014).

In planning a review of beta-blockers for heart failure, subgroup analyses were specified
to examine if the effects of beta-blockers are modified by the underlying cause of heart
failure (e.g. idiopathic dilated cardiomyopathy, ischaemic heart disease, valvular heart
disease, hypertension) and the severity of heart failure (‘reduced left ventricular ejection
fraction (LVEF)’ ≤ 40%, ‘mid-range LVEF’ > 40% and < 50%, ‘preserved LVEF’ ≥ 50%,
mixed, not-specified). Studies have shown that patient characteristics and
comorbidities differ by heart failure severity, and that therapies have been shown to
reduce morbidity in ‘reduced LVEF’ patients, but the benefits in the other groups are
uncertain (Safi et al 2017).

Participant
characteristics

Age (neonate, child, adolescent, adult, older
adult)

Race/ethnicity

Sex/gender

PROGRESS-Plus equity characteristics (e.g.
place of residence, socio-economic status,
education) (O’Neill et al 2014)

In a review of newer-generation antidepressants for depressive disorders in children
and adolescents, a subgroup analysis was undertaken to examine if the effects of the
antidepressants were modified by age. The rationale was based on the findings of
another review that suggested that children and adolescents may respond differently
to antidepressants. The age groups were defined as ‘children’ (aged approximately 6
to 12 years), ‘adolescents’ (aged approximately 13 to 18 years), and ‘children and
adolescents’ (when the study included both children and adolescents, and results
could not be obtained separately by these subpopulations) (Hetrick et al 2012).

Setting Setting of care (primary care, hospital,
community)

Rurality (urban, rural, remote)

Socio-economic setting (low and middle-
income countries, high-income countries)

Hospital ward (e.g. intensive care unit,
general medical ward, outpatient)

In a review of hip protectors for preventing hip fractures in older people, separate
comparisons were specified based on setting (institutional care or community-
dwelling) for the critical outcome of hip fracture (Santesso et al 2014).
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particularly for population characteristics measured at the participant level (see Chap-
ters 10 and 26, Fisher et al 2017). All subgroup analyses should ideally be planned a
priori and stated as a secondary objective in the protocol, and not driven by the avail-
ability of data.
In practice, it may be difficult to assign included studies to defined subpopulations

because of missing information about the population characteristic, variability in how
the population characteristic is measured across studies (e.g. variation in the method
used to define the severity of heart failure), or because the study does not wholly fall
within (or report the results separately by) the defined subpopulation. The latter issue
mainly applies for participant characteristics but can also arise for settings or geo-
graphic locations where these vary within studies. Review authors should consider pla-
nning for these scenarios (see example reviews Hetrick et al 2012, Safi et al 2017;
Table 3.2.b, column 3).

3.2.2 Defining interventions and how they will be grouped

In some reviews, predefining the intervention (MECIR Box 3.2.c) may be straightfor-
ward. For example, in a review of the effect of a given anticoagulant on deep vein
thrombosis, the intervention can be defined precisely. A more complicated definition
might be required for a multi-component intervention composed of dietary advice,
training and support groups to reduce rates of obesity in a given population.
The inherent complexity present when defining an intervention often comes to light

when considering how it is thought to achieve its intended effect and whether the effect
is likely to differ when variants of the intervention are used. In the first example, the anti-
coagulant warfarin is thought to reduce blood clots by blocking an enzyme that depends
on vitamin K to generate clotting factors. In the second, the behavioural intervention is
thought to increase individuals’ self-efficacy in theirability topreparehealthy food. Inboth
examples, we cannot assume that all forms of the intervention will work in the sameway.
When defining drug interventions, such as anticoagulants, factors such as the drug prep-
aration, route of administration, dose, duration, and frequency should be considered. For
multi-component interventions (suchas interventions to reduce ratesofobesity), thecom-
mon or core features of the interventionsmust be defined, so that the review authors can
clearly differentiate them from other interventions not included in the review.
In general, it is useful to consider exactly what is delivered, who delivers it, how it

is delivered, where it is delivered, when and how much is delivered, and whether
the intervention can be adapted or tailored, and to consider this for each type of
intervention included in the review (see the TIDieR checklist (Hoffmann et al 2014)).
As argued in Chapter 17, separating interventions into ‘simple’ and ‘complex’ is a false
dichotomy; all interventions can be complex in some ways. The critical issue for review
authors is to identify the most important factors to be considered in a specific review.
Box 3.2.b outlines some factors to consider when developing broad criteria for the
‘Types of interventions’ (and comparisons).
Once interventions eligible for the review have been broadly defined, decisions

should bemade about how variants of the intervention will be handled in the synthesis.
Differences in intervention characteristics across studies occur in all reviews. If these
reflect minor differences in the form of the intervention used in practice (such as small
differences in the duration or content of brief alcohol counselling interventions), then

3.2 Articulating the review and comparison PICO

39



Table 3.2.b A process for planning intervention groups for synthesis

Step Considerations Examples

1. Identify intervention
characteristics that may
modify the effect of the
intervention.

Consider whether differences in interventions characteristics
might modify the size of the intervention effect importantly.
Content-specific research literature and expertise should
inform this step.

The TIDieR checklist – a tool for describing interventions –
outlines the characteristics across which an interventionmight
differ (Hoffmann et al 2014). These include ‘what’ materials
and procedures are used, ‘who’ provides the intervention,
‘when and how much’ intervention is delivered. The iCAT-SR
tool provides equivalent guidance for complex interventions
(Lewin et al 2017).

Exercise interventions differ across multiple characteristics,
which vary in importance depending on the review.

In a review of exercise for osteoporosis, whether the exercise is
weight-bearing or non-weight-bearing may be a key
characteristic, since the mechanism by which exercise is
thought to work is by placing stress or mechanical load on
bones (Howe et al 2011).

Different mechanisms apply in reviews of exercise for knee
osteoarthritis (muscle strengthening), falls prevention (gait
and balance), cognitive function (cardiovascular fitness).

The differing mechanisms might suggest different ways of
grouping interventions (e.g. by intensity, mode of delivery)
according to potential modifiers of the intervention effects.

2a. Label and define
intervention groups to be
considered in the
synthesis.

For each intervention group, provide a short label (e.g.
supportive psychotherapy) and describe the core
characteristics (criteria) that will be used to assign each
intervention from an included study to a group.

Groups are often defined by intervention content (especially
the active components), such as materials, procedures or
techniques (e.g. a specific drug, an information leaflet, a
behaviour change technique). Other characteristics may also
be used, although some are more commonly used to define
subgroups (see Chapter 10, Section 10.11.5): the purpose or
theoretical underpinning, mode of delivery, provider, dose or
intensity, duration or timing of the intervention (Hoffmann
et al 2014).

In specifying groups:

focus on ‘clinically’ meaningful groups that will inform
selection and implementation of an intervention in practice;

In a review of psychological therapies for coronary heart
disease, a single group was specified for meta-analysis that
included all types of therapy. Subgroups were defined to
examine whether intervention effects were modified by
intervention components (e.g. cognitive techniques, stress
management) or mode of delivery (e.g. individual, group)
(Richards et al 2017).

In a review of psychological therapies for panic disorder
(Pompoli et al 2016), eight types of therapy were specified:

1) psychoeducation;
2) supportive psychotherapy (with or without a

psychoeducational component);
3) physiological therapies;
4) behaviour therapy;
5) cognitive therapy;
6) cognitive behaviour therapy (CBT);
7) 7. third-wave CBT; and
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consider whether a system exists for defining interventions
(see Step 3);
for hard-to-describe groups, provide brief examples of
interventions in each group; and
pilot the criteria to ensure that groups are sufficiently
distinct to enable categorization, but not so narrow that
interventions are split into many groups, making synthesis
impossible (see also Step 4).

Logic models may help structure the synthesis (see Chapter 2,
Section 2.4.1 and Chapter 17, Section 17.2.1).

8) psychodynamic therapies.

Groups were defined by the theoretical basis of each therapy
(e.g. CBT aims to modify maladaptive thoughts through
cognitive restructuring) and the component techniques used.

2b. Define levels for
groups based on dose or
intensity.

For groups based on ‘how much’ of an intervention is used
(e.g. dose or intensity), criteria are needed to quantify each
group. This may be straightforward for easy-to-quantify
characteristics, but more complex for characteristics that are
hard to quantify (e.g. duration or intensity of rehabilitation or
psychological therapy).

The levels should be based on how the intervention is used in
practice (e.g. cut-offs for low and high doses of a supplement
based on recommended nutrient intake), or on a rationale for
how the intervention might work.

In reviews of exercise, intensity may be defined by training
time (session length, frequency, program duration), amount
of work (e.g. repetitions), and effort/energy expenditure
(exertion, heart rate) (Regnaux et al 2015).

In a review of organized inpatient care for stroke, acute stroke
units were categorized as ‘intensive’, ‘semi-intensive’ or ‘non-
intensive’ based on whether the unit had continuous
monitoring, high nurse staffing, and life support facilities
(Stroke Unit Trialists Collaboration 2013).

3. Determine whether
there is an existing system
for grouping
interventions.

Consider this step with
step 2a.

In some fields, intervention taxonomies and frameworks have
been developed for labelling and describing interventions, and
these can make it easier for those using a review to interpret
and apply findings.

Using an agreed system is preferable to developing new
groupings. Existing systems should be assessed for relevance
and usefulness. The most useful systems:

Generic systems

The behaviour change technique (BCT) taxonomy (Michie et al
2013) categorizes intervention elements such as goal setting,
self-monitoring and social support. A protocol for a review of
social media interventions used this taxonomy to describe
interventions and examine different BCTs as potential effect
modifiers (Welch et al 2018).

(Continued)
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Table 3.2.b (Continued)

Step Considerations Examples

use terminology that is understood by those using or
implementing the intervention;
are developed systematically and based on consensus,
preferably with stakeholders including clinicians, patients,
policy makers, and researchers; and
have been validated through successful use in a range of
applications (ideally, including in systematic reviews).

Systems for grouping interventions may be generic, widely
applicable across clinical areas, or specific to a condition or
intervention type. Some Cochrane Groups recommend specific
taxonomies.

The behaviour change wheel has been used to group
interventions (or components) by function (e.g. to educate,
persuade, enable) (Michie et al 2011). This system was used to
describe the components of dietary advice interventions
(Desroches et al 2013).

Specific systems

Multiple reviews have used the consensus-based taxonomy
developed by the Prevention of Falls Network Europe
(ProFaNE) (e.g. Verheyden et al 2013, Kendrick et al 2014). The
taxonomy specifies broad groups (e.g. exercise, medication,
environment/assistive technology) within which are more
specific groups (e.g. exercise: gait, balance and functional
training; flexibility; strength and resistance) (Lamb et al 2011).

4. Plan how the specified
groups will be used in
synthesis and reporting.

Decide whether it is useful to pool all interventions in a single
meta-analysis (‘lumping’), within which specific characteristics
can be explored as effect modifiers (e.g. in subgroups).
Alternatively, if pooling all interventions is unlikely to address
a useful question, separate synthesis of specific interventions
may be more appropriate (‘splitting’).

Determining the right analytic approach is discussed further in
Chapter 2, Section 2.3.2.

In a review of exercise for knee osteoarthritis, the different
categories of exercise were combined in a single meta-
analysis, addressing the question ‘what is the effect of
exercise on knee osteoarthritis?’. The categories were also
analysed as subgroups within the meta-analysis to explore
whether the effect size varied by type of exercise (Fransen
et al 2015). Other subgroup analyses examined mode of
delivery and dose.

5. Decide how to group
interventions with
multiple components or
co-interventions.

Some interventions, especially those considered ‘complex’,
include multiple components that could also be implemented
independently (Guise et al 2014, Lewin et al 2017). These
components might be eligible for inclusion in the review alone,
or eligible only if used alongside an eligible intervention.

Options for considering multi-component interventions may
include the following.

Identifying intervention components for meta-regression or
a components-based network meta-analysis (see
Chapter 11 andWelton et al 2009, Caldwell andWelton 2016,
Higgins et al 2019).

Grouping by main component: In a review of psychological
therapies for panic disorder, two of the eight eligible
therapies (psychoeducation and supportive psychotherapy)
could be used alone or as part of a multi-component therapy.
When accompanied by another eligible therapy, the
intervention was categorized as the other therapy (i.e.
psychoeducation + cognitive behavioural therapy was
categorized as cognitive behavioural therapy) (Pompoli et al
2016).

Separate group: In a review of psychosocial interventions for
smoking cessation in pregnancy, two approaches were used.
All intervention types were included in a single meta-analysis
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Grouping based on the ‘main’ intervention component
(Caldwell and Welton 2016).
Specifying a separate group (‘multi-component
interventions’). ‘Lumping’ multi-component interventions
together may provide information about their effects in
general; however, this approach may lead to unexplained
heterogeneity and/or inability to identify which
components are effective (Caldwell and Welton 2016).
Reporting results study by study. An option if components
are expected to be so diverse that synthesis will not be
interpretable.
Excluding multi-component interventions. An option if the
effect of the intervention of interest cannot be discerned.
This approach may reduce the relevance of the review.

The first two approaches may be challenging but are likely to
be most useful (Caldwell and Welton 2016).

See Section 3.2.3.1. for the special case of when a co-
intervention is administered in both treatment arms.

with subgroups for multi-component, single and tailored
interventions. Separate meta-analyses were also performed
for each intervention type, with categorization of multi-
component interventions based on the ‘main’ component
(Chamberlain et al 2017).

6. Build in contingencies
by specifying both specific
and broader intervention
groups.

Consider grouping interventions at more than one level, so
that studies of a broader group of interventions can be
synthesized if too few studies are identified for synthesis in
more specific groups. This will provide flexibility where review
authors anticipate few studies contributing to specific groups
(e.g. in reviews with diverse interventions, additional diversity
in other PICO elements, or few studies overall, see also
Chapter 2, Section 2.5.3.

In a review of psychosocial interventions for smoking
cessation, the authors planned to group any psychosocial
intervention in a single comparison (addressing the higher
level question of whether, on average, psychosocial
interventions are effective). Given that sufficient data were
available, they also presented separate meta-analyses to
examine the effects of specific types of psychosocial
interventions (e.g. counselling, health education, incentives,
social support) (Chamberlain et al 2017).
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an overall synthesis can provide useful information for decision makers. Where differ-
ences in intervention characteristics aremore substantial (such as delivery of brief alco-
hol counselling by nurses versus doctors), and are expected to have a substantial
impact on the size of intervention effects, these differences should be examined in
the synthesis. What constitutes an important difference requires judgement, but in gen-
eral differences that alter decisions about how an intervention is implemented or
whether the intervention is used or not are likely to be important. In such circum-
stances, review authors should consider specifying separate groups (or subgroups)
to examine in their synthesis.

MECIR Box 3.2.c Relevant expectations for conduct of intervention reviews

C7: Predefining unambiguous criteria for interventions and comparators (Mandatory)

Define in advance the eligible interventions
and the interventions against which these
can be compared in the included studies.

Predefined, unambiguous eligibility
criteria are a fundamental prerequisite
for a systematic review. Specification of
comparator interventions requires
particular clarity: are the experimental
interventions to be compared with an
inactive control intervention (e.g.
placebo, no treatment, standard care, or
a waiting list control), or with an active
control intervention (e.g. a different
variant of the same intervention, a
different drug, a different kind of
therapy)? Any restrictions on
interventions and comparators, for
example, regarding delivery, dose,
duration, intensity, co-interventions and
features of complex interventions should
also be predefined and explained.

Box 3.2.b Factors to consider when developing criteria for ‘Types of interventions’

• What are the experimental and control (comparator) interventions of interest?

• Does the intervention have variations (e.g. dosage/intensity, mode of delivery,
personnel who deliver it, frequency, duration or timing of delivery)?

• Are all variations to be included (for example, is there a dose below which the
intervention may not be clinically appropriate, will all providers be included)?

• Will studies including only part of the intervention be included?

• Will studies including the intervention of interest combined with another intervention
(co-intervention) be included?

• Have the different meanings of phrases such as ‘control’, ‘placebo’, ‘no intervention’
or ‘usual care’ been considered?
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Clearly defined intervention groups serve two main purposes in the synthesis. First,
the way in which interventions are grouped for synthesis (meta-analysis or other syn-
thesis) is likely to influence review findings. Careful planning of intervention groups
makes best use of the available data, avoids decisions that are influenced by study find-
ings (which may introduce bias), and produces a review focused on questions relevant
to decision makers. Second, the intervention groups specified in a protocol provide a
standardized terminology for describing the interventions throughout the review, over-
coming the varied descriptions used by study authors (e.g. where different labels are
used for the same intervention, or similar labels used for different techniques) (Michie
et al 2013). This standardization enables comparison and synthesis of information
about intervention characteristics across studies (common characteristics and differ-
ences) and provides a consistent language for reporting that supports interpretation
of review findings.
Table 3.2.b outlines a process for planning intervention groups as a basis for/precursor

to synthesis, and the decision points and considerations at each step. The table is
intended to guide, rather than to be prescriptive and, although it is presented as a
sequence of steps, the process is likely to be iterative, and some steps may be done
concurrently or in a different sequence. The process aims to minimize data-driven
approaches that can arise once review authors have knowledge of the findings of
the included studies. It also includes principles for developing a flexible plan that
maximizes the potential to synthesize in circumstances where there are few studies,
many variants of an intervention, or where the variants are difficult to anticipate. In
all stages, review authors should consider how to categorize studies whose reports
contain insufficient detail.

3.2.3 Defining which comparisons will be made

When articulating the PICO for each synthesis, defining the intervention groups alone is
not sufficient for complete specification of the planned syntheses. The next step is to
define the comparisons that will bemade between the intervention groups. Setting aside
for a moment more complex analyses such as network meta-analyses, which can simul-
taneously comparemany groups (Chapter 11), standardmeta-analysis (Chapter 10) aims
to draw conclusions about the comparative effects of two groups at a time (i.e. which of
two intervention groups is more effective?). These comparisons form the basis for the
syntheses that will be undertaken if data are available. Cochrane Reviews sometimes
include one comparison, but most often include multiple comparisons. Three commonly
identified types of comparisons include the following (Davey et al 2011).

• Intervention versus placebo (e.g. placebo drug, sham surgical procedure, psycholog-
ical placebo). Placebos are most commonly used in the evaluation of pharmacolog-
ical interventions, but may be also be used in some non-pharmacological
evaluations. For example:
◦ newer generation antidepressants versus placebo (Hetrick et al 2012); and
◦ vertebroplasty for osteoporotic vertebral compression fractures versus placebo

(sham procedure) (Buchbinder et al 2018).

• Intervention versus control (e.g. no intervention, wait-list control, usual care). Both
intervention arms may also receive standard therapy. For example:
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◦ chemotherapy or targeted therapy plus best supportive care (BSC) versus BSC for
palliative treatment of esophageal and gastroesophageal-junction carcinoma
(Janmaat et al 2017); and

◦ personalized care planning versus usual care for people with long-term conditions
(Coulter et al 2015).

• Intervention A versus intervention B. A comparison of active interventions may
include comparison of the same intervention delivered at different time points, for
different lengths of time or different doses, or two different interventions. For
example:
◦ early (commenced at less than two weeks of age) versus late (two weeks of age or

more) parenteral zinc supplementation in term and preterm infants (Taylor
et al 2017);

◦ high intensity versus low intensity physical activity or exercise in people with hip or
knee osteoarthritis (Regnaux et al 2015);

◦ multimedia education versus other education for consumers about prescribed and
over the counter medications (Ciciriello et al 2013).

The first two types of comparisons aim to establish the effectiveness of an interven-
tion, while the last aims to compare the effectiveness of two interventions. However,
the distinction between the placebo and control is often arbitrary, since any differences
in the care provided between trials with a control arm and those with a placebo arm
may be unimportant, especially where ‘usual care’ is provided to both. Therefore, pla-
cebo and control groups may be determined to be similar enough to be combined for
synthesis.
In reviews including multiple intervention groups, many comparisons are possible. In

some of these reviews, authors seek to synthesize evidence on the comparative effec-
tiveness of all their included interventions, including where there may be only indirect
comparison of some interventions across the included studies (Chapter 11,
Section 11.2.1). However, inmany reviews includingmultiple intervention groups, a lim-
ited subset of the possible comparisons will be selected. The chosen subset of compar-
isons should address the most important clinical and research questions. For example,
if an established intervention (or dose of an intervention) is used in practice, then the
synthesis would ideally compare novel or alternative interventions to this established
intervention, and not, for example, to no intervention.

3.2.3.1 Dealing with co-interventions
Planning is needed for the special case where the same supplementary intervention is
delivered to both the intervention and comparator groups. A supplementary interven-
tion is an additional intervention delivered alongside the intervention of interest, such
as massage in a review examining the effects of aromatherapy (i.e. aromatherapy plus
massage versus massage alone). In many cases, the supplementary intervention will be
unimportant and can be ignored. In other situations, the effect of the intervention of
interest may differ according to whether participants receive the supplementary ther-
apy. For example, the effect of aromatherapy among people who receive a massage
may differ from the effect of the aromatherapy given alone. This will be the case if
the intervention of interest interacts with the supplementary intervention leading to
larger (synergistic) or smaller (dysynergistic/antagonistic) effects than the intervention
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of interest alone (Squires et al 2013). While qualitative interactions are rare (where the
effect of the intervention is in the opposite direction when combined with the supple-
mentary intervention), it is possible that there will be more variation in the intervention
effects (heterogeneity) when supplementary interventions are involved, and it is impor-
tant to plan for this. Approaches for dealing with this in the statistical synthesis may
include fitting a random-effects meta-analysis model that encompasses heterogeneity
(Chapter 10, Section 10.10.4), or investigating whether the intervention effect is mod-
ified by the addition of the supplementary intervention through subgroup analysis
(Chapter 10, Section 10.11.2).

3.2.4 Selecting, prioritizing and grouping review outcomes

3.2.4.1 Selecting review outcomes
Broad outcome domains are decided at the time of setting up the review PICO (see
Chapter 2). Once the broad domains are agreed, further specification is required to
define the domains to facilitate reporting and synthesis (i.e. the PICO for each syn-
thesis) (see Chapter 2, Section 2.3). The process for specifying and grouping outcomes
largely parallels that used for specifying intervention groups.
Reportingofoutcomes should rarelydetermine studyeligibility for a review. Inpar-

ticular, studies should not be excluded because they do not report results of an outcome
theymayhavemeasured, or provide ‘nousable data’ (MECIRBox 3.2.d). This is essential to
avoidbiasarisingfromselectivereportingof findingsbythestudyauthors (seeChapter13).
However, in some circumstances, the measurement of certain outcomes may be a study
eligibility criterion. This may be the case, for example, when the review addresses the

MECIR Box 3.2.d Relevant expectations for conduct of intervention reviews

C8: Clarifying role of outcomes (Mandatory)

Clarify in advance whether outcomes listed
under ‘Criteria for considering studies for
this review’ are used as criteria for including
studies (rather than as a list of the
outcomes of interest within whichever
studies are included).

Outcome measures should not always
form part of the criteria for including
studies in a review. However, some
reviews do legitimately restrict eligibility
to specific outcomes. For example, the
same intervention may be studied in the
same population for different purposes
(e.g. hormone replacement therapy, or
aspirin); or a review may address
specifically the adverse effects of an
intervention used for several conditions.
If authors do exclude studies on the basis
of outcomes, care should be taken to
ascertain that relevant outcomes are not
available because they have not been
measured rather than simply not
reported.
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C14: Predefining outcome domains (Mandatory)

Define in advance outcomes that are critical
to the review, and any additional important
outcomes.

Full specification of the outcomes
includes consideration of outcome
domains (e.g. quality of life) and outcome
measures (e.g. SF-36). Predefinition of
outcome reduces the risk of selective
outcome reporting. The critical outcomes
should be as few as possible and should
normally reflect at least one potential
benefit and at least one potential area of
harm. It is expected that the review
should be able to synthesize these
outcomes if eligible studies are identified,
and that the conclusions of the review
will be based largely on the effects of the
interventions on these outcomes.
Additional important outcomes may also
be specified. Up to seven critical and
important outcomes will form the basis
of the GRADE assessment and
summarized in the review’s abstract and
other summary formats, although the
review may measure more than seven
outcomes.

C15: Choosing outcomes (Mandatory)

Choose only outcomes that are critical or
important to users of the review such as
healthcare consumers, health professionals
and policy makers.

Cochrane Reviews are intended to
support clinical practice and policy, and
should address outcomes that are critical
or important to consumers. These should
be specified at protocol stage. Where
available, established sets of core
outcomes should be used. Patient-
reported outcomes should be included
where possible. It is also important to
judge whether evidence of resource use
and costs might be an important
component of decisions to adopt the
intervention or alternative management
strategies around the world. Large
numbers of outcomes, while sometimes
necessary, can make reviews unfocused,
unmanageable for the user, and prone to
selective outcome reporting bias.
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potential for an intervention to prevent a particular outcome, or when the review
addresses a specific purpose of an intervention that can be used in the same population
for different purposes (such as hormone replacement therapy, or aspirin).
In general, systematic reviews should aim to include outcomes that are likely to be

meaningful to the intended users and recipients of the reviewed evidence. This
may include clinicians, patients (consumers), the general public, administrators and
policy makers. Outcomes may include survival (mortality), clinical events (e.g. strokes
or myocardial infarction), behavioural outcomes (e.g. changes in diet, use of services),
patient-reported outcomes (e.g. symptoms, quality of life), adverse events, burdens
(e.g. demands on caregivers, frequency of tests, restrictions on lifestyle) and economic
outcomes (e.g. cost and resource use). It is critical that outcomes used to assess
adverse effects as well as outcomes used to assess beneficial effects are among those
addressed by a review (see Chapter 19).
Outcomes that are trivial or meaningless to decision makers should not be included in

Cochrane Reviews. Inclusion of outcomes that are of little or no importance risks over-
whelming and potentially misleading readers. Interim or surrogate outcomes measures,
such as laboratory results or radiologic results (e.g. loss of bonemineral content as a sur-
rogate for fractures inhormone replacement therapy),while potentially helpful in explain-
ingeffectsordetermining intervention integrity (seeChapter5,Section5.3.4.1), canalsobe
misleading since they may not predict clinically important outcomes accurately. Many
interventions reduce the risk for a surrogate outcome but have no effect or have harmful
effectsonclinically relevantoutcomes,andsomeinterventionshavenoeffectonsurrogate
measures but improve clinical outcomes.
Various sources can be used to develop a list of relevant outcomes, including input

from consumers and advisory groups (see Chapter 2), the clinical experiences of the
review authors, and evidence from the literature (including qualitative research about
outcomes important to those affected (see Chapter 21)). A further driver of outcome
selection is consideration of outcomes used in related reviews. Harmonization of
outcomes across reviews addressing related questions facilitates broader evidence

Biochemical, interim and process
outcomes should be considered where
they are important to decision makers.
Any outcomes that would not be
described as critical or important can be
left out of the review.

C16: Predefining outcome measures (Highly desirable)

Define in advance details of what will
constitute acceptable outcome measures
(e.g. diagnostic criteria, scales, composite
outcomes).

Having decided what outcomes are of
interest to the review, authors should
clarify acceptable ways in which these
outcomes can be measured. It may be
difficult, however, to predefine adverse
effects.
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synthesis questions being addressed through the use of Overviews of reviews (see
online Chapter V).
Outcomes considered to be meaningful, and therefore addressed in a review, may

not have been reported in the primary studies. For example, quality of life is an impor-
tant outcome, perhaps themost important outcome, for people considering whether or
not to use chemotherapy for advanced cancer, even if the available studies are found to
report only survival (see Chapter 18). A further example arises with timing of the out-
come measurement, where time points determined as clinically meaningful in a review
are not measured in the primary studies. Including and discussing all important out-
comes in a review will highlight gaps in the primary research and encourage research-
ers to address these gaps in future studies.

3.2.4.2 Prioritizing review outcomes
Once a full list of relevant outcomes has been compiled for the review, authors should
prioritize the outcomes and select the outcomes of most relevance to the review ques-
tion. The GRADE approach to assessing the certainty of evidence (see Chapter 14) sug-
gests that review authors separate outcomes into those that are ‘critical’, ‘important’
and ‘not important’ for decision making.
The critical outcomes are the essential outcomes for decision making, and are those

that would form the basis of a ‘Summary of findings’ table or other summary versions
of the review, such as the Abstract or Plain Language Summary. ‘Summary of findings’
tables provide key information about the amount of evidence for important compar-
isons and outcomes, the quality of the evidence and the magnitude of effect (see
Chapter 14, Section 14.1). There should be no more than seven outcomes included
in a ‘Summary of findings’ table, and those outcomes that will be included in summa-
ries should be specified at the protocol stage. They should generally not include sur-
rogate or interim outcomes. They should not be chosen on the basis of any anticipated
or observed magnitude of effect, or because they are likely to have been addressed in
the studies to be reviewed. Box 3.2.c summarizes the principal factors to consider when
selecting and prioritizing review outcomes.

Box 3.2.c Factors to consider when selecting and prioritizing review outcomes

• Consider outcomes relevant to all potential decision makers.

• Critical outcomes are those that are essential for decisionmaking, and should usually
have an emphasis on patient-important outcomes and be determined by core out-
comes sets.

• Additional outcomes important to decision makers may also be included in the
review. Any outcomes not considered important to decision makers should be
excluded from the review.

• Up to seven critical and important outcomes should be selected for inclusion in sum-
mary versions of the review, including ‘Summary of findings’ tables, Abstracts and
Plain Language Summaries. Remember that summaries may be read alone, and
should include the most important outcomes for decision makers.

• Ensure that outcomes cover potential as well as actual adverse effects.
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3.2.4.3 Defining and grouping outcomes for synthesis
Table 3.2.c outlines a process for planning for the diversity in outcome measurement
that may be encountered in the studies included in a review and which can complicate,
and sometimes prevent, synthesis. Research has repeatedly documented inconsistency
in the outcomes measured across trials in the same clinical areas (Harrison et al 2016,
Williamson et al 2017). This inconsistency occurs across all aspects of outcome meas-
urement, including the broad domains considered, the outcomes measured, the way
these outcomes are labelled and defined, and the methods and timing of measure-
ment. For example, a review of outcome measures used in 563 studies of interventions
for dementia and mild cognitive impairment found that 321 unique measurement
methods were used for 1278 assessments of cognitive outcomes (Harrison et al
2016). Initiatives like COMET (Core Outcome Measures in Effectiveness Trials) aim to
encourage standardization of outcome measurement across trials (Williamson et al
2017), but these initiatives are comparatively new and review authors will inevitably
encounter diversity in outcomes across studies.
The process begins by describing the scope of each outcome domain in sufficient

detail to enable outcomes from included studies to be categorized (Table 3.2.c Step 1).
This step may be straightforward in areas for which core outcome sets (or equivalent
systems) exist (Table 3.2.c Step 2). The methods and timing of outcome measurement
also need to be specified, giving consideration to how differences across studies will be
handled (Table 3.2.c Steps 3 and 4). Subsequent steps consider options for dealing with
studies that report multiple measures within an outcome domain (Table 3.2.c Step 5),
planning how outcome domains will be used in synthesis (Table 3.2.c Step 6), and
building in contingencies to maximize potential to synthesize (Table 3.2.c Step 7).

3.3 Determining which study designs to include

Some study designs are more appropriate than others for answering particular ques-
tions. Authors need to consider a priori what study designs are likely to provide reliable
data with which to address the objectives of their review (MECIR Box 3.3.a). Sections
3.3.1 and 3.3.2 cover randomized and non-randomized designs for assessing treatment
effects; Chapter 17 (Section 17.2.5) discusses other study designs in the context of
addressing intervention complexity.

3.3.1 Including randomized trials

Because Cochrane Reviews address questions about the effects of health care, they
focus primarily on randomized trials and randomized trials should be included if they
are feasible for the interventions of interest (MECIR Box 3.3.b). Randomization is the
only way to prevent systematic differences between baseline characteristics of partici-
pants in different intervention groups in terms of both known and unknown (or
unmeasured) confounders (see Chapter 8), and claims about cause and effect can
be based on their findings with far more confidence than almost any other type of
study. For clinical interventions, deciding who receives an intervention and who does
not is influenced by many factors, including prognostic factors. Empirical evidence
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Table 3.2.c A process for planning outcome groups for synthesis

Step Considerations Examples

1. Fully specify outcome domains. For each outcome domain, provide a short label (e.g.
cognition, consumer evaluation of care) and describe the
domain in sufficient detail to enable eligible outcomes
from each included study to be categorized. The
definition should be based on the concept (or construct)
measured, that is ‘what’ is measured. ‘When’ and ‘how’
the outcome is measured will be considered in
subsequent steps.

Outcomes can be defined hierarchically, starting with
very broad groups (e.g. physiological/clinical outcomes,
life impact, adverse events), then outcome domains (e.g.
functioning and perceived health status are domains
within ‘life impact’). Within these may be narrower
domains (e.g. physical function, cognitive function), and
then specific outcome measures (Dodd et al 2018). The
level at which outcomes are grouped for synthesis alters
the question addressed, and so decisions should be
guided by the review objectives.

In specifying outcome domains:

definitions should reflect existing systems if available,
or relevant literature and terminology understood by
decision makers;
where outcomes are likely to be inconsistently labelled
and described, listing examples may convey the scope
of the domain;
consider the level at which domains will be defined
(broad versus narrow) and the implications for
reporting and synthesis: combining diverse outcomes
may lead to unexplained heterogeneity whereas
narrowly specified outcomes may prevent synthesis
when few studies report specific measures;

In a review of computer-based interventions for sexual
health promotion, three broad outcome domains were
defined (cognitions, behaviours, biological) based on a
conceptual model of how the intervention might work.
Each domain comprised more specific domains and
outcomes (e.g. condom use, seeking health services such
as STI testing); listing these helped define the broad
domains and guided categorization of the diverse
outcomes reported in included studies (Bailey et al 2010).

In a protocol for a review of social media interventions for
improving health, the rationale for synthesizing broad
groupings of outcomes (e.g. health behaviours, physical
health) was based on prediction of a common underlying
mechanism by which the intervention would work, and
the review objective, which focused on overall health
rather than specific outcomes (Welch et al 2018).
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a causal path or logic model may help identify logical
groupings of related outcomes for reporting and
analysis, and alternative levels at which to synthesize.

2. Determine whether there is an
existing system for identifying and
grouping important outcomes.

Systems for categorizing outcomes include core outcome
sets including the COMET and ICHOM initiatives, and
outcome taxonomies (Dodd et al 2018). These systems
define agreed outcomes that should be measured for
specific conditions (Williamson et al 2017).These systems
can be used to standardize the varied outcome labels
used across studies and enable grouping and comparison
(Kirkham et al 2013). Agreed terminology may help
decision makers interpret review findings.

The COMET website provides a database of core outcome
sets agreed or in development. Some Cochrane Groups
have developed their own outcome sets. While the
availability of outcome sets and taxonomies varies across
clinical areas, several taxonomies exist for specifying
broad outcome domains (e.g. Dodd et al 2018, ICHOM
2018).

In a review of combined diet and exercise for preventing
gestational diabetes mellitus, a core outcome set
agreed by the Cochrane Pregnancy and Childbirth group
was used (Shepherd et al 2017).

In a review of decision aids for people facing health
treatment or screening decisions (Stacey et al 2017),
outcome domains were based on criteria for evaluating
decision aids agreed in the International Patient Decision
Aids Standards (IPDAS). Doing so helped to assess the use
of aids across diverse clinical decisions.

The Cochrane Consumers and Communication Group has
an agreed taxonomy to guide specification of outcomes
of importance in evaluating communication
interventions (Cochrane Consumers & Communication
Group).

3. Define the outcome time points. A key attribute of defining an outcome is specifying the
time of measurement. In reviews, time frames, and not
specific time points, are often specified to handle the
likely diversity in timing of outcome measurement across
studies (e.g. a ‘medium-term’ time frame might be
defined as including outcomes measured between 6 and
12 months).

In specifying outcome timing:

focus on ‘clinically meaningful’ time points (e.g.
considering the course of the condition over time and
duration of the intervention may determine whether

In a review of psychological therapies for panic disorder,
the main outcomes were ‘short-term’ (≤ 6 months from
treatment commencement). ‘Long-term’ outcomes
(> 6 months from treatment commencement) were
considered important, but not specified as critical
because of concerns of participant attrition (Pompoli
et al 2018).

In contrast, in a review of antidepressants, a clinically
meaningful time frame of 6 to 12 months might be
specified for the critical outcome ‘depression’, since this
is the recommended treatment duration. However, it may
be anticipated that many studies will be of shorter

(Continued)
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Table 3.2.c (Continued)

Step Considerations Examples

short-term or long-term outcomes are important);
consider whether there are agreed or accepted
outcome time points (e.g. standards in a clinical area
such as an NIH task force suggestion for at least 6 to
12 months follow-up for chronic low back pain (Deyo
et al 2014), or core outcome sets (Williamson et al
2017);
consider carefully the width of the time frame (e.g.
what constitutes ‘short term’ for this review?). Narrow
time frames may lead to few studies in the synthesis.
Broad time frames may lead to multiplicity (see Step 5)
and difficulties with interpretation if the timing is very
diverse across studies.

duration with short-term follow-up, so an additional
important outcome of ‘depression (< 3 months)’ might
also be specified.

4. Specify the measurement tool or
measurement method.

For each outcome domain, specify:

measurement methods or tools that provide an
appropriate assessment of the domain or specific
outcome (e.g. including clinical assessment, laboratory
tests, objective measures, and patient-reported
outcome measures (PROMs));
whether different methods or tools are comparable
measures of a domain, which has implications for
synthesis (Step 6).

Minimum criteria for inclusion of a measure may include:

adequate evidence of reliability (e.g. consistent scores
across time and raters when the outcome is
unchanged), and validity (e.g. comparable results to
similar measures, including a gold standard if
available); and

In a review of interventions to support women to stop
smoking, objective (biochemically validated) and
subjective (self-report) measures of smoking cessation
were specified separately to examine bias due to the
method used to measure the outcome (Step 6)
(Chamberlain et al 2017).

In a review of high-intensity versus low-intensity exercise
for osteoarthritis, measures of pain were selected based
on relevance of the content and properties of the
measurement tool (i.e. evidence of validity and reliability)
(Regnaux et al 2015).
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for self-reported measures, items that cover the
outcome/domain and are developed using theory,
empirical evidence and consumer involvement.

Measures may be identified from core outcome sets (e.g.
Williamson et al 2017, ICHOM 2018) or systematic reviews
of instruments (see COnsensus-based Standards for the
selection of health Measurement INstruments (COSMIN)
initiative for a database of examples).

5. Specify how multiplicity of
outcomes will be handled.

For a particular domain, multiple outcomes within a
study may be available for inclusion. This may arise from:

multiple outcomes measured within a domain (e.g.
‘anxiety’ and ‘depression’ in a ‘mental health’ domain);
multiple methods to measure the outcome (e.g. self-
reported depression, clinician-rated depression), or
tools/instruments (e.g. Hamilton Depression Rating
Scale, Beck Depression Inventory), as well as their
subscales;
multiple time points measured within a time frame.

Effects of the intervention calculated from these different
sources of multiplicity are statistically dependent, since
they have been calculated using the same participants.
To deal with this dependency, select only one outcome
per study for a particular comparison, or use a meta-
analysis method that accounts for the dependency
(see Step 6).

Pre-specify the method of selection from multiple
outcomes or measures in the protocol, using an
approach that is independent of the result (see Chapter 9,
Table 9.3.c) (López-López et al 2018). Document all
eligible outcomes or measures in the ‘Characteristics of
included studies’ table, noting which was selected and
why.

The following hierarchy was specified to select one
outcome per domain in a review examining the effects of
portion, package or tableware size (Hollands et al 2015):

the study’s primary outcome;
the outcome that was most proximal to the health
outcome in the context of the specific intervention;
the outcome that provided the largest-scale measure
of the domain (e.g. total amount of food consumed
selected ahead of amount of vegetables consumed).

Selection of the outcome was made blinded to the
results. All available outcome measures were
documented in the ‘Characteristics of included studies’
table.

In a review of audit and feedback for healthcare
providers, the outcome domains were ‘provider
performance’ (e.g. compliance with recommended use of
a laboratory test) and ‘patient health outcomes’ (e.g.
smoking status, blood pressure) (Ivers et al 2012). For
each domain, outcomes were selected using the
following hierarchy:

the study’s primary outcome;
the outcome used in the sample size calculation; and
the outcome with the median effect.

(Continued)
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Table 3.2.c (Continued)

Step Considerations Examples

Multiplicity can arise from the reporting of multiple
analyses of the same outcome (e.g. analyses that do and
do not adjust for prognostic factors; intention-to-treat
and per-protocol analyses) and multiple reports of the
same study (e.g. journal articles, conference abstracts).
Approaches for dealing with this type of multiplicity
should also be specified in the protocol (López-López
et al 2018).

It may be difficult to anticipate all forms of multiplicity
when developing a protocol. Any post-hoc approaches
used to select outcomes or results should be noted in the
‘Differences between protocol and review’ section.

6. Plan how the specified outcome
domains will be used in the
synthesis.

When different measurement methods or tools have
been used across studies, consideration must be given to
how these will be synthesized. Options include the
following.

Synthesize different measures of the same outcome (or
outcome domain) together. This approach is likely to
maximize the potential to synthesize. A subgroup or
sensitivity analysis might be undertaken to examine if
the effects are modified by, or robust to, the type of
measurement method or tool (Chapter 10, Sections
10.11.2 and 10.14). There may be increased
heterogeneity, warranting use of a random-effects
model (Chapter 10, Section 10.10.4).
Synthesize each outcome measure separately (e.g.
separatemeta-analyses of Beck’s Depression Inventory
and Hamilton Depression Rating Scale). However,
when the measurement methods all provide a
measure of the same domain, multiple meta-analyses

In a review of interventions to support women to stop
smoking, separate outcome domains were specified for
biochemically validated measures of smoking and self-
report measures. The two domains were meta-analysed
together, but sensitivity analyses were undertaken
restricting the meta-analyses to studies with only
biochemically validated outcomes, to examine if the
results were robust to the method of measurement
(Chamberlain et al 2017).

In a review of psychological therapies for youth
internalizing and externalizing disorders, most studies
contributed multiple effects (e.g. in one meta-analysis of
443 studies, there were 5139 included measures). The
authors used multilevel modelling to address the
dependency among multiple effects contributed from
each study (Weisz et al 2017).
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can lead to difficulties in interpretation and an increase
in the type I error rate (Bender et al 2008, López-López
et al 2018).
Include all the available effect estimates, using a meta-
analysis method that models or accounts for the
dependency. This option has the advantage of using all
information which may lead to greater precision in
estimating the intervention effects (López-López et al
2018). Options include multivariate meta-analysis
(Mavridis and Salanti 2013), multilevel models
(Konstantopoulos 2011) or robust variance estimation
(Hedges et al 2010) (see López-López et al 2018 for
further discussion).

7. Where possible, build in
contingencies by specifying both
specific and broader outcome
domains.

Consider building in flexibility to group outcomes at
different levels or time intervals. Inflexible approaches
can undermine the potential to synthesize, especially
when few studies are anticipated, or there is likely to be
diversity in the way outcomes are defined and measured
and the timing of measurement. If insufficient studies
report data for meaningful synthesis using the narrower
domains, the broader domains can be used (see also
Chapter 2, Section 2.5.3).

Consider a hypothetical review aiming to examine the
effects of behavioural psychological interventions for
the treatment of overweight and obese adults. A specific
outcome is body mass index (BMI). However, also
specifying a broader outcome domain ‘indicator of body
mass’ will facilitate synthesis in the circumstance where
few studies report BMI, but most report an indicator of
body mass (such as weight or waist circumference). This
is particularly important when few studies may be
anticipated or there is expected diversity in the
measurement methods or tools.

3.3 Determining which study designs to include

57



MECIR Box 3.3.a Relevant expectations for conduct of intervention reviews

C9: Predefining study designs (Mandatory)

Define in advance the eligibility criteria for
study designs in a clear and unambiguous
way, with a focus on features of a study’s
design rather than design labels.

Predefined, unambiguous eligibility
criteria are a fundamental prerequisite
for a systematic review. This is
particularly important when non-
randomized studies are considered.
Some labels commonly used to define
study designs can be ambiguous. For
example a ‘double blind’ study may not
make it clear who was blinded; a ‘case-
control’ study may be nested within a
cohort, or be undertaken in a cross-
sectional manner; or a ‘prospective’
study may have only some features
defined or undertaken prospectively.

C11: Justifying choice of study designs (Mandatory)

Justify the choice of eligible study designs. It might be difficult to address some
interventions or some outcomes in
randomized trials. Authors should be
able to justify why they have chosen
either to restrict the review to
randomized trials or to include non-
randomized studies. The particular study
designs included should be justified with
regard to appropriateness to the review
question and with regard to potential
for bias.

MECIR Box 3.3.b Relevant expectations for conduct of intervention reviews

C10: Including randomized trials (Mandatory)

Include randomized trials as eligible for
inclusion in the review, if it is feasible to
conduct them to evaluate the
interventions and outcomes of interest.

Randomized trials are the best study
design for evaluating the efficacy of
interventions. If it is feasible to conduct
them to evaluate questions that are being
addressed by the review, they must be
considered eligible for the review.
However, appropriate exclusion criteria
may be put in place, for example
regarding length of follow-up.
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suggests that, on average, non-randomized studies produce effect estimates that indi-
cate more extreme benefits of the effects of health care than randomized trials. How-
ever, the extent, and even the direction, of the bias is difficult to predict. These issues
are discussed at length in Chapter 24, which provides guidance on when it might be
appropriate to include non-randomized studies in a Cochrane Review.
Practical considerations also motivate the restriction of many Cochrane Reviews to

randomized trials. In recent decades there has been considerable investment interna-
tionally in establishing infrastructure to index and identify randomized trials. Cochrane
has contributed to these efforts, including building up and maintaining a database of
randomized trials, developing search filters to aid their identification, working with
MEDLINE to improve tagging and identification of randomized trials, and usingmachine
learning and crowdsourcing to reduce author workload in identifying randomized trials
(Chapter 4, Section 4.6.6.2). The same scale of organizational investment has not (yet)
been matched for the identification of other types of studies. Consequently, identifying
and including other types of studies may require additional efforts to identify studies
and to keep the review up to date, and might increase the risk that the result of the
review will be influenced by publication bias. This issue and other bias-related issues
that are important to consider when defining types of studies are discussed in detail in
Chapters 7 and 13.
Specific aspects of study design and conduct should be considered when defining

eligibility criteria, even if the review is restricted to randomized trials. For example,
whether cluster-randomized trials (Chapter 23, Section 23.1) and crossover trials
(Chapter 23, Section 23.2) are eligible, as well as other criteria for eligibility such as
use of a placebo comparison group, evaluation of outcomes blinded to allocation
sequence, or a minimum period of follow-up. There will always be a trade-off between
restrictive study design criteria (whichmight result in the inclusion of studies that are at
low risk of bias, but very few in number) and more liberal design criteria (which might
result in the inclusion of more studies, but at a higher risk of bias). Furthermore, exces-
sively broad criteria might result in the inclusion ofmisleading evidence. If, for example,
interest focuses on whether a therapy improves survival in patients with a chronic con-
dition, it might be inappropriate to look at studies of very short duration, except to
make explicit the point that they cannot address the question of interest.

3.3.2 Including non-randomized studies

The decision of whether non-randomized studies (and what type) will be included is
decided alongside the formulation of the review PICO. The main drivers that may lead
to the inclusion of non-randomized studies include: (i) when randomized trials are una-
ble to address the effects of the intervention on harm and long-term outcomes or in
specific populations or settings; or (ii) for interventions that cannot be randomized
(e.g. policy change introduced in a single or small number of jurisdictions) (see
Chapter 24). Cochrane, in collaboration with others, has developed guidance for review
authors to support their decision about when to look for and include non-randomized
studies (Schünemann et al 2013).
Non-randomized designs have the commonality of not using randomization to allo-

cate units to comparison groups, but their different design features mean that they are
variable in their susceptibility to bias. Eligibility criteria should be based on explicit
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study design features, and not the study labels applied by the primary researchers (e.g.
case-control, cohort), which are often used inconsistently (Reeves et al 2017; see
Chapter 24).
When non-randomized studies are included, review authors should consider how the

studies will be grouped and used in the synthesis. The Cochrane Non-randomized Stud-
ies Methods Group taxonomy of design features (see Chapter 24) may provide a basis
for grouping together studies that are expected to have similar inferential strength and
for providing a consistent language for describing the study design.
Once decisions have been made about grouping study designs, planning of how

these will be used in the synthesis is required. Review authors need to decide whether
it is useful to synthesize results from non-randomized studies and, if so, whether results
from randomized trials and non-randomized studies should be included in the same
synthesis (for the purpose of examining whether study design explains heterogeneity
among the intervention effects), or whether the effects should be synthesized in sep-
arate comparisons (Valentine and Thompson 2013). Decisions should be made for each
of the different types of non-randomized studies under consideration. Review authors
might anticipate increased heterogeneity when non-randomized studies are synthe-
sized, and adoption of a meta-analysis model that encompasses heterogeneity is wise
(Valentine and Thompson 2013) (such as a random effects model, see Chapter 10,
Section 10.10.4). For further discussion of non-randomized studies, see Chapter 24.

3.4 Eligibility based on publication status and language

Chapter 4 contains detailed guidance on how to identify studies from a range of sources
including, but not limited to, those in peer-reviewed journals. In general, a strategy to
include studies reported in all types of publication will reduce bias (Chapter 7). There
would need to be a compelling argument for the exclusion of studies on the basis of
their publication status (MECIR Box 3.4.a), including unpublished studies, partially pub-
lished studies, and studies published in ‘grey’ literature sources. Given the additional
challenge in obtaining unpublished studies, it is possible that any unpublished studies
identified in a given review may be an unrepresentative subset of all the unpublished
studies in existence. However, the bias this introduces is of less concern than the bias

MECIR Box 3.4.a Relevant expectations for conduct of intervention reviews

C12: Excluding studies based on publication status (Mandatory)

Include studies irrespective of their
publication status, unless exclusion is
explicitly justified.

Obtaining and including data from
unpublished studies (including grey
literature) can reduce the effects of
publication bias. However, the
unpublished studies that can be located
may be an unrepresentative sample of all
unpublished studies.
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introduced by excluding all unpublished studies, given what is known about the impact
of reporting biases (see Chapter 13 on bias due to missing studies, and Chapter 4,
Section 4.3 for a more detailed discussion of searching for unpublished and grey
literature).
Likewise, while searching for, and analysing, studies in any language can be

extremely resource-intensive, review authors should consider carefully the implications
for bias (and equity, see Chapter 16) if they restrict eligible studies to those published in
one specific language (usually English). See Chapter 4 (Section 4.4.5) for further discus-
sion of language and other restrictions while searching.

3.5 Chapter information
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Searching for and selecting studies
Carol Lefebvre, Julie Glanville, Simon Briscoe, Anne Littlewood, Chris Marshall,
Maria-Inti Metzendorf, Anna Noel-Storr, Tamara Rader, Farhad Shokraneh, James
Thomas, L. Susan Wieland; on behalf of the Cochrane Information Retrieval
Methods Group

KEY POINTS

• Review authors should work closely, from the start of the protocol, with an experi-
enced medical/healthcare librarian or information specialist.

• Studies (not reports of studies) are included in Cochrane Reviews but identifying
reports of studies is currently the most convenient approach to identifying the major-
ity of studies and obtaining information about them and their results.

• The Cochrane Central Register of Controlled Trials (CENTRAL) and MEDLINE, together
with Embase (if access to Embase is available to the review team) should be searched
for all Cochrane Reviews.

• Additionally, for all Cochrane Reviews, the Specialized Register of the relevant
Cochrane Review Groups should be searched, either internally within the Review
Group or via CENTRAL.

• Trials registers should be searched for all Cochrane Reviews and other sources such as
regulatory agencies and clinical study reports (CSRs) are an increasingly important
source of information for study results.

• Searches should aim for high sensitivity, which may result in relatively low precision.

• Search strategies should avoid using too many different search concepts but a wide
variety of search terms should be combined with OR within each included concept.

• Both free-text and subject headings (e.g. Medical Subject Headings (MeSH) and
Emtree) should be used.

• Published, highly sensitive, validated search strategies (filters) to identify randomized
trials should be considered, such as the Cochrane Highly Sensitive Search Strategies
for identifying randomized trials in MEDLINE (but do not apply these randomized trial
or human filters in CENTRAL).

This chapter should be cited as: Lefebvre C, Glanville J, Briscoe S, Littlewood A, Marshall C, Metzendorf M-I,
Noel-Storr A, Rader T, Shokraneh F, Thomas J, Wieland LS. Chapter 4: Searching for and selecting studies.
In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook
for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 67–108.
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4.1 Introduction

Cochrane Reviews take a systematic and comprehensive approach to identifying stud-
ies that meet the eligibility criteria for the review. This chapter outlines some general
issues in searching for studies; describes the main sources of potential studies; and dis-
cusses how to plan the search process, design and carry out search strategies, manage
references found during the search process, correctly document the search process and
select studies from the search results.
This chapter aims to provide review authors with background information on all

aspects of searching for studies so that they can better understand the search process.
All authors of systematic reviews should, however, identify an experienced medical/
healthcare librarian or information specialist to provide support for the search process.
The chapter also aims to provide advice and guidance for medical/healthcare librarians
and information specialists (within and beyond Cochrane) involved in the search proc-
ess to identify studies for inclusion in systematic reviews.
This chapter focuses on searching for randomized trials. Many of the search princi-

ples discussed, however, will also apply to other study designs. Considerations for
searching for non-randomized studies are discussed in Chapter 24 (see also
Chapter 19 when these are specifically for adverse effects). Other discussion of search-
ing for specific types of evidence appears in chapters dedicated to these types of evi-
dence, such as Chapter 17 on complex and public health interventions, Chapter 20 on
economics evidence and Chapter 21 on qualitative research.
An online Technical Supplement to this chapter provides more detail on searching

methods and is available from Cochrane Training.

4.2 General issues

4.2.1 Role of the information specialist/librarian

Medical/healthcare librarians and information specialists have an integral role in the
production of Cochrane Reviews. There is increasing evidence to support the involve-
ment of an information specialist in the review to improve the quality of various aspects
of the search process (Rethlefsen et al 2015, Meert et al 2016, Metzendorf 2016).
Most Cochrane Review Groups (CRGs) employ an information specialist to support

authors. The range of services, however, offered by CRGs and/or their information spe-
cialists varies according to the resources available. Cochrane Review authors should,
therefore, contact their Cochrane Information Specialist at the earliest stage to find
out what advice and support is available to them. Authors conducting their own searches
should seek advice from their Cochrane Information Specialist not only onwhich sources
to search, but also with respect to the exact strategies to be run (see Section 4.4). If the
CRG does not provide this service or employ an information specialist, we recommend
that review authors seek guidance from a medical/healthcare librarian or information
specialist, preferably one with experience in supporting systematic reviews.
Cochrane Information Specialists are responsible for providing assistance to authors

with searching for studies for inclusion in their reviews, and for keeping up to date with
Cochrane methodological developments in information retrieval (Littlewood et al 2017).
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A key element of the role is the maintenance of a Specialized Register for their Review
Group, containing reports of trials relating to the group’s scope. Within the limits of licen-
sing restrictions, the content of these group registers is shared with users worldwide via
the Cochrane Central Register of Controlled Trials (CENTRAL), part of the Cochrane
Library (see Section 4.3.3).
Most CRGs offer support to authors in study identification from the early planning

stage to the final write-up of the review, and the support available may include some
or all of the following:

• advising authors on which databases and other sources to search;

• designing, or providing guidance on designing, search strategies for the main bibli-
ographic databases and/or trials registers;

• running searches in databases and/or registers available to the information specialist;

• saving and collating search results, and sharing them with authors in appropriate
formats;

• advising authors on how to run searches in other sources and how to download
results;

• drafting, or assisting authors in drafting, the search methods sections of a Cochrane
Protocol and Review and/or Update;

• ensuring that Cochrane Protocols, Reviews and Updates meet the requirements set
out in the Methodological Expectations of Cochrane Intervention Reviews (MECIR)
relating to searching activities for reviews;

• organizing translations, or at least data extraction, of papers where required to ena-
ble authors to assess papers for inclusion/exclusion in their reviews;

• obtaining copies of trial reports for review teams when required (within copyright
legislation);

• providing advice and support to author teams on the use of reference management
tools, and other software used in review production, including review production
tools such as RevMan, Covidence and EPPI-Reviewer; and

• checking and formatting the references to included and/or excluded studies in line
with the Cochrane Style Manual.

The Cochrane Information Specialists’ Handbook (Chapter 6, Author support) con-
tains further information about how Cochrane Information Specialists can support
authors (Littlewood et al 2017).

4.2.2 Minimizing bias

Systematic reviews require a thorough, objective and reproducible search of a range of
sources to identify as many eligible studies as possible (within resource limits). This is a
major factor distinguishing systematic reviews from traditional narrative reviews,
which helps to minimize bias and achieve more reliable estimates of effects and uncer-
tainties. A search of MEDLINE alone is not considered adequate. Research evidence
indicates that not all known published randomized trials are available in MEDLINE
and that even if relevant records are in MEDLINE, it can be difficult to retrieve them
(see Section 4.3.2).
Going beyond MEDLINE is important not only for ensuring that asmany relevant stud-

ies as possible are identified, but also to minimize selection bias for those that are
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found. Relying exclusively on a MEDLINE search may retrieve a set of reports unrepre-
sentative of all reports that would have been identified through a wider or more exten-
sive search of several sources.
Time and budget restraints require the review team to balance the thoroughness of

the search with efficiency in the use of time and funds. The best way of achieving this
balance is to be aware of, and try to minimize, the biases such as publication bias and
language bias that can result from restricting searches in different ways (see Chapters 8
and 13 for further guidance on assessing these biases). Unlike for tasks such as study
selection or data extraction, it is not considered necessary (or even desirable) for two
people to conduct independent searches in parallel. It is strongly recommended, how-
ever, that all search strategies should be peer reviewed by a suitably qualified and
experienced medical/healthcare librarian or information specialist (see Section 4.4.8).

4.2.3 Studies versus reports of studies

Systematic reviews have studies as the primary units of interest and analysis. A single
study may have more than one report about it, and each of these reports may contrib-
ute useful information for the review (see Section 4.6.1). For most of the sources listed
in Section 4.3, the search process will retrieve individual reports of studies, so that mul-
tiple reports of the same study will need to be identified and associated with each other
manually by the review authors. There is, however, an increasing number of study-
based sources, which link multiple records of the same study together, such as the
Cochrane Register of Studies and the Specialized Registers of a number of CRGs and
Fields (see online Technical Supplement), and some other trials registers and regula-
tory and industry sources. Processes and software to select and group publications by
study are discussed in Section 4.6.

4.2.4 Copyright and licensing

It is Cochrane policy that all review authors and others involved in Cochrane should
adhere to copyright legislation and the terms of database licensing agreements. With
respect to searching for studies, this refers in particular to adhering to the terms and
conditions of use when searching databases and other sources and downloading
records, as well as adhering to copyright legislation when obtaining copies of publica-
tions. Review authors should seek guidance on this from their medical/healthcare
librarian or information specialist, as copyright legislation varies across jurisdictions
and licensing agreements vary across organizations.

4.3 Sources to search

4.3.1 Bibliographic databases

4.3.1.1 Introduction to bibliographic databases
The search for studies in a Cochrane Review should be as extensive as possible in order
to reduce the risk of reporting bias and to identify as much relevant evidence as pos-
sible (see MECIR Box 4.3.a). Searches of health-related bibliographic databases are
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generally the most efficient way to identify an initial set of relevant reports of studies
(EUnetHTA 2017). Database selection should be guided by the review topic (Suarez-
Almazor et al 2000, Stevinson and Lawlor 2004, Lorenzetti et al 2014). When topics
are specialized, cross-disciplinary, or involve emerging technologies (Rice et al 2016),
additional databases may need to be identified and searched (Wallace et al 1997,
Stevinson and Lawlor 2004).
The three bibliographic databases generally considered to be the most important

sources to search for reports of trials are CENTRAL, MEDLINE (Halladay et al 2015,

MECIR Box 4.3.a Relevant expectations for conduct of intervention reviews

C19: Planning the search (Mandatory)

Plan in advance the methods to be used for
identifying studies. Design searches to
capture as many studies as possible that
meet the eligibility criteria, ensuring that
relevant time periods and sources are
covered and not restricted by language or
publication status.

Searches should be motivated directly by
the eligibility criteria for the review, and it
is important that all types of eligible
studies are considered when planning the
search. If searches are restricted by
publication status or by language of
publication, there is a possibility of
publication bias, or language bias
(whereby the language of publication is
selected in a way that depends on the
findings of the study), or both. Removing
language restrictions in English language
databases is not a good substitute for
searching non-English language journals
and databases.

C24: Searching general bibliographic databases and CENTRAL (Mandatory)

Search the Cochrane Review Group’s
(CRG’s) Specialized Register (internally, e.g.
via the Cochrane Register of Studies, or
externally via CENTRAL). Ensure that
CENTRAL, MEDLINE and Embase (if Embase
is available to either the CRG or the review
author), have been searched (either for the
review or for the Review Group’s
Specialized Register).

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
as much relevant evidence as possible.
The minimum databases to be covered
are the CRG’s Specialized Register (if it
exists and was designed to support
reviews in this way), CENTRAL, MEDLINE
and Embase (if Embase is available to
either the CRG or the review author).
Expertise may be required to avoid
unnecessary duplication of effort. Some,
but not all, reports of eligible studies
from MEDLINE, Embase and the CRGs’
Specialized Registers are already
included in CENTRAL.
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Sampson et al 2016) and Embase (Woods and Trewheellar 1998, Sampson et al 2003,
Bai et al 2007). These databases are described in more detail in Sections 4.3.1.2 and
4.3.1.3 and in the online Technical Supplement. For Cochrane Reviews, CENTRAL, MED-
LINE and Embase (if access to Embase is available to the review team) should be
searched (see MECIR Box 4.3.a). These searches may be undertaken specifically for
the review, or indirectly by searching the CRG’s Specialized Register.
Some bibliographic databases, such as MEDLINE and Embase, include abstracts for

the majority of recent records. A key advantage of such databases is that they can be
searched electronically both for words in the title or abstract and by using the standar-
dized indexing terms, or controlled vocabulary, assigned to each record (see
Section 4.3.1.2). Cochrane has developed a database of reports of randomized trials
called the Cochrane Central Register of Controlled Trials (CENTRAL), which is published
within the Cochrane Library (see Section 4.3.1.3).
Bibliographic databases are available to individuals for a fee (by subscription or on a

‘pay-as-you-go’ basis) or free at the point of use. They may be available through
national provisions, site-wide licences at institutions such as universities or hospitals,
through professional organizations as part of their membership packages or free-of-
charge on the internet. Some international initiatives provide free or low-cost online
access to databases (and full-text journals) over the internet. The Health InterNetwork
Access to Research Initiative (HINARI) programme, set up by the World Health Organ-
ization (WHO) together with major publishers, provides access to a wide range of data-
bases including the Cochrane Library for healthcare professionals in local, not-for-
profit institutions in more than 115 countries, areas and territories. The International
Network for the Availability of Scientific Publications (INASP) also provides access to a
wide range of databases (and journals) including the Cochrane Library. Electronic Infor-
mation for Libraries (EIFL) is a similar initiative based on library consortia to support
affordable licensing of journals and other sources in more than 60 low-income and
transition countries in central, eastern and south-east Europe, the former Soviet Union,
Africa, the Middle East and South-east Asia.
The online Technical Supplement provides more detailed information about how to

search these sources and other databases. It also provides a list of general healthcare
databases by region and healthcare databases by subject area. Further evidence-based
information about sources to search can be found on the SuRe Info portal, which is
updated twice per year.

4.3.1.2 MEDLINE and Embase
Cochrane Reviews of interventions should include a search of MEDLINE (see MECIR
Box 4.3.a). MEDLINE (as of August 2018) contains over 25 million references to
journal articles in biomedicine and health from 1946 onwards. More than 5200
journals in about 40 languages are indexed for MEDLINE (US National Library of
Medicine 2019).
PubMed provides access to a free version of MEDLINE that also includes up-to-date

citations not yet indexed for MEDLINE (US National Library of Medicine 2018).
Additionally, PubMed includes records from journals that are not indexed for MEDLINE
and records considered ‘out-of-scope’ from journals that are partially indexed for
MEDLINE (US National Library of Medicine no date).
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MEDLINE is also available on subscription from a number of other database vendors,
such as EBSCO, Ovid, ProQuest and STN. Access is usually ‘free at-the-point-of-use’ to
members of the institutions paying the subscriptions (e.g. hospitals and universities).
Ovid MEDLINE (segment name ‘medall’) covers all of the available content and meta-
data in PubMed with a delay of one day (except during the annual reload, at the end of
each year, when Ovid MEDLINE will not match the PubMed baseline). Aside from the
MEDLINE records, Ovid includes all content types available in PubMed including; Epub
Ahead of Print, PubMed-not-MEDLINE, In-process citations and citations for books
available on the NCBI Bookshelf.
When searching MEDLINE via service providers or interfaces other than Ovid or

PubMed, we recommend verification of the exact coverage of the database in relation
to PubMed, where no explicit information on this is readily available.
Cochrane Reviews of interventions should include a search of Embase (if access to

Embase is available to the review team) (see MECIR Box 4.3.a). Embase (as of June
2018) contains over 30 million records from more than 8000 currently published jour-
nals. Embase now includes all MEDLINE records, thus, technically, allowing both data-
bases to be searched simultaneously. Further details on the implications of this for
searching are available in the online Technical Supplement. There are more than 6 mil-
lion records in Embase, from more than 2900 journals that are not indexed in MEDLINE
(Elsevier 2016a). Embase includes articles from about 90 countries. Embase Classic pro-
vides access to almost 2 million records digitized from the Excerpta Medica print jour-
nals (the original print indexes from which Embase was created) from 1947 to 1973
(Elsevier 2016b).
Embase is only available by subscription, either directly via Elsevier (as Embase.com)

or from other database vendors, such as Ovid, ProQuest or STN. It is mandatory for
Cochrane intervention reviews to include a search of Embase if access is available
to the review team (see MECIR Box 4.3.a). Note that Embase is searched regularly by
Cochrane for reports of trials. These records are included in CENTRAL (see online Tech-
nical Supplement).
The online Technical Supplement provides guidance on how to search MEDLINE

and Embase for reports of trials. The actual degree of reference overlap between
MEDLINE and Embase varies widely according to the topic, but studies comparing
searches of the two databases have generally concluded that a comprehensive
search requires that both databases be searched (Lefebvre et al 2008) (see MECIR
Box 4.3.a).
Conversely, two recent studies examined different samples of Cochrane Reviews

and identified the databases from which the included studies of these reviews origi-
nated (Halladay et al 2015, Hartling et al 2016). Halladay showed that the majority of
included studies could be identified via PubMed (range 75% to 92%) and Hartling
showed that the majority of included studies could be identified by using a combina-
tion of two databases, but the two databases were different in each case. Both stud-
ies, one across all healthcare areas (Halladay et al 2015) and the other on child health
(Hartling et al 2016), report a minimal extent to which the inclusion of studies not
indexed in PubMed altered the meta-analyses. Hence, the current recommendation
of searching multiple databases needs to be evaluated further, so as to confirm
under which circumstances more comprehensive searches of multiple databases is
warranted.
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4.3.1.3 The Cochrane Central Register of Controlled Trials (CENTRAL)
Since its inception, the Cochrane Central Register of Controlled Trials (CENTRAL) has
been recognized as the most comprehensive source of reports of randomized trials
(Egger and Smith 1998). CENTRAL is published as part of the Cochrane Library and
is updated monthly. As of June 2018, CENTRAL contains over 1,275,000 records of
reports of trials/trials registry records potentially eligible for inclusion in Cochrane
Reviews, by far the majority of which are randomized trials.
Many of the records in CENTRAL have been identified through systematic searches of

MEDLINE and Embase (see online Technical Supplement). CENTRAL, however, also
includes citations to reports of randomized trials that are not indexed in MEDLINE,
Embase or other bibliographic databases; citations published in many languages;
and citations that are available only in conference proceedings or other sources that
are difficult to access. It also includes records from trials registers and trials results
registers.
These additional records are, for the most part, identified by Cochrane Information

Specialists, many of whom conduct comprehensive searches to populate CRG Special-
ized Registers, collecting records of trials eligible for Cochrane Reviews in their field.
These Specialized Registers are included in CENTRAL. Where a Specialized Register
is available, for which sufficiently comprehensive searching has been conducted, a
search of the Specialized Register may be conducted instead of separately searching
CENTRAL, MEDLINE and Embase for a specific review. In these cases, the search will
be more precise, but an equivalent number of included studies will be identified with
lower numbers of records to screen. There will, however, be a time-lag between records
appearing in databases such as MEDLINE or Embase and their inclusion in a Specialized
Register.
CENTRAL is available through the Cochrane Library. Many review authors have access

free-of-charge at the point-of-use through national provisions and other similar
arrangements, or as part of a paid subscription to the Cochrane Library. All Cochrane
Information Specialists have access to CENTRAL.
The online Technical Supplement provides information on what is in CENTRAL from

MEDLINE, Embase and other sources, as well as guidance on searching CENTRAL.

4.3.1.4 Other bibliographic databases
Many countries and regions produce bibliographic databases that focus on the
literature produced in those regions and which often include journals and other
literature not indexed elsewhere. There are also subject-specific bibliographic data-
bases, such as AMED (alternative therapies), CINAHL (nursing and allied health) and
PsycINFO (psychology and psychiatry). It is highly desirable that searches be con-
ducted of appropriate national, regional and subject specific bibliographic data-
bases (see MECIR Box 4.3.b). Further details are provided in the online Technical
Supplement.
Citation indexes are bibliographic databases that record instances where a partic-

ular reference is cited, in addition to the standard bibliographic content. Citation
indexes can be used to identify studies that are similar to a study report of interest,
as it is probable that other reports citing or cited by a study will contain similar or
related content.
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4.3.2 Ongoing studies and unpublished data sources

Initiatives to provide access to ongoing studies and unpublished data constitute a
fast-moving field (Isojarvi et al 2018). Review authors should therefore consult their
medical/healthcare librarian or information specialist for current advice.
It is important to identify ongoing studies, so that when a review is updated these can

be assessed for possible inclusion. Awareness of the existence of a possibly relevant
ongoing study and its expected completion date might affect not only decisions with
respect to when to update a specific review, but also when to aim to complete a review.
Information about possibly relevant ongoing studies should be included in the review
in the ‘Characteristics of ongoing studies’ table.
Even when studies are completed, some are never published. An association between

‘statistically significant’ results and publication has been documented across a number
of studies, as summarized in Chapter 13. Finding out about unpublished studies, and
including their results in a systematic review when eligible and appropriate (Cook et al
1993), is important for minimizing bias. Several studies and other articles addressing
issues around identifying unpublished studies have been published (Easterbrook
et al 1991, Weber et al 1998, Manheimer and Anderson 2002, MacLean et al 2003,
Lee et al 2008, Chan 2012, Bero 2013, Schroll et al 2013, Chapman et al 2014, Kreis
et al 2014, Scherer et al 2015, Hwang et al 2016, Lampert et al 2016).
There is no easy and reliable single way to obtain information about studies that

have been completed but never published. There have, however, been several impor-
tant initiatives resulting in better access to studies and their results from sources
other than the main bibliographic databases and journals. These include trials reg-
isters and trials results registers (see Section 4.3.3), regulatory agency sources and
clinical study reports (CSRs); (the very detailed reports prepared by industry for reg-
ulatory approval) (see Section 4.3.4). A recent study (Halfpenny et al 2016) assessed
the value and usability for systematic reviews and network meta-analyses of data
from trials registers, CSRs and regulatory authorities, and concluded that data from
these sources have the potential to influence systematic review results. Two earlier
studies showed that a considerably higher proportion of CSRs prepared for regulatory

MECIR Box 4.3.b Relevant expectations for conduct of intervention reviews

C25: Searching specialist bibliographic databases (Highly desirable)

Search appropriate national, regional and
subject-specific bibliographic databases.

Searches for studies should be as
extensive as possible in order to reduce the
risk of publication bias and to identify as
much relevant evidence as possible.
Databases relevant to the review topic
should be covered (e.g. CINAHL for
nursing-related topics, PsycINFO for
psychological interventions), and regional
databases (e.g. LILACS) should be
considered.

4.3 Sources to search

75



approval of drugs provided complete information on study methods and results than
did trials register records or journal publications (Wieseler et al 2012) and that
conventional, publicly available sources (European Public Assessment Reports, jour-
nal publications, and trials register records) provide insufficient information on new
drugs, especially on patient relevant outcomes in approved subpopulations (Köhler
et al 2015).
A Cochrane Methodology Review examined studies assessing methods for obtain-

ing unpublished data and concluded that those carrying out systematic reviews
should continue to contact authors for missing data and that email contact was more
successful than other methods (Young and Hopewell 2011). An annotated bibliogra-
phy of published studies addressing searching for unpublished studies and obtaining
access to unpublished data is also available (Arber et al 2013). One particular study
focused on the contribution of unpublished studies, including dissertations, and
studies in languages other than English, to the results of meta-analyses in reviews
relevant to children (Hartling et al 2017). They found that, in their sample, unpub-
lished studies and studies in languages other than English rarely had any impact
on the results and conclusions of the review. They did, however, concede that inclu-
sion of these study types may have an impact in situations where there are few rel-
evant studies, or where there are ‘questionable vested interests’ in the published
literature.
Correspondence can be an important source of information about unpublished

studies. It is highly desirable for authors of Cochrane Reviews of interventions to con-
tact relevant individuals and organizations for information about unpublished or
ongoing studies (see MECIR Box 4.3.c). Letters of request for information can be used
to identify completed but unpublished studies. One way of doing this is to send a
comprehensive list of relevant articles along with the eligibility criteria for the review
to the first author of reports of included studies, asking if they know of any additional
studies (ongoing or completed; published or unpublished) that might be relevant.
This approach may be especially useful in areas where there are few trials or a limited
number of active research groups. It may also be desirable to send the same letter to
other experts and pharmaceutical companies or others with an interest in the area.
Some review teams set up websites for systematic review projects, listing the studies
identified to date and inviting submission of information on studies not already
listed.

MECIR Box 4.3.c Relevant expectations for conduct of intervention reviews

C31: Searching by contacting relevant individuals and organizations (Highly desirable)

Contact relevant individuals and
organizations for information about
unpublished or ongoing studies.

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
asmuch relevant evidence as possible. It is
important to identify ongoing studies, so
that these can be assessed for possible
inclusion when a review is updated.
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Asking researchers for information about completed but never published studies has
not always been found to be fruitful (Hetherington et al 1989, Horton 1997) though
some researchers have reported that this is an important method for retrieving studies
for systematic reviews (Royle and Milne 2003, Greenhalgh and Peacock 2005, Reveiz
et al 2006). The RIAT (Restoring Invisible and Abandoned Trials) initiative (Doshi
et al 2013) aims to address these problems by offering a methodology that allows
others to re-publish mis-reported and to publish unreported trials. Anyone who can
access the trial data and document trial abandonment can use this methodology.
The RIAT Support Centre offers free-of-charge support and competitive funding to
researchers interested in this approach. It has been suggested that legislation such
as Freedom of Information Acts in various countries might be used to gain access to
information about unpublished trials (Bennett and Jull 2003, MacLean et al 2003).

4.3.3 Trials registers and trials results registers

A recent study suggested that trials registers are an important source for identifying
additional randomized trials (Baudard et al 2017). Cochrane Reviews of interventions
should search relevant trials registers and repositories of results (see MECIR Box 4.3.d).
Although there are many other trials registers, ClinicalTrials.gov and the WHO Interna-
tional Clinical Trials Registry Platform (ICTRP) portal (Pansieri et al 2017) are consid-
ered to be the most important for searching to identify studies for a systematic
review. Research has shown that even though ClinicalTrials.gov is included in the
WHO ICTRP Search Portal, not all ClinicalTrials.gov records can be successfully
retrieved via searches of the ICTRP Search Portal (Glanville et al 2014, Knelangen
et al 2018). Therefore, it is not sufficient to search the ICTRP alone. Guidance for search-
ing these and other trials registers is provided in the online Technical Supplement.
In addition to Cochrane, other organizations such as the Agency for Healthcare

Research and Quality (AHRQ) (Agency for Healthcare Research and Quality 2014)
and the US Institute of Medicine (Institute of Medicine 2011) also advocate searching
trials registers.

MECIR Box 4.3.d Relevant expectations for conduct of intervention reviews

C27: Searching trials registers (Mandatory)

Search trials registers and repositories of
results, where relevant to the topic,
through ClinicalTrials.gov, the WHO
International Clinical Trials Registry
Platform (ICTRP) portal and other sources
as appropriate.

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
as much relevant evidence as possible.
Although ClinicalTrials.gov is included as
one of the registers within the WHO ICTRP
portal, it is recommended that both
ClinicalTrials.gov and the ICTRP portal are
searched separately due to additional
features in ClinicalTrials.gov.
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There has been an increasing acceptance by investigators of the importance of regis-
tering trials at inception and providing access to their trials results. Despite perceptions
and even assertions to the contrary, however, there is no global, universal legal require-
ment to register clinical trials at inception or at any other stage in the process, although
some countries are beginning to introduce such legislation (Viergever and Li 2015).
Efforts have been made by a number of organizations, including organizations repre-

senting the pharmaceutical industry and individual pharmaceutical companies, to
begin to provide central access to ongoing trials and in some cases trial results on com-
pletion, either on a national or international basis. A recent audit of pharmaceutical
companies’ policies on access to trial data, results andmethods, however, showed that
the commitments made by companies to transparency of trials were highly variable
(Goldacre et al 2017). Increasingly, as already noted, trials registers such as Clinical-
Trials.gov also contain the results of completed trials, not just simply listing the details
of the trial.

4.3.4 Regulatory agency sources and clinical study reports

Potentially relevant regulatory agency sources include the EU Clinical Trials Register,
Drugs@FDA and OpenTrialsFDA. Details of these are provided in the online Technical
Supplement. Clinical study reports (CSRs) are the reports of clinical trials providing
detailed information on the methods and results of clinical trials submitted in support
of marketing authorization applications. In late 2010, the European Medicines Agency
(EMA) began releasing CSRs (on request) under their Policy 0043. In October 2016, they
began to release CSRs under their Policy 0070. The policy applies only to documents
received since 1 January 2015. The terms of use for access are based on the purposes to
which the clinical data will be put.
A recent study by Jefferson and colleagues (Jefferson et al 2018) that looked at use of

regulatory documents in Cochrane Reviews, found that understanding within the
Cochrane community was limited and guidance and support would be required if
review authors were to engage with regulatory documents as a source of evidence.
Specifically, guidance on how to use data from regulatory sources is needed. For more
information about using CSRs, see the online Technical Supplement. Further guidance
on collecting data from CSRs is provided in Chapter 5, Section 5.5.6.

4.3.5 Other sources

The online Technical Supplement describes several other important sources of reports
of studies. The term ‘grey literature’ is often used to refer to reports published outside
of traditional commercial publishing. Review authors should generally search sources
such as dissertations and conference abstracts (see MECIR Box 4.3.e).
Review authors may also consider searching the internet, handsearching of jour-

nals and searching full texts of journals electronically where available (see online
Technical Supplement for details). They should examine previous reviews on the
same topic and check reference lists of included studies and relevant systematic
reviews (see MECIR Box 4.3.e).
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4.4 Designing search strategies

4.4.1 Introduction to search strategies

This section highlights some of the issues to consider when designing search strategies.
Designing search strategies can be complex and the section does not fully address the
many complexities in this area. Review teams will benefit from the skills and expertise
of a medical/healthcare librarian or information specialist. Many of the issues high-
lighted relate to both the subject aspects of the search (e.g. the PICO elements) and
to the study method (e.g. randomized trials). For a search to be robust, both aspects
require attention to be sure that relevant records are not missed.
Issues to consider in planning a search include:

• the nature or type of the intervention(s) being assessed;

• the complexity of the review question and the need to consider additional conceptual
frameworks (see Chapters 3 and 17);

• the time period when any evaluations of the interventions may have taken place (as
specified in the review protocol) (see Section 4.4.5);

• any geographic considerations, such as the need to search the African Index Medicus
for studies relating to African populations or the Chinese literature for studies in
Chinese herbal medicine (see online Technical Supplement);

• whether the review is limited to randomized trials or other study designs are eligible
(see Chapter 24);

• whether a validated methodological search filter (for specific study designs) is avail-
able (see Section 4.4.7);

• whether unpublished data are to be sought specifically (see Sections 4.3.2, 4.3.3 and
4.3.4); and

MECIR Box 4.3.e Relevant expectations for conduct of intervention reviews

C28: Searching for grey literature (Highly desirable)

Search relevant grey literature sources such
as reports, dissertations, theses, databases
and databases of conference abstracts.

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
as much relevant evidence as possible.

C29: Searching within other reviews (Highly desirable)

Search within previous reviews on the same
topic.

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
as much relevant evidence as possible.

C30: Searching reference lists (Mandatory)

Check reference lists in included studies
and any relevant systematic reviews
identified.

Searches for studies should be as
extensive as possible in order to reduce
the risk of publication bias and to identify
as much relevant evidence as possible.
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• whether the review has specific eligibility criteria around study design to address
adverse effects (see Chapter 19), economic issues (see Chapter 20) or qualitative
research questions (see Chapter 21), in which case searches to address these criteria
should be undertaken (see MECIR Box 4.4.a).

Further evidence-based information about designing search strategies can be found on
the SuRe Info portal, which is updated twice per year.

4.4.2 Structure of a search strategy

The starting point for developing a search strategy is to consider themain concepts being
examined in a review. This is often referred to as PICO – that is Patient (or Participant or
Population or Problem), Intervention, Comparison and Outcomes (Richardson et al
1995): see also Chapters 2 and 3 for guidance on developing and refining PICO definitions
that will be operationalized in the search strategy. Examples are provided in the appen-
dices to the Cochrane Information Specialists’ Handbook (Littlewood et al 2017). For a
Cochrane Review, the review objective should provide the PICO concepts, and the eligi-
bility criteria for studies to be included will further assist in the selection of appropriate
subject headings and text words for the search strategy.
The structure of search strategies in bibliographic databases should be informed by

the main concepts of the review (see Chapter 3), using appropriate elements from
PICO and study design (see MECIR Box 4.4.b). It is usually unnecessary, however,
and may even be undesirable, to search on every aspect of the review’s clinical ques-
tion. Although a research question may specify particular comparators or outcomes,
these concepts may not be well described in the title or abstract of an article and are
often not well indexed with controlled vocabulary terms. Therefore, in general data-
bases, such as MEDLINE, a search strategy will typically have three sets of terms:
(i) terms to search for the health condition of interest, i.e. the population;
(ii) terms to search for the intervention(s) evaluated; and (iii) terms to search for
the types of study design to be included. Typically, a broad set of search terms will
be gathered for each concept, and combined with the OR Boolean operator to achieve
sensitivity within concepts. The results for each concept are then combined using the
AND Boolean operator, to ensure each concept is represented in the final search
results.
It is important to consider the structure of the search strategy on a question-by-

question basis. In some cases it is possible and reasonable to search for the

MECIR Box 4.4.a Relevant expectations for conduct of intervention reviews

C26: Searching for different types of evidence (Mandatory)

If the review has specific eligibility criteria
around study design to address adverse
effects, economic issues or qualitative
research questions, undertake searches to
address them.

Sometimes different searches will be
conducted for different types of evidence,
such as for non-randomized studies for
addressing adverse effects, or for
economic evaluation studies.
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comparator, for example if the comparator is explicitly placebo; in other cases the out-
comes may be particularly well defined and consistently reported in abstracts. The
advice on whether or not to search for outcomes for adverse effects differs from the
advice given earlier (see Chapter 19).
Some search strategies may not easily divide into the structure suggested, par-

ticularly for reviews addressing complex or unknown interventions, or diagnostic
tests (Huang et al 2006, Irvin and Hayden 2006, Petticrew and Roberts 2006, de
Vet et al 2008, Booth 2016). Cochrane Reviews of public health interventions
and of qualitative data may adopt very different search approaches to those
described here (Lorenc et al 2014, Booth 2016) (see Chapter 17 on complex and

MECIR Box 4.4.b Relevant expectations for conduct of intervention reviews

C32: Structuring search strategies for bibliographic databases (Mandatory)

Inform the structure of search strategies in
bibliographic databases around the main
concepts of the review, using appropriate
elements from PICO and study design. In
structuring the search, maximize sensitivity
whilst striving for reasonable precision.
Ensure correct use of the ‘AND’ and ‘OR’
operators.

Inappropriate or inadequate search
strategies may fail to identify records that
are included in bibliographic databases.
Expertise may need to be sought, in
particular from the CRG’s Information
Specialist. The structure of a search
strategy should be based on the main
concepts being examined in a review. In
general databases, such as MEDLINE, a
search strategy to identify studies for a
Cochrane Review will typically have three
sets of terms: (i) terms to search for the
health condition of interest, i.e. the
population; (ii) terms to search for the
intervention(s) evaluated; and (iii) terms
to search for the types of study design to
be included (typically a ‘filter’ for
randomized trials). There are exceptions,
however. For instance, for reviews of
complex interventions, it may be
necessary to search only for the
population or the intervention. Within
each concept, terms are joined together
with the Boolean ‘OR’ operator, and the
concepts are combined with the Boolean
‘AND’ operator. The ‘NOT’ operator
should be avoided where possible to
avoid the danger of inadvertently
removing records that are relevant from
the search set.
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public health interventions, and Chapter 21 on qualitative research). Some options
to explore for such situations include:

• use a single concept such as searching for the intervention alone (European Food
Safety Authority 2010);

• break a concept into two or more subconcepts;

• use a multi-stranded or multi-faceted approach that uses a series of searches,
with different combinations of concepts, to capture a complex research question
(Lefebvre et al 2013);

• use a variety of different search approaches to compensate for when a specific
concept is difficult to define (Shemilt et al 2014); or

• use citation searching on key papers in addition to a database search (Haddaway
et al 2015, Hinde and Spackman 2015) (see online Technical Supplement).

4.4.3 Sensitivity versus precision

Searches for systematic reviews aim to be as extensive as possible in order to ensure
that as many of the relevant studies as possible are included in the review. It is, how-
ever, necessary to strike a balance between striving for comprehensiveness and main-
taining relevance when developing a search strategy.
The properties of searches are often quantified using ‘sensitivity’ (also called

‘recall’) and ‘precision’ (see Table 4.4.a). Sensitivity is defined as the number of rel-
evant reports identified divided by the total number of relevant reports in the
resource. Precision is defined as the number of relevant reports identified divided
by the total number of reports identified. Increasing the comprehensiveness (or
sensitivity) of a search will reduce its precision and will usually retrieve more
non-relevant reports.
Searches for Cochrane Reviews should seek to maximize sensitivity whilst striving

for reasonable precision (see MECIR Box 4.4.b). Article abstracts identified through
a database search can usually be screened very quickly to ascertain potential
relevance. At a conservatively estimated reading rate of one or two abstracts
per minute, the results of a database search can be screened at the rate of
60–120 per hour (or approximately 500–1000 over an 8-hour period), so the high
yield and low precision associated with systematic review searching may not be
as daunting as it might at first appear in comparison with the total time to be
invested in the review.

Table 4.4.a Sensitivity and precision of a search

Reports retrieved Reports not retrieved

Relevant reports Relevant reports retrieved (a) Relevant reports not retrieved (b)

Irrelevant reports Irrelevant reports retrieved (c) Irrelevant reports not retrieved (d)

Sensitivity: fraction of relevant reports retrieved from all relevant reports (a/(a+b))
Precision: fraction of relevant reports retrieved from all reports retrieved (a/(a+c))
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4.4.4 Controlled vocabulary and text words

MEDLINE and Embase (and many other databases) can be searched using a combina-
tion of two retrieval approaches. One is based on text words, that is terms occurring in
the title, abstract or other relevant fields available in the database. The other is based
on standardized subject terms assigned to the references by indexers (specialists who
appraise the articles and describe their topics by assigning terms from a specific the-
saurus or controlled vocabulary). Searches for Cochrane Reviews should use an appro-
priate combination of these two approaches (see MECIR Box 4.4.c). Approaches for
identifying text words and controlled vocabulary to combine appropriately within a
search strategy, including text mining approaches, are presented in the online Techni-
cal Supplement.

4.4.5 Language, date and document format restrictions

Searches should capture as many studies as possible that meet the eligibility criteria,
ensuring that relevant time periods and sources are covered and not restricted by lan-
guage or publication status (see MECIR Box 4.3.a). Review authors should justify the use
of any restrictions in the search strategy on publication date and publication format

MECIR Box 4.4.c Relevant expectations for conduct of intervention reviews

C33: Developing search strategies for bibliographic databases (Mandatory)

Identify appropriate controlled vocabulary
(e.g. MeSH, Emtree, including ‘exploded’
terms) and free-text terms (considering,
for example, spelling variants, synonyms,
acronyms, truncation and proximity
operators).

Inappropriate or inadequate search
strategies may fail to identify records that
are included in bibliographic databases.
Search strategies need to be customized
for each database. It is important that
MeSH terms are ‘exploded’ wherever
appropriate, in order not to miss relevant
articles. The same principle applies to
Emtree when searching Embase and also
to a number of other databases. The
controlled vocabulary search terms for
MEDLINE and Embase are not identical,
and neither is the approach to indexing.
In order to be as comprehensive as
possible, it is necessary to include a wide
range of free-text terms for each of the
concepts selected. This might include the
use of truncation and wildcards.
Developing a search strategy is an
iterative process in which the terms that
are used are modified, based on what has
already been retrieved.
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(see MECIR Box 4.4.d). For example, excluding letters is not recommended because let-
ters may contain important additional information relating to an earlier trial report or
new information about a trial not reported elsewhere (Iansavichene et al 2008).
In addition, articles indexed as ‘Comments’ should not be routinely excluded without
further examination as these may contain early warnings of suspected fraud
(see Section 4.4.6).
Evidence indicates that excluding non-English studies does not change the conclu-

sions of most systematic reviews (Morrison et al 2012, Jiao et al 2013, Hartling et al
2017), although exceptions have been observed for complementary and alternative
medicine (Moher et al 2003, Pham et al 2005, Wu et al 2013). There is, however, also
research related to language bias that supports the inclusion of non-English studies
in systematic reviews (Egger et al 1997). For further discussion of these issues see
Chapter 13.
Inclusion of non-English studies may also increase the precision of the result and the

generalizability and applicability of the findings. There may be differences in therapeu-
tic response to pharmaceutical agents according to ethnicity, either because of pheno-
type and pathogenesis of disease due to environmental factors or because of
population pharmacogenomics and pharmacogenetics (Brusselle and Blasi 2015).
The inclusion of non-English studies also makes it possible to perform sensitivity ana-
lyses to find out if there is any geographical bias in reporting the positive findings
(Vickers et al 1998, Kaptchuk 1999). It also could be an indicator of quality of systematic
reviews (Wang et al 2015).
Limiting searching to databases containing predominantly English-language records,

even if no language restrictions are applied, may result in missed relevant studies

MECIR Box 4.4.d Relevant expectations for conduct of intervention reviews

C35: Restricting database searches (Mandatory)

Justify the use of any restrictions in the
search strategy on publication date and
publication format.

Date restrictions in the search should
only be used when there are date
restrictions in the eligibility criteria for
studies. They should be applied only if it
is known that relevant studies could only
have been reported during a specific time
period, for example if the intervention
was only available after a certain time
point. Searches for updates to reviews
might naturally be restricted by date of
entry into the database (rather than date
of publication) to avoid duplication of
effort. Publication format restrictions
(e.g. exclusion of letters) should generally
not be used in Cochrane Reviews, since
any information about an eligible study
may be of value.

4 Searching for and selecting studies

84



(Pilkington et al 2005). Review authors should, therefore, attempt to identify and assess
for eligibility all possibly relevant reports of trials irrespective of language of publica-
tion. If a Cochrane Review team requires help with translation of and/or data extraction
from non-English language reports of studies, they should seek assistance to do so
(this is a common task for which volunteer assistance can be sought via Cochrane’s
TaskExchange platform, accessible to both Cochrane and non-Cochrane review teams).
Where it is not possible to extract the relevant information and data from non-English
language reports, the review team should file the study in ‘Studies Awaiting Classifica-
tion’ rather than ‘Excluded Studies’, to inform readers of the review of the availability
of other possibly relevant reports and reflect this information in the PRISMA flow
diagram (or, if there is no flow diagram, then in the text of the review) as ‘Studies
Awaiting Classification’.

4.4.6 Identifying fraudulent studies, other retracted publications,
errata and comments

When considering the eligibility of studies for inclusion in a Cochrane Review, it is
important to be aware that some studies may have been found to contain errors or
to be fraudulent or may, for other reasons, have been corrected or retracted since pub-
lication. Review authors should examine any relevant retraction statements and errata
for information (MECIR Box 4.4.e). This applies both to ‘new’ studies identified for inclu-
sion in a review and to studies that are already included in a review when the review is
updated. For review updates, it is important to search MEDLINE and Embase for the
latest version of the citations to the records for the (previously) included studies, in
case they have since been corrected or retracted.
Errata are published to correct unintended errors (accepted as errors by the

author(s)). Retraction notices are published (usually by the journal editor) where data
have been found to be fraudulent, for example in the case of plagiarism. Comments are
published under a range of circumstances including when errors are suggested by
others and also for early concerns regarding fraud.

MECIR Box 4.4.e Relevant expectations for conduct of intervention reviews

C48: Examining errata (Mandatory)

Examine any relevant retraction
statements and errata for information.

Some studies may have been found to be
fraudulent or may have been retracted since
publication for other reasons. Errata can
reveal important limitations, or even fatal
flaws, in included studies. All of these may
lead to the potential exclusion of a study from
a review or meta-analysis. Care should be
taken to ensure that this information is
retrieved in all database searches by
downloading the appropriate fields, together
with the citation data.
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Including data from studies that are fraudulent or studies that include errors can
have an impact on the overall estimates in systematic reviews. Details of how to identify
fraudulent studies, other retracted publications, errata and comments are described in
the online Technical Supplement.

4.4.7 Search filters

Search filters are search strategies that are designed to retrieve specific types of
records, such as those of a particular methodological design. When searching for ran-
domized trials in humans, a validated filter should be used to identify studies with the
appropriate design (see MECIR Box 4.4.f). Filters to identify randomized trials have been
developed specifically for MEDLINE and Embase: see the online Technical Supplement
for details. CENTRAL, however, aims to contain only reports with study designs possibly
relevant for inclusion in Cochrane Reviews, so searches of CENTRAL should not use a
trials ‘filter’ or be limited to human studies.
The InterTASC Information Specialists’ Subgroup Search Filter Resource offers a col-

lection of search filters, focusing predominantly on methodological search filters and
providing critical appraisals of some of these filters. The site includes, amongst others,
filters for identifying systematic reviews, randomized and non-randomized studies and
qualitative research in a range of databases and across a range of service providers
(Glanville et al 2019). For further discussion around the design and use of search filters,
see the online Technical Supplement.

4.4.8 Peer review of search strategies

It is strongly recommended that search strategies should be peer reviewed. Peer
review of search strategies is increasingly recognized as a necessary step in designing
and executing high-quality search strategies to identify studies for possible inclusion
in systematic reviews. Studies have shown that errors occur in the search strategies

MECIR Box 4.4.f Relevant expectations for conduct of intervention reviews

C34: Using search filters (Highly desirable)

Use specially designed and tested search
filters where appropriate including the
Cochrane Highly Sensitive Search
Strategies for identifying randomized trials
in MEDLINE, but do not use filters in pre-
filtered databases e.g. do not use a
randomized trial filter in CENTRAL or a
systematic review filter in DARE.

Inappropriate or inadequate search
strategies may fail to identify records that
are included in bibliographic databases.
Search filters should be used with
caution. They should be assessed not
only for the reliability of their
development and reported performance,
but also for their current accuracy,
relevance and effectiveness given the
frequent interface and indexing changes
affecting databases.
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underpinning systematic reviews (Sampson and McGowan 2006) and that search stra-
tegies are not always conducted or reported to a high standard (Mullins et al 2014,
Layton 2017). An evidence-based checklist such as the PRESS Evidence-Based
Checklist should be used to assess which elements are important in peer review of
electronic search strategies (McGowan et al 2016a, McGowan et al 2016b). The check-
list covers not only the technical accuracy of the strategy (line numbers, spellings,
etc), but also that the search strategy covers all relevant aspects of the protocol
and has interpreted the research question appropriately. Research has shown that
peer review using a specially designed checklist can improve the quality of searches
(Relevo and Paynter 2012, Spry et al 2013). The names, credentials and institutions of
the peer reviewers of the search strategies should be noted in the review (with their
permission) in the Acknowledgements section.

4.4.9 Alerts

Alerts, also called literature surveillance services, ‘push’ services or SDIs (selective
dissemination of information), are an excellent method of staying up to date with
the medical literature currently being published, as a supplement to designing and
running specific searches for specific reviews. In practice, alerts are based on a pre-
viously developed search strategy, which is saved in a personal account on the data-
base platform (e.g. ‘My EBSCOhost – search alerts’ on EBSCO, ‘My searches & alerts’
on Ovid and ‘MyNCBI – saved searches’ on PubMed). These saved strategies filter the
content as the database is being updated with new information. The account owner is
notified (usually via email) when new publications meeting their specified search
parameters are added to the database. In the case of PubMed, the alert can be set
up to be delivered weekly or monthly, or in real-time and can comprise email or
RSS feeds.
For review authors, alerts are a useful tool to help monitor what is being published in

their review topic after the original search has been conducted. By following the alert,
authors can become aware of a new study that meets the review’s eligibility criteria,
and decide either to include it in the review immediately or mention it as a ‘study await-
ing assessment’ for inclusion during the next review update (see online Chapter IV).
Authors should consider setting up alerts so that the review can be as current as pos-
sible at the time of publication.
Another way of attempting to stay current with the literature as it emerges is by using

alerts based on journal tables of contents (TOCs). These usually cannot be specifically
tailored to the information needs in the same way as search strategies developed to
cover a specific topic. They can, however, be a good way of trying to keep up to date
on a more general level by monitoring what is currently being published in journals of
interest. Many journals, even those that are available by subscription only, offer TOC
alert services free of charge. In addition, a number of publishers and organizations offer
TOC services (see online Technical Supplement). Use of TOCs is not proposed as a sin-
gle alternative to the various other methods of study identification necessary for under-
taking systematic reviews, rather as a supplementary method. (See also Chapter 22,
Section 22.2 for a discussion of new technologies to support evidence surveillance
in the context of ‘living’ systematic reviews.)
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4.4.10 Timing of searches

The published review should be as up to date as possible. Searches for all the relevant
databases should be rerun prior to publication, if the initial search date is more than
12 months (preferably six months) from the intended publication date (see MECIR
Box 4.4.g). This is also good practice for searches of non-database sources. The results
should also be screened to identify potentially eligible studies. Ideally, the studies
should be incorporated fully in the review. If not, then the potentially eligible studies
will need to be reported as references under ‘Studies awaiting classification’ (or under
‘Ongoing studies’ if they are not yet completed).

4.4.11 When to stop searching

Developing a search is often an iterative and exploratory process. It involves exploring
trade-offs between search terms and assessing their overall impact on the sensitivity
and precision of the search. It is often difficult to decide in a scientific or objective way
when a search is complete and search strategy development can stop. The ability to
decide when to stop typically develops through experience of developing many strate-
gies. Suggestions for stopping rules have been made around the retrieval of new
records, for example to stop if adding in a series of new terms to a database search
strategy yields no new relevant records, or if precision falls below a particular

MECIR Box 4.4.g Relevant expectations for conduct of intervention reviews

C37: Rerunning searches (Mandatory)

Rerun or update searches for all relevant
databases within 12 months before
publication of the review or review update,
and screen the results for potentially
eligible studies.

The published review should be as up to
date as possible. The search must be
rerun close to publication, if the initial
search date is more than 12 months
(preferably six months) from the intended
publication date, and the results
screened for potentially eligible studies.
Ideally, the studies should be
incorporated fully in the review. If not,
then the potentially eligible studies will
need to be reported, at a minimum as a
reference under ‘Studies awaiting
classification’ (or ‘Ongoing studies’ if they
have not yet completed).

C38: Incorporating findings from rerun searches (Highly desirable)

Fully incorporate any studies identified in
the rerun or update of the search within
12 months before publication of the review
or review update.

The published review should be as up to
date as possible. After the rerun of the
search, the decision whether to
incorporate any new studies fully into the
review will need to be balanced against
the delay in publication.
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cut-off (Chilcott et al 2003). Stopping might also be appropriate when the removal of
terms or concepts results in missing relevant records. Another consideration is the
amount of evidence that has already accrued: in topics where evidence is scarce,
authors might need to be more cautious about deciding when to stop searching.
Although many methods have been described to assist with deciding when to stop
developing the search, there has been little formal evaluation of the approaches
(Booth 2010, Wood and Arber 2019).
At a basic level, investigation is needed as to whether a strategy is performing ade-

quately. One simple test is to check whether the search is finding the publications that
have been recommended as key publications or that have been included in other sim-
ilar reviews (EUnetHTA 2017). It is not enough, however, for the strategy to find only
those records, otherwise this might be a sign that the strategy is biased towards
known studies and other relevant records might be being missed. In addition, citation
searches and reference checking are useful checks of strategy performance. If those
additional methods are finding documents that the searches have already retrieved,
but that the team did not necessarily know about in advance, then this is one sign
that the strategy might be performing adequately. Also, an evidence-based checklist
such as the PRESS Evidence-Based Checklist (McGowan et al 2016b) should be used to
assess whether the search strategy is adequate (see Section 4.4.8). If some of the
PRESS dimensions seem to be missing without adequate explanation or arouse con-
cerns, then the search may not yet be complete.
Statistical techniques can be used to assess performance, such as capture-recapture

(Spoor et al 1996) (also known as capture-mark-recapture; Kastner et al 2009), or the
relative recall technique (Sampson et al 2006, Sampson and McGowan 2011). Kastner
suggests the capture-mark-recapture technique merits further investigation since it
could be used to estimate the number of studies in a literature prospectively and to
determine where to stop searches once suitable cut-off levels have been identified.
Kastner’s approach involves searching databases, conducting record selection, calcu-
lating capture-mark-recapture and then making decisions about whether further
searches are necessary. This would entail potentially an iterative search and selection
process. Capture-recapture needs results from at least two searches to estimate the
number of missed studies. Further investigation of published prospective techniques
seems warranted to learn more about the potential benefits.
Relative recall (Sampson et al 2006, Sampson and McGowan 2011) requires a range of

searches to have been conducted so that the relevant studies have been built up by a
set of sensitive searches. The performance of the individual searches can then be
assessed in each individual database by determining how many of the studies that
were deemed eligible for the evidence synthesis and were indexed within a database,
can be found by the database search used to populate the synthesis. If a search in a
database did not perform well and missed many studies, then that search strategy is
likely to have been suboptimal. If the search strategy found most of the studies that
were available to be found in the database then it was likely to have been a sensitive
strategy. Assessments of precision could also be made, but these mostly inform future
search approaches since they cannot affect the searches and record assessment
already undertaken. Relative recall may bemost useful at the end of the search process
since it relies on the achievement of several searches to make judgements about the
overall performance of strategies.
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In evidence synthesis involving qualitative data, searching is often more organic and
intertwined with the analysis such that the searching stops when new information
ceases to be identified (Booth 2016). The reasons for stopping need to be documented
and it is suggested that explanations or justifications for stopping may centre around
saturation (Booth 2016). Further information on searches for qualitative evidence can
be found in Chapter 21.

4.5 Documenting and reporting the search process

Review authors should document the search process in enough detail to ensure that it
can be reported correctly in the review (see MECIR Box 4.5.a). The searches of all the
databases should be reproducible to the extent that this is possible. By documenting
the search process, we refer to internal record-keeping, which is distinct from reporting
the search process in the review (discussed in online Chapter III).
Medical/healthcare librarians and information specialists involved with the review

should draft, or at least comment on, the search strategy sections of the review prior
to publication.
There is currently no clear consensus regarding optimum reporting of systematic

review search methods, although suboptimal reporting of commonly recommended
items has been observed (Sampson et al 2008, Roundtree et al 2009, Niederstadt
and Droste 2010). Research has also shown a lack of compliance with guidance in
the Handbook with respect to search strategy description in published Cochrane
Reviews (Sampson and McGowan 2006, Yoshii et al 2009, Franco et al 2018). The
PRISMA-Search (PRISMA-S) Extension, an extension to the PRISMA Statement, addres-
sing the reporting of search strategies in systematic reviews, should go some way to
addressing this, as should the major revision of PRISMA itself, which is due to report
in 2019.
It is recommended that review authors seek guidance from their medical/healthcare

librarian or information specialist at the earliest opportunity with respect to document-
ing the search process. For Cochrane Reviews, the bibliographic database search stra-
tegies should be copied and pasted into an appendix exactly as run and in full, together
with the search set numbers and the total number of records retrieved by each search

MECIR Box 4.5.a Relevant expectations for conduct of intervention reviews

C36: Documenting the search process (Mandatory)

Document the search process in enough
detail to ensure that it can be reported
correctly in the review.

The search process (including the sources
searched, when, by whom, and using
which terms) needs to be documented in
enough detail throughout the process to
ensure that it can be reported correctly in
the review, to the extent that all the
searches of all the databases are
reproducible.
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strategy. The search strategies should not be re-typed, because this can introduce
errors. The same process is also good practice for searches of trials registers and other
sources, where the interface used, such as introductory or advanced, should also be
specified. Creating a report of the search process can be accomplished through
methodical documentation of the steps taken by the searcher. This need not be oner-
ous if suitable record keeping is performed during the process of the search, but it can
be nearly impossible to recreate post hoc. Many database interfaces have facilities for
search strategies to be saved online or to be emailed; an offline copy in text format
should also be saved. For some databases, taking and saving a screenshot of the search
may be the most practical approach (Rader et al 2014).
Documenting the searching of sources other than databases, including the search

terms used, is also required if searches are to be reproducible (Atkinson et al 2015,
Chow 2015, Witkowski and Aldhouse 2015). Details about contacting experts or man-
ufacturers, searching reference lists, scanning websites, and decisions about search
iterations can be kept internally for future updates or external requests and can be
reproduced as an appendix in the final document. Since the purpose of search docu-
mentation is to support transparency, internal assessment, and reference for any
future update, it is important to plan how to record searching of sources other than
databases since some activities (contacting experts, reference list searching, and for-
ward citation searching) will occur later on in the review process after the database
results have been screened (Rader et al 2014). The searcher should record any corre-
spondence on key decisions and report a summary of this correspondence alongside
the search strategy. The narrative describes the major decisions that shaped the strat-
egy and can give a peer reviewer an insight into the rationale for the search approach
(Craven and Levay 2011).
It is particularly important to save locally or file print copies of any information found

on the internet, such as information about ongoing and/or unpublished trials, as this
information may no longer be accessible at the time the review is written. Local copies
should be stored in a structured way to allow retrieval when needed. There are also
web-based tools which archive webpage content for future reference, such as WebCite
(Eysenbach and Trudel 2005). The results of web searches will not be reproducible to
the same extent as bibliographic database searches because web content and search
engine algorithms frequently change, and search results can differ between users due
to a general move towards localization and personalization. It is still important, how-
ever, to document the search process to ensure that the methods used can be trans-
parently reported (Briscoe 2018). In cases where a search engine retrieves more results
than it is practical to screen in full (it is rarely practical to search thousands of web
results, as the precision of web searches is likely to be relatively low), the number
of results that are documented and reported should be the number that were screened
rather than the total number (Dellavalle et al 2003, Bramer 2016).
Decisions should be documented for all records identified by the search. Details of the

flow of studies from the number(s) of references identified in the search to the number of
studies included in the review will need to be reported in the final review, ideally using a
flow diagram such as that proposed by PRISMA (see online Chapter III); these can be gen-
erated using software including Covidence, DistillerSR, EPPI-Reviewer, the METAGEAR
package for R, the PRISMA Flow Diagram Generator, and RevMan. A table of ‘Character-
istics of excluded studies’ will also need to be presented (see Section 4.6.5). Numbers of

4.5 Documenting and reporting the search process

91



records are sufficient for exclusions based on initial screening of titles and abstracts.
Broad categorizations are sufficient for records classed as potentially eligible during
an initial screen of the full text. Authors will need to decide for each review when to
map records to studies (if multiple records refer to one study). The flow diagram records
initially the total number of records retrieved fromvarious sources, then the total number
of studies to which these records relate. Review authors need to match the various
records to the various studies in order to complete the flow diagram correctly. Lists of
included and excluded studies must be based on studies rather than records (see also
Section 4.6.1).

4.6 Selecting studies

4.6.1 Studies (not reports) as the unit of interest

A Cochrane Review is a review of studies that meet pre-specified eligibility criteria.
Since each study may have been reported in several articles, abstracts or other reports,
an extensive search for studies for the reviewmay identify many reports for each poten-
tially relevant study. Two distinct processes are therefore required to determine which
studies can be included in the review. One is to link together multiple reports of the
same study; and the other is to use the information available in the various reports
to determine which studies are eligible for inclusion. Although sometimes there is a
single report for each study, it should never be assumed that this is the case.
As well as the studies that inform the systematic review, other studies will also be

identified and these should be recorded or tagged as they are encountered, so that they
can be listed in the relevant tables in the review:

• records of ongoing trials for which results (either published or unpublished) are not
(yet) available; and

• records of studies which seem to be eligible but for which data are incomplete or the
publication related to the record could not be obtained.

4.6.2 Identifying multiple reports from the same study

Duplicate publication can introduce substantial biases if studies are inadvertently
included more than once in a meta-analysis (Tramèr et al 1997). Duplicate publication
can take various forms, ranging from identical manuscripts to reports describing dif-
ferent outcomes of the study or results at different time points (von Elm et al 2004).
The number of participants may differ in the different publications. It can be difficult
to detect duplicate publication and some ‘detective work’ by the review authors may be
required.
Some of the most useful criteria for comparing reports are:

• trial identification numbers (e.g. ClinicalTrials.gov Identifier (NCT number); ISRCTN;
Universal Trial Number (UTN) (assigned by the ICTRP); other identifiers such as those
from the sponsor);

• author names (most duplicate reports have one or more authors in common,
although this is not always the case);
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• location and setting (particularly if institutions, such as hospitals, are named);

• specific details of the interventions (e.g. dose, frequency);

• numbers of participants and baseline data; and

• date and duration of the study (which can also clarify whether different sample sizes
are due to different periods of recruitment).

Where uncertainties remain after considering these and other factors, it may be nec-
essary to correspond with the authors of the reports.
Multiple reports of the same study should be collated, so that each study, rather than

each report, is the unit of interest in the review (see MECIR Box 4.6.a). Review authors
will need to choose and justify which report (the primary report) to use as a source for
study results, particularly if two reports include conflicting results. They should not dis-
card other (secondary) reports, since they may contain additional outcome measures
and valuable information about the design and conduct of the study.

4.6.3 A typical process for selecting studies

A typical process for selecting studies for inclusion in a review is as follows (the process
should be detailed in the protocol for the review):

1) Merge search results from different sources using reference management software,
and remove duplicate records of the same report (i.e. records reporting the same
journal title, volume and pages).

2) Examine titles and abstracts to remove obviously irrelevant reports (authors
should generally be over-inclusive at this stage).

3) Retrieve the full text of the potentially relevant reports.
4) Link together multiple reports of the same study (see Section 4.6.2).
5) Examine full-text reports for compliance of studies with eligibility criteria.
6) Correspond with investigators, where appropriate, to clarify study eligibility (it may

be appropriate to request further information, such asmissing methods information
or results, at the same time). If studies remain incomplete/unobtainable they should
be tagged/recorded as incomplete, and should be listed in the table of ‘Studies
awaiting assessment’ in the review.

7) Make final decisions on study inclusion and proceed to data collection.

MECIR Box 4.6.a Relevant expectations for conduct of intervention reviews

C42: Collating multiple reports (Mandatory)

Collate multiple reports of the same study,
so that each study, rather than each report,
is the unit of interest in the review.

It is wrong to consider multiple reports of
the same study as if they are multiple
studies. Secondary reports of a study
should not be discarded, however, since
they may contain valuable information
about the design and conduct. Review
authors must choose and justify which
report to use as a source for study results.
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8) Tag or record any ongoing trials which have not yet been reported so that they can
be added to the ongoing studies table.

Note that studies should not be omitted from a review solely on the basis of measured
outcome data not being reported (see MECIR Box 4.6.b and Chapter 13).

4.6.4 Implementation of the selection process

Decisions about which studies to include in a review are among the most influential
decisions that are made in the review process and they involve judgement.
Use (at least) two people working independently to determine whether each study

meets the eligibility criteria.
Ideally, screening of titles and abstracts to remove irrelevant reports should be done

in duplicate by two people working independently (although it is acceptable that this
initial screening of titles and abstracts is undertaken by only one person). It is essential,
however, that two people working independently are used to make a final determina-
tion as to whether each study considered possibly eligible after title/abstract screening
meets the eligibility criteria based on the full text of the study report(s) (see MECIR
Box 4.6.c).
It has been shown that using at least two authors may reduce the possibility that

relevant reports will be discarded (Edwards et al 2002) although other case reports

MECIR Box 4.6.b Relevant expectations for conduct of intervention reviews

C40: Excluding studies without useable data (Mandatory)

Include studies in the review irrespective of
whether measured outcome data are
reported in a ‘usable’ way.

Systematic reviews typically should seek
to include all relevant participants who
have been included in eligible study
designs of the relevant interventions and
had the outcomes of interest measured.
Reviews must not exclude studies solely
on the basis of reporting of the outcome
data, since this may introduce bias due to
selective outcome reporting and risk
undermining the systematic review
process. While such studies cannot be
included in meta-analyses, the
implications of their omission should be
considered. Note that studies may
legitimately be excluded because
outcomes were not measured.
Furthermore, issues may be different for
adverse effects outcomes, since the pool
of studies may be much larger and it can
be difficult to assess whether such
outcomes were measured.
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have suggested single screening approaches may be adequate (Doust et al 2005,
Shemilt et al 2016). Opportunities for screening efficiencies seem likely to become avail-
able through promising developments in single human screening in combination with
machine learning approaches (O’Mara-Eves et al 2015).
Experts in a particular area frequently have pre-formed opinions that can bias their

assessment of both the relevance and validity of articles (Cooper and Ribble 1989,
Oxman and Guyatt 1993). Thus, while it is important that at least one author is knowl-
edgeable in the area under review, it may be an advantage to have a second author
who is not a content expert.
Disagreements about whether a study should be included can generally be resolved

by discussion. Often the cause of disagreement is a simple oversight on the part of one
of the review authors. When the disagreement is due to a difference in interpretation,
this may require arbitration by another person. Occasionally, it will not be possible to
resolve disagreements about whether to include a study without additional informa-
tion. In these cases, authors may choose to categorize the study in their review as
one that is awaiting assessment until the additional information is obtained from
the study authors.
A single failed eligibility criterion is sufficient for a study to be excluded from a review.

In practice, therefore, eligibility criteria for each study should be assessed in order of
importance, so that the first ‘no’ response can be used as the primary reason for exclu-
sion of the study, and the remaining criteria need not be assessed. The eligibility criteria
order may be different in different reviews and they do not always need to be the same.
For most reviews it will be worthwhile to pilot test the eligibility criteria on a sample

of reports (say six to eight articles, including ones that are thought to be definitely eli-
gible, definitely not eligible and doubtful). The pilot test can be used to refine and clar-
ify the eligibility criteria, train the people whowill be applying them and ensure that the
criteria can be applied consistently by more than one person.
For Cochrane Reviews the selection process must be documented in sufficient detail

to be able to complete a flow diagram and a table of ‘Characteristics of excluded stud-
ies’ (see MECIR Box 4.6.d). During the selection process it is crucial to keep track of the

MECIR Box 4.6.c Relevant expectations for conduct of intervention reviews

C39: Making inclusion decisions (Mandatory)

Use (at least) two people working
independently to determine whether each
study meets the eligibility criteria, and
define in advance the process for resolving
disagreements.

Duplicating the study selection process
reduces both the risk of making mistakes
and the possibility that selection is
influenced by a single person’s biases.
The inclusion decisions should be based
on the full texts of potentially eligible
studies when possible, usually after an
initial screen of titles and abstracts. It is
desirable, but not mandatory, that two
people undertake this initial screening,
working independently.
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number of references and subsequently the number of studies so that a flow diagram
can be constructed. The decision and reasons for exclusion can be tracked using ref-
erence software, a simple document or spreadsheet, or using specialist systematic
review software (see Section 4.6.6.1).

4.6.5 Selecting ‘excluded studies’

A Cochrane Review includes a list of excluded studies called ‘Characteristics of excluded
studies’, detailing the specific reason for exclusion for any studies that a reader might
plausibly expect to see among the included studies. This covers all studies that may, on
the surface, appear to meet the eligibility criteria but which, on further inspection, do
not. It also covers those that do not meet all of the criteria but are well known and likely
to be thought relevant by some readers. By listing such studies as excluded and giving
the primary reason for exclusion, the review authors can show that consideration has
been given to these studies. The list of excluded studies should be as brief as possible. It
should not list all of the reports that were identified by an extensive search. It should
not list studies that obviously do not fulfil the eligibility criteria for the review, such as
‘Types of studies’, ‘Types of participants’, and ‘Types of interventions’. In particular, it
should not list studies that are obviously not randomized if the review includes only
randomized trials. Based on a (recent) sample of approximately 60% of the intervention
reviews in The Cochrane Library which included randomized trials (only), the average
number of studies listed in the ‘excluded studies’ table is 30.

MECIR Box 4.6.d Relevant expectations for conduct of intervention reviews

C41: Documenting decisions about records identified (Mandatory)

Document the selection process in sufficient
detail to be able to complete a flow
diagram and a table of ‘Characteristics of
excluded studies’.

Decisions should be documented for all
records identified by the search. Numbers
of records are sufficient for exclusions
based on initial screening of titles and
abstracts. Broad categorizations are
sufficient for records classed as
potentially eligible during an initial
screen. Studies listed in the table of
‘Characteristics of excluded studies’
should be those that a user might
reasonably expect to find in the review.
At least one explicit reason for their
exclusion must be documented. Authors
will need to decide for each review when
to map records to studies (if multiple
records refer to one study). Lists of
included and excluded studies must be
based on studies rather than records.
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4.6.6 Software support for selecting studies

An extensive search for eligible studies in a systematic review can often identify thou-
sands of records that need to be manually screened. Selecting studies from within
these records can be a particularly time-consuming, laborious and logistically challeng-
ing aspect of conducting a systematic review. These and other challenges have led to
the development of various software tools and packages that offer support for the
selection process.
Broadly, software to support selecting studies can be classified as:

• systems that support the study selection process, typically involving multiple
reviewers (see Section 4.6.6.1); and

• tools and techniques based on text mining and/or machine learning, which aim to
semi- or fully-automate the selection process (see Section 4.6.6.2).

Software to support the selection process, along with other stages of a systematic
review, including text mining tools, can be identified using the Systematic Review Tool-
box. The SR Toolbox is a community driven, web-based catalogue of tools that provide
support for systematic reviews (Marshall and Brereton 2015).

4.6.6.1 Software for managing the selection process
Managing the selection process can be challenging, particularly in a large-scale sys-
tematic review that involves multiple reviewers. Basic productivity tools can help
(such as word processors, spreadsheets and reference management software), and
several purpose-built systems are also available that offer support for the study
selection process.
Examples of tools that support selecting studies include:

• Abstrackr – a free web-based screening tool that can prioritize the screening of
records using machine learning techniques.

• Covidence – a web-based software platform for conducting systematic reviews,
which includes support for collaborative title and abstract screening, full-text review,
risk-of-bias assessment and data extraction. Full access to this system normally
requires a paid subscription but is free for authors of Cochrane Reviews. A free trial
for non-Cochrane review authors is also available.

• DistillerSR – a web-based software application for undertaking bibliographic record
screening and data extraction. It has a number of management features to track
progress, assess interrater reliability and export data for further analysis. Reduced
pricing for Cochrane and Campbell reviews is available.

• EPPI-Reviewer – web-based software designed to support all stages of the sys-
tematic review process, including reference management, screening, risk of bias
assessment, data extraction and synthesis. The system is free to use for Cochrane
and Campbell reviews, otherwise it requires a paid subscription. A free trial is
available.

• Rayyan – a web-based application for collaborative citation screening and full-text
selection. The system is currently available free of charge (June 2018).

Compatibility with other software tools used in the review process (such as
RevMan) may be a consideration when selecting a tool to support study selection.
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Covidence and EPPI-Reviewer are Cochrane-preferred tools, and are likely to have the
strongest integration with RevMan.

4.6.6.2 Automating the selection process
Research into automating the study selection process through machine learning and
text mining has received considerable attention over recent years, resulting in the
development of various tools and techniques for reviewers to consider. The use of auto-
mated tools has the potential to reduce the workload involved with selecting studies
significantly (Thomas et al 2017). For example, research suggests that adopting auto-
mation can reduce the need for manual screening by at least 30% and possibly more
than 90%, although sometimes at the cost of up to a 5% reduction in sensitivity
(O’Mara-Eves et al 2015).
Machine learning models (or ‘classifiers’) can be built where sufficient data are avail-

able. Of particular practical use to Cochrane Review authors is a classifier (the ‘RCT
Classifier’) that can identify reports of randomized trials based on titles and abstracts.
The classifier is highly accurate because it is built on a large dataset of hundreds of
thousands of records screened by Cochrane Crowd, Cochrane’s citizen science
platform, where contributors help to identify and describe health research (Marshall
et al 2018). Guidance on using the RCT Classifier in Cochrane Reviews, for example
to exclude studies already flagged as not being randomized trials, or to access
Cochrane Crowd to assist with screening, is available from the Cochrane Information
Specialists’ handbook (Littlewood et al 2017).
In addition to learning from large datasets such as those generated by Cochrane

Crowd, it is also possible for machine learning models to learn how to apply eligibility
criteria for individual reviews. This approach uses a process called ‘active learning’ and
it is able to semi-automate study selection by continuously promoting records most
likely to be relevant to the top of the results list (O’Mara-Eves et al 2015). It is difficult
for authors to determine in advance when it is safe to stop screening and allow some
records to be eliminated automatically without manual assessment. The automatic
elimination of records using this approach has not been recommended for use in
Cochrane Reviews at the time of writing. This active learning process can still be useful,
however, since by prioritizing records for screening in order of relevance, it enables
authors to identify the studies that are most likely to be included much earlier in
the screening process than would otherwise be possible. A number of software tools
support ‘active learning’ including:

• Abstrackr (http://abstrackr.cebm.brown.edu/);

• Colandr (https://www.colandrapp.com/);

• EPPI-Reviewer (http://eppi.ioe.ac.uk/);

• Rayyan (http://rayyan.qcri.org/);

• RobotAnalyst (http://nactem.ac.uk/robotanalyst/); and

• Swift-review (http://swift.sciome.com/swift-review/).

Finally, tools are available that use natural language processing to highlight sen-
tences and key phrases automatically (e.g. PICO elements, trial characteristics, details
of randomization) to support the reviewer whilst screening (Tsafnat et al 2014).
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5

Collecting data
Tianjing Li, Julian PT Higgins, Jonathan J Deeks

KEY POINTS

• Systematic reviews have studies, rather than reports, as the unit of interest, and so
multiple reports of the same study need to be identified and linked together before
or after data extraction.

• Because of the increasing availability of data sources (e.g. trials registers, regulatory
documents, clinical study reports), review authors should decide on which sources
may contain the most useful information for the review, and have a plan to resolve
discrepancies if information is inconsistent across sources.

• Review authors are encouraged to develop outlines of tables and figures that will
appear in the review to facilitate the design of data collection forms. The key to suc-
cessful data collection is to construct easy-to-use forms and collect sufficient and
unambiguous data that faithfully represent the source in a structured and organized
manner.

• Effort should be made to identify data needed for meta-analyses, which often need to
be calculated or converted from data reported in diverse formats.

• Data should be collected and archived in a form that allows future access and data
sharing.

5.1 Introduction

Systematic reviews aim to identify all studies that are relevant to their research ques-
tions and to synthesize data about the design, risk of bias, and results of those studies.
Consequently, the findings of a systematic review depend critically on decisions relat-
ing to which data from these studies are presented and analysed. Data collected for
systematic reviews should be accurate, complete, and accessible for future updates
of the review and for data sharing. Methods used for these decisions must be transpar-
ent; they should be chosen to minimize biases and human error. Here we describe

This chapter should be cited as: Li T, Higgins JPT, Deeks JJ (editors). Chapter 5: Collecting data. In: Higgins
JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for
Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 109–142.
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approaches that should be used in systematic reviews for collecting data, including
extraction of data directly from journal articles and other reports of studies.

5.2 Sources of data

Studies are reported in a range of sources which are detailed later. As discussed in
Section 5.2.1, it is important to link together multiple reports of the same study.
The relative strengths and weaknesses of each type of source are discussed in
Section 5.2.2. For guidance on searching for and selecting reports of studies, refer to
Chapter 4.
Journal articles are the source of the majority of data included in systematic

reviews. Note that a study can be reported in multiple journal articles, each focusing
on some aspect of the study (e.g. design, main results, and other results).
Conference abstracts are commonly available. However, the information presented

in conference abstracts is highly variable in reliability, accuracy, and level of detail
(Li et al 2017).
Errata and letters can be important sources of information about studies, including

critical weaknesses and retractions, and review authors should examine these if they
are identified (see MECIR Box 5.2.a).
Trials registers (e.g. ClinicalTrials.gov) catalogue trials that have been planned or

started, and have become an important data source for identifying trials, for comparing
published outcomes and results with those planned, and for obtaining efficacy and
safety data that are not available elsewhere (Ross et al 2009, Jones et al 2015, Baudard
et al 2017).
Clinical study reports (CSRs) contain unabridged and comprehensive descriptions of

the clinical problem, design, conduct and results of clinical trials, following a structure
and content guidance prescribed by the International Conference on Harmonisation
(ICH 1995). To obtain marketing approval of drugs and biologics for a specific indication,
pharmaceutical companies submit CSRs and other required materials to regulatory

MECIR Box 5.2.a Relevant expectations for conduct of intervention reviews

C48: Examining errata (Mandatory)

Examine any relevant retraction
statements and errata for information.

Some studies may have been found to be
fraudulent or may for other reasons have
been retracted since publication. Errata can
reveal important limitations, or even fatal
flaws, in included studies. All of these may
potentially lead to the exclusion of a study
from a review or meta-analysis. Care should
be taken to ensure that this information is
retrieved in all database searches by
downloading the appropriate fields together
with the citation data.
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authorities. Because CSRs also incorporate tables and figures, with appendices
containing the protocol, statistical analysis plan, sample case report forms, and patient
data listings (including narratives of all serious adverse events), they can be thousands
of pages in length. CSRs often contain more data about trial methods and results than
any other single data source (Mayo-Wilson et al 2018). CSRs are often difficult to access,
and are usually not publicly available. Review authors could request CSRs from the Euro-
pean Medicines Agency (Davis and Miller 2017). The US Food and Drug and Administra-
tion had historically avoided releasing CSRs but launched a pilot programme in 2018
whereby selected portions of CSRs for new drug applications were posted on the
agency’s website. Many CSRs are obtained through unsealed litigation documents, repo-
sitories (e.g. clinicalstudydatarequest.com), and other open data and data-sharing
channels (e.g. The Yale University Open Data Access Project) (Doshi et al 2013, Wieland
et al 2014, Mayo-Wilson et al 2018)).
Regulatory reviews such as those available from the US Food and Drug Administra-

tion or European Medicines Agency provide useful information about trials of drugs,
biologics, and medical devices submitted by manufacturers for marketing approval
(Turner 2013). These documents are summaries of CSRs and related documents,
prepared by agency staff as part of the process of approving the products for
marketing, after reanalysing the original trial data. Regulatory reviews often are
available only for the first approved use of an intervention and not for later applications
(although review authors may request those documents, which are usually brief ).
Using regulatory reviews from the US Food and Drug Administration as an example,
drug approval packages are available on the agency’s website for drugs approved since
1997 (Turner 2013); for drugs approved before 1997, information must be requested
through a freedom of information request. The drug approval packages contain various
documents: approval letter(s), medical review(s), chemistry review(s), clinical
pharmacology review(s), and statistical reviews(s).
Individual participant data (IPD) are usually sought directly from the researchers

responsible for the study, or may be identified from open data repositories (e.g.
www.clinicalstudydatarequest.com). These data typically include variables that
represent the characteristics of each participant, intervention (or exposure) group,
prognostic factors, and measurements of outcomes (Stewart et al 2015). Access to
IPD has the advantage of allowing review authors to reanalyse the data flexibly, in
accordance with the preferred analysis methods outlined in the protocol, and can
reduce the variation in analysis methods across studies included in the review. IPD
reviews are addressed in detail in Chapter 26.

5.2.1 Studies (not reports) as the unit of interest

In a systematic review, studies rather than reports of studies are the principal unit of
interest. Since a study may have been reported in several sources, a comprehensive
search for studies for the review may identify many reports from a potentially relevant
study (Mayo-Wilson et al 2017a, Mayo-Wilson et al 2018). Conversely, a report may
describe more than one study.
Multiple reports of the same study should be linked together (see MECIR Box 5.2.b).

Some authors prefer to link reports before they collect data, and collect data from
across the reports onto a single form. Other authors prefer to collect data from each
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report and then link together the collected data across reports. Either strategy may be
appropriate, depending on the nature of the reports at hand. It may not be clear that
two reports relate to the same study until data collection has commenced. Although
sometimes there is a single report for each study, it should never be assumed that this
is the case.
It can be difficult to link multiple reports from the same study, and review authors

may need to do some ‘detective work’. Multiple sources about the same trial may not
reference each other, do not share common authors (Gøtzsche 1989, Tramèr et al 1997),
or report discrepant information about the study design, characteristics, outcomes,
and results (von Elm et al 2004, Mayo-Wilson et al 2017a).
Some of the most useful criteria for linking reports are:

• trial registration numbers;

• authors’ names;

• sponsor for the study and sponsor identifiers (e.g. grant or contract numbers);

• location and setting (particularly if institutions, such as hospitals, are named);

• specific details of the interventions (e.g. dose, frequency);

• numbers of participants and baseline data; and

• date and duration of the study (which also can clarify whether different sample sizes
are due to different periods of recruitment), length of follow-up, or subgroups
selected to address secondary goals.

Review authors should use as many trial characteristics as possible to link multiple
reports. When uncertainties remain after considering these and other factors, it may be
necessary to correspond with the study authors or sponsors for confirmation.

5.2.2 Determining which sources might be most useful

A comprehensive search to identify all eligible studies from all possible sources
is resource-intensive but necessary for a high-quality systematic review (see
Chapter 4). Because some data sources are more useful than others (Mayo-Wilson
et al 2018), review authors should consider which data sources may be available
and which may contain the most useful information for the review. These considera-
tions should be described in the protocol. Table 5.2.a summarizes the strengths and

MECIR Box 5.2.b Relevant expectations for conduct of intervention reviews

C42: Collating multiple reports (Mandatory)

Collate multiple reports of the same study,
so that each study rather than each report
is the unit of interest in the review.

It is wrong to consider multiple reports of
the same study as if they are multiple
studies. Secondary reports of a study
should not be discarded, however, since
they may contain valuable information
about the design and conduct. Review
authors must choose and justify which
report to use as a source for study results.
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Table 5.2.a Strengths and limitations of different data sources for systematic reviews

Source Strengths Limitations

Public sources

Journal
articles

Found easily

Data extracted quickly

Include useful information about
methods and results

Available for some, but not all studies
(with a risk of reporting biases: see
Chapters 7 and 13)

Contain limited study characteristics and
methods

Can omit outcomes, especially harms

Conference
abstracts

Identify unpublished studies Includelittle informationaboutstudydesign

Include limited and unclear information
for meta-analysis

May result in double-counting studies in
meta-analysis if not correctly linked to
other reports of the same study

Trial
registrations

Identify otherwise unpublished trials

May contain information about design,
risk of bias, and results not included in
other public sources

Link multiple sources about the same trial
using unique registration number

Limited to more recent studies that
comply with registration requirements

Often contain limited information about
trial design and quantitative results

May report only harms (adverse events)
occurring above a threshold (e.g. 5%)

May be inaccurate or incomplete for trials
whose methods have changed during the
conduct of the study, or results not kept
up to date

Regulatory
information

Identify studies not reported in other
public sources

Describe details of methods and results
not found in other sources

Available only for studies submitted to
regulators

Available for approved indications, but
not ‘off-label’ uses

Not always in a standard format

Not often available for old products

Non-public sources

Clinical
study
reports
(CSRs)

Contain detailed information about study
characteristics, methods, and results

Can be particularly useful for identifying
detailed information about harms

Describe aggregate results, which are easy
to analyse and sufficient for most reviews

Do not exist or difficult to obtain for most
studies

Require more time to obtain and analyse
than public sources

Individual
participant
data

Allow review authors to use contemporary
statistical methods and to standardize
analyses across studies

Permit additional analyses that the review
authors desire (e.g. subgroup analyses)

Require considerable expertise and time
to obtain and analyse

May lead to the same results that can be
found in aggregate report

May not be necessary if one has a CSR
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limitations of different data sources (Mayo-Wilson et al 2018). Gaining access to CSRs
and IPD often takes a long time. Review authors should begin searching repositories
and contact trial investigators and sponsors as early as possible to negotiate data
usage agreements (Mayo-Wilson et al 2015, Mayo-Wilson et al 2018).

5.2.3 Correspondence with investigators

Review authors often find that they are unable to obtain all the information they seek
from available reports about the details of the study design, the full range of outcomes
measured and the numerical results. In such circumstances, authors are strongly
encouraged to contact the original investigators (see MECIR Box 5.2.c). Contact details
of study authors, when not available from the study reports, often can be obtained
from more recent publications, from university or institutional staff listings, from
membership directories of professional societies, or by a general search of the web.
If the contact author named in the study report cannot be contacted or does not
respond, it is worthwhile attempting to contact other authors.
Review authors should consider the nature of the information they require and make

their request accordingly. For descriptive information about the conduct of the trial, it
may be most appropriate to ask open-ended questions (e.g. how was the allocation
process conducted, or how were missing data handled?). If specific numerical data
are required, it may be more helpful to request them specifically, possibly providing
a short data collection form (either uncompleted or partially completed). If IPD are
required, they should be specifically requested (see also Chapter 26). In some cases,
study investigators may find it more convenient to provide IPD rather than conduct
additional analyses to obtain the specific statistics requested.

5.3 What data to collect

5.3.1 What are data?

For the purposes of this chapter, we define ‘data’ to be any information about (or
derived from) a study, including details of methods, participants, setting, context, inter-
ventions, outcomes, results, publications, and investigators. Review authors should

MECIR Box 5.2.c Relevant expectations for conduct of intervention reviews

C49: Obtaining unpublished data (Highly desirable)

Seek key unpublished information that is
missing from reports of included studies.

Contacting study authors to obtain or
confirm data makes the review more
complete, potentially enhances precision
and reduces the impact of reporting
biases. Missing information includes
details to inform risk of bias assessments,
details of interventions and outcomes, and
study results (including breakdowns of
results by important subgroups).
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plan in advance what data will be required for their systematic review, and develop a
strategy for obtaining them (see MECIR Box 5.3.a). The involvement of consumers and
other stakeholders can be helpful in ensuring that the categories of data collected are
sufficiently aligned with the needs of review users (Chapter 1, Section 1.3). The data to
be sought should be described in the protocol, with consideration wherever possible of
the issues raised in the rest of this chapter.
The data collected for a review should adequately describe the included studies, sup-

port the construction of tables and figures, facilitate the risk of bias assessment, and
enable syntheses and meta-analyses. Review authors should familiarize themselves
with reporting guidelines for systematic reviews (see online Chapter III and the PRISMA
statement; Liberati et al 2009) to ensure that relevant elements and sections are incor-
porated. The following sections review the types of information that should be sought,
and these are summarized in Table 5.3.a (Li et al 2015).

5.3.2 Study methods and potential sources of bias

Different research methods can influence study outcomes by introducing different
biases into results. Important study design characteristics should be collected to allow
the selection of appropriate methods for assessment and analysis, and to enable
description of the design of each included study in a table of ‘Characteristics of
included studies’, including whether the study is randomized, whether the study has
a cluster or crossover design, and the duration of the study. If the review includes
non-randomized studies, appropriate features of the studies should be described
(see Chapter 24).
Detailed information should be collected to facilitate assessment of the risk of bias

in each included study. Risk-of-bias assessment should be conducted using the tool
most appropriate for the design of each study, and the information required to com-
plete the assessment will depend on the tool. Randomized studies should be
assessed using the tool described in Chapter 8. The tool covers bias arising from
the randomization process, due to deviations from intended interventions, due to
missing outcome data, in measurement of the outcome, and in selection of the
reported result. For each item in the tool, a description of what happened in the study
is required, which may include verbatim quotes from study reports. Information for
assessment of bias due to missing outcome data and selection of the reported result
may be most conveniently collected alongside information on outcomes and results.
Chapter 7 (Section 7.3.1) discusses some issues in the collection of information for

MECIR Box 5.3.a Relevant expectations for conduct of intervention reviews

C44: Describing studies (Mandatory)

Collect characteristics of the included
studies in sufficient detail to populate a
table of ‘Characteristics of included
studies’.

Basic characteristics of each study will
need to be presented as part of the
review, including details of participants,
interventions and comparators,
outcomes and study design.
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Table 5.3.a Checklist of items to consider in data collection

Information about data extraction from reports

Name of data extractors, date of data extraction, and identification features of each report from
which data are being extracted

Eligibility criteria

Confirm eligibility of the study for the review

Reason for exclusion

Study methods

Study design:

• Parallel, factorial, crossover, cluster aspects of design for randomized trials, and/or study design
features for non-randomized studies

• Single or multicentre study; if multicentre, number of recruiting centres

Recruitment and sampling procedures used (including at the level of individual participants and
clusters/sites if relevant)

Enrolment start and end dates; length of participant follow-up

Details of random sequence generation, allocation sequence concealment, and masking for
randomized trials, and methods used to prevent and control for confounding, selection biases, and
information biases for non-randomized studies*

Methods used to prevent and address missing data*

Statistical analysis:

Unit of analysis (e.g. individual participant, clinic, village, body part)

Statistical methods used if computed effect estimates are extracted from reports, including any
covariates included in the statistical model

Likelihood of reporting and other biases*

Source(s) of funding or other material support for the study

Authors’ financial relationship and other potential conflicts of interest

Participants

Setting

Region(s) and country/countries from which study participants were recruited

Study eligibility criteria, including diagnostic criteria

Characteristics of participants at the beginning (or baseline) of the study (e.g. age, sex, comorbidity,
socio-economic status)

Intervention

Description of the intervention(s) and comparison intervention(s), ideally with sufficient detail for
replication:

• Components, routes of delivery, doses, timing, frequency, intervention protocols, length of intervention

• Factors relevant to implementation (e.g. staff qualifications, equipment requirements)

• Integrity of interventions (i.e. the degree to which specified procedures or components of the
intervention were implemented as planned)

• Description of co-interventions

• Definition of ‘control’ groups (e.g. no intervention, placebo, minimally active comparator, or
components of usual care)

• Components, dose, timing, frequency

• For observational studies: description of how intervention status was assessed; length of exposure,
cumulative exposure
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assessments of risk of bias. For non-randomized studies, the most appropriate tool is
described in Chapter 25. A separate tool also covers bias due to missing results in
meta-analysis (see Chapter 13).
A particularly important piece of information is the funding source of the study and

potential conflicts of interest of the study authors.
Some review authors will wish to collect additional information on study character-

istics that bear on the quality of the study’s conduct but that may not lead directly to
risk of bias, such as whether ethical approval was obtained and whether a sample size
calculation was performed a priori.

5.3.3 Participants and setting

Details of participants are collected to enable an understanding of the comparability of,
and differences between, the participants within and between included studies, and to

Table 5.3.a (Continued)

Outcomes

For each pre-specified outcome domain (e.g. anxiety) in the systematic review:

• Whether there is evidence that the outcome domain was assessed (especially important if the
outcome was assessed but the results not presented; see Chapter 13)

• Measurement tool or instrument (including definition of clinical outcomes or endpoints); for a
scale, name of the scale (e.g. the Hamilton Anxiety Rating Scale), upper and lower limits, and
whether a high or low score is favourable, definitions of any thresholds if appropriate

• Specific metric (e.g. post-intervention anxiety, or change in anxiety from baseline to a post-
intervention time point, or post-intervention presence of anxiety (yes/no))

• Method of aggregation (e.g. mean and standard deviation of anxiety scores in each group, or
proportion of people with anxiety)

• Timing of outcome measurements (e.g. assessments at end of eight-week intervention period,
events occurring during the eight-week intervention period)

• Adverse outcomes need special attention depending on whether they are collected systematically
or non-systematically (e.g. by voluntary report)

Results

For each group, and for each outcome at each time point: number of participants randomly assigned
and included in the analysis; and number of participants whowithdrew, were lost to follow-up or were
excluded (with reasons for each)

Summary data for each group (e.g. 2×2 table for dichotomous data; means and standard deviations
for continuous data)

Between-group estimates that quantify the effect of the intervention, and their precision (e.g. risk
ratio, odds ratio, mean difference)

If subgroup analysis is planned, the same information would need to be extracted for each participant
subgroup

Miscellaneous

Key conclusions of the study authors

Reference to other relevant studies

Correspondence required

Miscellaneous comments from the study authors or by the review authors

∗ Full description required for assessments of risk of bias (see Chapters 8, 23 and 25).
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allow assessment of how directly or completely the participants in the included studies
reflect the original review question.
Typically, aspects that shouldbecollectedare those that could (orarebelieved to)affect

presence or magnitude of an intervention effect and those that could help review users
assess applicability to populations beyond the review. For example, if the review authors
suspect important differences in intervention effect between different socio-economic
groups, this information should be collected. If intervention effects are thought constant
over such groups, and if such information would not be useful to help apply results, it
should not be collected. Participant characteristics that are often useful for assessing
applicability includeageandsex. Summary informationabout these shouldalwaysbe col-
lected unless they are not obvious from the context. These characteristics are likely to be
presented indifferent formats (e.g. agesasmeansormedians,with standarddeviationsor
ranges; sex as percentages or counts for the whole study or for each intervention group
separately). Review authors should seek consistent quantitieswhere possible, anddecide
whether it is more relevant to summarize characteristics for the study as a whole or by
interventiongroup. Itmaynotbepossible toselect themost consistent statisticsuntil data
collection is complete across all or most included studies. Other characteristics that are
sometimes important include ethnicity, socio-demographic details (e.g. education level)
and the presence of comorbid conditions. Clinical characteristics relevant to the review
question (e.g. glucose level for reviews on diabetes) also are important for understanding
the severity or stage of the disease.
Diagnostic criteria that were used to define the condition of interest can be a

particularly important source of diversity across studies and should be collected.
For example, in a review of drug therapy for congestive heart failure, it is important
to know how the definition and severity of heart failure was determined in each study
(e.g. systolic or diastolic dysfunction, severe systolic dysfunction with ejection fractions
below 20%). Similarly, in a review of antihypertensive therapy, it is important to
describe baseline levels of blood pressure of participants.
If the settings of studies may influence intervention effects or applicability, then

information on these should be collected. Typical settings of healthcare intervention
studies include acute care hospitals, emergency facilities, general practice, and extended
care facilities such as nursing homes, offices, schools, and communities. Sometimes
studies are conducted in different geographical regions with important differences that
could affect delivery of an intervention and its outcomes, such as cultural characteristics,
economic context, or rural versus city settings. Timing of the study may be associated
with important technology differences or trends over time. If such information is impor-
tant for the interpretation of the review, it should be collected.
Important characteristics of the participants in each included study should be

summarized for the reader in the table of ‘Characteristics of included studies’.

5.3.4 Interventions

Details of all experimental and comparator interventions of relevance to the review
should be collected. Again, details are required for aspects that could affect the
presence or magnitude of an effect or that could help review users assess applicability
to their own circumstances. Where feasible, information should be sought (and
presented in the review) that is sufficient for replication of the interventions under
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study. This includes any co-interventions administered as part of the study, and applies
similarly to comparators such as ‘usual care’. Review authors may need to request
missing information from study authors.
The Template for Intervention Description and Replication (TIDieR) provides a

comprehensive framework for full description of interventions and has been proposed
for use in systematic reviews as well as reports of primary studies (Hoffmann et al 2014).
The checklist includes descriptions of:

• the rationale for the intervention and how it is expected to work;

• any documentation that instructs the recipient on the intervention;

• what the providers do to deliver the intervention (procedures and processes);

• who provides the intervention (including their skill level), how (e.g. face to face, web-
based) and in what setting (e.g. home, school, or hospital);

• the timing and intensity;

• whether any variation is permitted or expected, and whether modifications were
actually made; and

• any strategies used to ensure or assess fidelity or adherence to the intervention, and
the extent to which the intervention was delivered as planned.

For clinical trials of pharmacological interventions, key information to collect will
often include routes of delivery (e.g. oral or intravenous delivery), doses (e.g. amount
or intensity of each treatment, frequency of delivery), timing (e.g. within 24 hours of
diagnosis), and length of treatment. For other interventions, such as those that
evaluate psychotherapy, behavioural and educational approaches, or healthcare
delivery strategies, the amount of information required to characterize the intervention
will typically be greater, including information about multiple elements of the interven-
tion, who delivered it, and the format and timing of delivery. Chapter 17 provides
further information on how to manage intervention complexity, and how the interven-
tion Complexity Assessment Tool (iCAT) can facilitate data collection (Lewin et al 2017).
Important characteristics of the interventions in each included study should be

summarized for the reader in the table of ‘Characteristics of included studies’.
Additional tables or diagrams such as logic models (Chapter 2, Section 2.5.1) can assist
descriptions of multi-component interventions so that review users can better assess
review applicability to their context.

5.3.4.1 Integrity of interventions
The degree to which specified procedures or components of the intervention are
implemented as planned can have important consequences for the findings from a
study. We describe this as intervention integrity; related terms include adherence,
compliance and fidelity (Carroll et al 2007). The verification of intervention integrity
may be particularly important in reviews of non-pharmacological trials such as
behavioural interventions and complex interventions, which are often implemented
in conditions that present numerous obstacles to idealized delivery.
It is generally expected that reports of randomized trials provide detailed accounts of

intervention implementation (Zwarenstein et al 2008, Moher et al 2010). In assessing
whether interventionswere implemented as planned, review authors should bear inmind
thatsome interventionsarestandardized (withnodeviationspermitted in the intervention
protocol), whereas others explicitly allow a degree of tailoring (Zwarenstein et al 2008).
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Inaddition, thegrowing fieldof implementationsciencehas led toan increasedawareness
of the impact of setting and context on delivery of interventions (Damschroder et al 2009).
(See Chapter 17, Section 17.1.2.1 for further information and discussion about how an
intervention may be tailored to local conditions in order to preserve its integrity.)
Information about integrity can help determine whether unpromising results are due

to a poorly conceptualized intervention or to an incomplete delivery of the prescribed
components. It can also reveal important information about the feasibility of
implementing a given intervention in real life settings. If it is difficult to achieve full
implementation in practice, the intervention will have low feasibility (Dusenbury
et al 2003).
Whether a lack of intervention integrity leads to a risk of bias in the estimate of its effect

depends on whether review authors and users are interested in the effect of assignment
to intervention or the effect of adhering to intervention, as discussed in more detail in
Chapter 8, Section 8.2.2. Assessment of deviations from intended interventions is impor-
tant for assessing risk of bias in the latter, but not the former (see Chapter 8, Section 8.4),
but both may be of interest to decision makers in different ways.
An example of a Cochrane Review evaluating intervention integrity is provided by a

review of smoking cessation in pregnancy (Chamberlain et al 2017). The authors found
that process evaluation of the intervention occurred in only some trials and that the
implementation was less than ideal in others, including some of the largest trials.
The review highlighted how the transfer of an intervention from one setting to another
may reduce its effectiveness when elements are changed, or aspects of the materials
are culturally inappropriate.

5.3.4.2 Process evaluations
Process evaluations seek to evaluate the process (and mechanisms) between the
intervention’s intended implementation and the actual effect on the outcome
(Moore et al 2015). Process evaluation studies are characterized by a flexible approach
to data collection and the use of numerous methods to generate a range of different
types of data, encompassing both quantitative and qualitative methods. Guidance for
including process evaluations in systematic reviews is provided in Chapter 21. When it is
considered important, review authors should aim to collect information on whether the
trial accounted for, or measured, key process factors and whether the trials that
thoroughly addressed integrity showed a greater impact. Process evaluations can be
a useful source of factors that potentially influence the effectiveness of an intervention.

5.3.5 Outcomes

An outcome is an event or a measurement value observed or recorded for a particular
person or intervention unit in a study during or following an intervention, and that
is used to assess the efficacy and safety of the studied intervention (Meinert 2012).
Review authors should indicate in advance whether they plan to collect information
about all outcomes measured in a study or only those outcomes of (pre-specified)
interest in the review. Research has shown that trials addressing the same condition
and intervention seldom agree on which outcomes are the most important, and con-
sequently report on numerous different outcomes (Dwan et al 2014, Ismail et al 2014,
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Denniston et al 2015, Saldanha et al 2017a). The selection of outcomes across system-
atic reviews of the same condition is also inconsistent (Page et al 2014, Saldanha et al
2014, Saldanha et al 2016, Liu et al 2017). Outcomes used in trials and in systematic
reviews of the same condition have limited overlap (Saldanha et al 2017a, Saldanha
et al 2017b).
We recommend that only the outcomes defined in the protocol be described in detail.

However, a complete list of the names of all outcomes measured may allow a more
detailed assessment of the risk of bias due to missing outcome data (see Chapter 13).
Review authors should collect all five elements of an outcome (Zarin et al 2011,

Saldanha et al 2014):

1) outcome domain or title (e.g. anxiety);
2) measurement tool or instrument (including definition of clinical outcomes or end-

points); for a scale, name of the scale (e.g. the Hamilton Anxiety Rating Scale), upper
and lower limits, and whether a high or low score is favourable, definitions of any
thresholds if appropriate;

3) specific metric used to characterize each participant’s results (e.g. post-intervention
anxiety, or change in anxiety from baseline to a post-intervention time point, or
post-intervention presence of anxiety (yes/no));

4) method of aggregation (e.g. mean and standard deviation of anxiety scores in each
group, or proportion of people with anxiety);

5) timing of outcome measurements (e.g. assessments at end of eight-week interven-
tion period, events occurring during eight-week intervention period).

Further considerations for economics outcomes are discussed in Chapter 20, and for
patient-reported outcomes in Chapter 18.

5.3.5.1 Adverse effects
Collection of information about the harmful effects of an intervention can pose
particular difficulties, discussed in detail in Chapter 19. These outcomes may be
described using multiple terms, including ‘adverse event’, ‘adverse effect’, ‘adverse
drug reaction’, ‘side effect’ and ‘complication’. Many of these terminologies are used
interchangeably in the literature, although some are technically different. Harms might
additionally be interpreted to include undesirable changes in other outcomes
measured during a study, such as a decrease in quality of life where an improvement
may have been anticipated.
In clinical trials, adverse events can be collected either systematically or non-

systematically. Systematic collection refers to collecting adverse events in the same
manner for each participant using defined methods such as a questionnaire or a lab-
oratory test. For systematically collected outcomes representing harm, data can be
collected by review authors in the sameway as efficacy outcomes (see Section 5.3.5).
Non-systematic collection refers to collection of information on adverse events

using methods such as open-ended questions (e.g. ‘Have you noticed any symptoms
since your last visit?’), or reported by participants spontaneously. In either case,
adverse events may be selectively reported based on their severity, and whether
the participant suspected that the effect may have been caused by the intervention,
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which could lead to bias in the available data. Unfortunately, most adverse events are
collected non-systematically rather than systematically, creating a challenge for review
authors. The following pieces of information are useful and worth collecting (Nicole
Fusco, personal communication):

• any coding system or standard medical terminology used (e.g. COSTART, MedDRA),
including version number;

• name of the adverse events (e.g. dizziness);

• reported intensity of the adverse event (e.g. mild, moderate, severe);

• whether the trial investigators categorized the adverse event as ‘serious’;

• whether the trial investigators identified the adverse event as being related to the
intervention;

• time point (most commonly measured as a count over the duration of
the study);

• any reported methods for how adverse events were selected for inclusion in the
publication (e.g. ‘We reported all adverse events that occurred in at least 5% of
participants’); and

• associated results.

Different collection methods lead to very different accounting of adverse events
(Safer 2002, Bent et al 2006, Ioannidis et al 2006, Carvajal et al 2011, Allen et al
2013). Non-systematic collection methods tend to underestimate how frequently an
adverse event occurs. It is particularly problematic when the adverse event of interest
to the review is collected systematically in some studies but non-systematically in other
studies. Different collection methods introduce an important source of heterogeneity.
In addition, when non-systematic adverse events are reported based on quantitative
selection criteria (e.g. only adverse events that occurred in at least 5% of participants
were included in the publication), use of reported data alone may bias the results of
meta-analyses. Review authors should be cautious of (or refrain from) synthesizing
adverse events that are collected differently.
Regardless of the collection methods, precise definitions of adverse effect outcomes

and their intensity should be recorded, since they may vary between studies. For
example, in a review of aspirin and gastrointestinal haemorrhage, some trials simply
reported gastrointestinal bleeds, while others reported specific categories of bleeding,
such as haematemesis, melaena, and proctorrhagia (Derry and Loke 2000). The
definition and reporting of severity of the haemorrhages (e.g. major, severe, requiring
hospital admission) also varied considerably among the trials (Zanchetti and Hansson
1999). Moreover, a particular adverse effect may be described or measured in different
ways among the studies. For example, the terms ‘tiredness’, ‘fatigue’ or ‘lethargy’may
all be used in reporting of adverse effects. Study authors also may use different
thresholds for ‘abnormal’ results (e.g. hypokalaemia diagnosed at a serum potassium
concentration of 3.0 mmol/L or 3.5 mmol/L).
No mention of adverse events in trial reports does not necessarily mean that no

adverse events occurred. It is usually safest to assume that they were not reported.
Quality of life measures are sometimes used as a measure of the participants’
experience during the study, but these are usually general measures that do not look
specifically at particular adverse effects of the intervention. While quality of life
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measures are important and can be used to gauge overall participant well-being, they
should not be regarded as substitutes for a detailed evaluation of safety and
tolerability.

5.3.6 Results

Results data arise from the measurement or ascertainment of outcomes for individual
participants in an intervention study. Results data may be available for each individual
in a study (i.e. individual participant data; see Chapter 26), or summarized at arm level,
or summarized at study level into an intervention effect by comparing two intervention
arms. Results data should be collected only for the intervention groups and outcomes
specified to be of interest in the protocol (see MECIR Box 5.3.b). Results for other
outcomes should not be collected unless the protocol is modified to add them. Any
modification should be reported in the review. However, review authors should be alert
to the possibility of important, unexpected findings, particularly serious adverse
effects.
Reports of studies often include several results for the same outcome. For example,

different measurement scales might be used, results may be presented separately for
different subgroups, and outcomes may have been measured at different follow-up
time points. Variation in the results can be very large, depending on which data are
selected (Gøtzsche et al 2007, Mayo-Wilson et al 2017a). Review protocols should be
as specific as possible about which outcome domains, measurement tools, time points,
and summary statistics (e.g. final values versus change from baseline) are to be col-
lected (Mayo-Wilson et al 2017b). A framework should be pre-specified in the protocol
to facilitatemaking choices betweenmultiple eligiblemeasures or results. For example,
a hierarchy of preferred measures might be created, or plans articulated to select the
result with themedian effect size, or to average across all eligible results for a particular
outcome domain (see also Chapter 9, Section 9.3.3). Any additional decisions or
changes to this framework made once the data are collected should be reported in
the review as changes to the protocol.
Section 5.6 describes the numbers that will be required to perform meta-analysis, if

appropriate. The unit of analysis (e.g. participant, cluster, body part, treatment period)
should be recorded for each result when it is not obvious (see Chapter 6, Section 6.2).
The type of outcome data determines the nature of the numbers that will be sought for
each outcome. For example, for a dichotomous (‘yes’ or ‘no’) outcome, the number of
participants and the number who experienced the outcome will be sought for each

MECIR Box 5.3.b Relevant expectations for conduct of intervention reviews

C50: Choosing intervention groups in multi-arm studies (Mandatory)

If a study is included with more than two
intervention arms, include in the review
only interventions that meet the eligibility
criteria.

There is no point including irrelevant
interventions in the review. Authors
should, however, make it clear in the
table of ‘Characteristics of included
studies’ that these interventions were
present in the study.
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group. It is important to collect the sample size relevant to each result, although this is
not always obvious. A flow diagram as recommended in the CONSORT Statement
(Moher et al 2001) can help to determine the flow of participants through a study. If
one is not available in a published report, review authors can consider drawing one
(available from www.consort-statement.org).
The numbers required for meta-analysis are not always available. Often, other

statistics can be collected and converted into the required format. For example, for
a continuous outcome, it is usually most convenient to seek the number of
participants, the mean and the standard deviation for each intervention group. These
are often not available directly, especially the standard deviation. Alternative statistics
enable calculation or estimation of the missing standard deviation (such as a standard
error, a confidence interval, a test statistic (e.g. from a t-test or F-test) or a P value).
These should be extracted if they provide potentially useful information (see MECIR
Box 5.3.c). Details of recalculation are provided in Section 5.6. Further considerations
for dealing with missing data are discussed in Chapter 10 (Section 10.12).

5.3.7 Other information to collect

We recommend that review authors collect the key conclusions of the included study as
reported by its authors. It is not necessary to report these conclusions in the review, but
they should be used to verify the results of analyses undertaken by the review authors,

MECIR Box 5.3.c Relevant expectations for conduct of intervention reviews

C47: Making maximal use of data (Mandatory)

Collect and utilize the most detailed
numerical data that might facilitate similar
analyses of included studies. Where 2×2
tables or means and standard deviations
are not available, this might include effect
estimates (e.g. odds ratios, regression
coefficients), confidence intervals, test
statistics (e.g. t, F, Z, Chi2) or P values, or
even data for individual participants.

Data entry into RevMan is easiest when
2×2 tables are reported for dichotomous
outcomes, and when means and
standard deviations are presented for
continuous outcomes. Sometimes these
statistics are not reported but some
manipulations of the reported data can
be performed to obtain them. For
instance, 2×2 tables can often be derived
from sample sizes and percentages, while
standard deviations can often be
computed using confidence intervals or
P values. Furthermore, the inverse-
variance data entry format can be used
even if the detailed data required for
dichotomous or continuous data are not
available, for instance if only odds ratios
and their confidence intervals are
presented. The RevMan calculator
facilitates many of these manipulations.
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particularly in relation to the direction of effect. Further comments by the study
authors, for example any explanations they provide for unexpected findings, may be
noted. References to other studies that are cited in the study report may be useful,
although review authors should be aware of the possibility of citation bias (see
Chapter 7, Section 7.2.3.2). Documentation of any correspondence with the study
authors is important for review transparency.

5.4 Data collection tools

5.4.1 Rationale for data collection forms

Data collection for systematic reviews should be performed using structured data
collection forms (see MECIR Box 5.4.a). These can be paper forms, electronic forms
(e.g. Google Form), or commercially or custom-built data systems (e.g. Covidence,
EPPI-Reviewer, Systematic Review Data Repository (SRDR)) that allow online form
building, data entry by several users, data sharing, and efficient data management
(Li et al 2015). All different means of data collection require data collection forms.
The data collection form is a bridge between what is reported by the original

investigators (e.g. in journal articles, abstracts, personal correspondence) and what
is ultimately reported by the review authors. The data collection form serves several
important functions (Meade and Richardson 1997). First, the form is linked directly
to the review question and criteria for assessing eligibility of studies, and provides a
clear summary of these that can be used to identify and structure the data to be
extracted from study reports. Second, the data collection form is the historical record
of the provenance of the data used in the review, as well as the multitude of decisions
(and changes to decisions) that occur throughout the review process. Third, the form is
the source of data for inclusion in an analysis.
Given the important functions of data collection forms, ample time and thought

should be invested in their design. Because each review is different, data collection
forms will vary across reviews. However, there are many similarities in the types of

MECIR Box 5.4.a Relevant expectations for conduct of intervention reviews

C43: Using data collection forms (Mandatory)

Use a data collection form,
which has been piloted.

Review authors often have different backgrounds
and level of systematic review experience. Using a
data collection form ensures some consistency in the
process of data extraction, and is necessary for
comparing data extracted in duplicate. The
completed data collection forms should be available
to the CRG on request. Piloting the form within the
review team is highly desirable. At minimum, the
data collection form (or a very close variant of it)
must have been assessed for usability.
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information that are important. Thus, forms can be adapted from one review to the
next. Although we use the term ‘data collection form’ in the singular, in practice it
may be a series of forms used for different purposes: for example, a separate form
could be used to assess the eligibility of studies for inclusion in the review to assist
in the quick identification of studies to be excluded from or included in the review.

5.4.2 Considerations in selecting data collection tools

The choice of data collection tool is largely dependent on review authors’ preferences,
the size of the review, and resources available to the author team. Potential advantages
and considerations of selecting one data collection tool over another are outlined in
Table 5.4.a (Li et al 2015). A significant advantage that data systems have is in data
management (Chapter 1, Section 1.6) and re-use. They make review updates more
efficient, and also facilitate methodological research across reviews. Numerous
‘meta-epidemiological’ studies have been carried out using Cochrane Review data,
resulting inmethodological advances which would not have been possible if thousands
of studies had not all been described using the samedata structures in the same system.

Table 5.4.a Considerations in selecting data collection tools

Paper forms Electronic forms Data systems

Examples Forms developed using word
processing software

Microsoft Access

Google Forms

Covidence

EPPI-Reviewer

Systematic Review Data
Repository (SRDR)

DistillerSR (Evidence
Partners)

Doctor Evidence

Suitable
review type
and team
sizes

Small-scale reviews
(< 10 included studies)

Small team with 2 to 3
data extractors in the
same physical location

Small- to medium-
scale reviews (10 to
20 studies)

Small to moderate-
sized team with 4 to
6 data extractors

For small-, medium-, and
especially large-scale
reviews (> 20 studies), as
well as reviews that need
constant updating

All team sizes, especially
large teams (i.e. > 6 data
extractors)

Resource
needs

Low Low to medium Low (open-access tools such
as Covidence or SRDR, or
tools for which authors have
institutional licences)

High (commercial data
systems with no access via an
institutional licence)

Advantages Do not rely on access to
computer and network or
internet connectivity

Allow extracted data
to be processed
electronically for

Specifically designed for
data collection for
systematic reviews
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Table 5.4.a (Continued)

Paper forms Electronic forms Data systems

Can record notes and
explanations easily
Require minimal software
skills

editing and analysis
Allow electronic data
storage, sharing and
collation

Easy to expand or edit
forms as required

Can automate data
comparison with
additional
programming

Can copy data to
analysis software
without manual
re-entry, reducing
errors

Allow online data storage,
linking, and sharing

Easy to expand or edit forms
as required

Can be integrated with title/
abstract, full-text screening
and other functions

Can link data items to
locations in the report to
facilitate checking

Can readily automate data
comparison between
independent data collection
for the same study

Allow easy monitoring of
progress and performance of
the author team

Facilitate coordination
among data collectors such
as allocation of studies for
collection and monitoring
team progress

Allow simultaneous data
entry by multiple authors

Can export data directly to
analysis software

In some cases, improve
public accessibility through
open data sharing

Disadvantages Inefficient and potentially
unreliable because data
must be entered into
software for analysis and
reporting

Susceptible to errors

Data collected by multiple
authors must be manually
collated

Difficult to amend as the
review progresses

If the papers are lost, all data
will need to be re-created

Require familiarity
with software
packages to design
and use forms

Susceptible to
changes in software
versions

Upfront investment of
resources to set up the form
and train data extractors

Structured templates may
not be as flexible as
electronic forms

Cost of commercial data
systems

Require familiarity with data
systems

Susceptible to changes in
software versions

5.4 Data collection tools

127



5.4.3 Design of a data collection form

Regardless of whether data are collected using a paper or electronic form, or a data
system, the key to successful data collection is to construct easy-to-use forms and
collect sufficient and unambiguous data that faithfully represent the source in a
structured and organized manner (Li et al 2015). In most cases, a document format
should be developed for the form before building an electronic form or a data system.
This can be distributed to others, including programmers and data analysts, and as a
guide for creating an electronic form and any guidance or codebook to be used by data
extractors. Review authors also should consider compatibility of any electronic form or
data system with analytical software, as well as mechanisms for recording, assessing
and correcting data entry errors.
Data described in multiple reports (or even within a single report) of a study may not

be consistent. Review authors will need to describe how they work with multiple
reports in the protocol, for example, by pre-specifying which report will be used when
sources contain conflicting data that cannot be resolved by contacting the investiga-
tors. Likewise, when there is only one report identified for a study, review authors
should specify the section within the report (e.g. abstract, methods, results, tables,
and figures) for use in case of inconsistent information.
A good data collection form should minimize the need to go back to the source

documents. When designing a data collection form, review authors should involve
all members of the team, that is, content area experts, authors with experience in
systematic review methods and data collection form design, statisticians, and persons
who will perform data extraction. Here are suggested steps and some tips for designing
a data collection form, based on the informal collation of experiences from numerous
review authors (Li et al 2015).
Step 1. Develop outlines of tables and figures expected to appear in the systematic

review, considering the comparisons to bemade between different interventions within
the review, and the various outcomes to be measured. This step will help review
authors decide the right amount of data to collect (not too much or too little). Collect-
ing too much information can lead to forms that are longer than original study reports,
and can be very wasteful of time. Collection of too little information, or omission of key
data, can lead to the need to return to study reports later in the review process.
Step 2. Assemble and group data elements to facilitate form development. Review

authors should consult Table 5.3.a, in which the data elements are grouped to facilitate
form development and data collection. Note that it may bemore efficient to group data
elements in the order in which they are usually found in study reports (e.g. starting with
reference information, followed by eligibility criteria, intervention description,
statistical methods, baseline characteristics and results).
Step 3. Identify the optimal way of framing the data items. Much has been written

about how to frame data items for developing robust data collection forms in primary
research studies. We summarize a few key points and highlight issues that are pertinent
to systematic reviews.

• Ask closed-ended questions (i.e. questions that define a list of permissible responses)
as much as possible. Closed-ended questions do not require post hoc coding and
provide better control over data quality than open-ended questions. When setting
up a closed-ended question, one must anticipate and structure possible responses
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and include an ‘other, specify’ category because the anticipated list may not be
exhaustive. Avoid asking data extractors to summarize data into uncoded text, no
matter how short it is.

• Avoid asking a question in a way that the response may be left blank. Include ‘not
applicable’, ‘not reported’ and ‘cannot tell’ options as needed. The ‘cannot tell’
option tags uncertain items that may promote review authors to contact study
authors for clarification, especially on data items critical to reach conclusions.

• Remember that the form will focus on what is reported in the article rather what has
been done in the study. The study report may not fully reflect how the study was
actually conducted. For example, a question ‘Did the article report that the parti-
cipants were masked to the intervention?’ is more appropriate than ‘Were partici-
pants masked to the intervention?’

• Where a judgement is required, record the raw data (i.e. quote directly from the
source document) used to make the judgement. It is also important to record the
source of information collected, including where it was found in a report or whether
information was obtained from unpublished sources or personal communications.
As much as possible, questions should be asked in a way that minimizes subjective
interpretation and judgement to facilitate data comparison and adjudication.

• Incorporate flexibility toallowforvariation inhowdataare reported. It is strongly recom-
mended that outcome data be collected in the format in which they were reported and
transformed in a subsequent step if required. Review authors also should consider the
software they will use for analysis and for publishing the review (e.g. RevMan).

Step 4. Develop and pilot-test data collection forms, ensuring that they provide data
in the right format and structure for subsequent analysis. In addition to data items
described in Step 2, data collection forms should record the title of the review as well
as the person who is completing the form and the date of completion. Forms occasion-
ally need revision; forms should therefore include the version number and version date
to reduce the chances of using an outdated form by mistake. Because a study may be
associated with multiple reports, it is important to record the study ID as well as the
report ID. Definitions and instructions helpful for answering a question should appear
next to the question to improve quality and consistency across data extractors (Stock
1994). Provide space for notes, regardless of whether paper or electronic forms are used.
All data collection forms and data systems should be thoroughly pilot-tested before

launch (see MECIR Box 5.4.a). Testing should involve several people extracting data
from at least a few articles. The initial testing focuses on the clarity and completeness
of questions. Users of the form may provide feedback that certain coding instructions
are confusing or incomplete (e.g. a list of options may not cover all situations). The
testing may identify data that are missing from the form, or likely to be superfluous.
After initial testing, accuracy of the extracted data should be checked against the
source document or verified data to identify problematic areas. It is wise to draft entries
for the table of ‘Characteristics of included studies’ and complete a risk of bias assess-
ment (Chapter 8) using these pilot reports to ensure all necessary information is col-
lected. A consensus between review authors may be required before the form is
modified to avoid any misunderstandings or later disagreements. It may be necessary
to repeat the pilot testing on a new set of reports if major changes are needed after the
first pilot test.

5.4 Data collection tools

129



Problems with the data collection form may surface after pilot testing has been com-
pleted, and the form may need to be revised after data extraction has started. When
changes are made to the form or coding instructions, it may be necessary to return to
reports that have already undergone data extraction. In some situations, it may be neces-
sary to clarify only coding instructions withoutmodifying the actual data collection form.

5.5 Extracting data from reports

5.5.1 Introduction

In most systematic reviews, the primary source of information about each study is
published reports of studies, usually in the form of journal articles. Despite recent
developments in machine learning models to automate data extraction in systematic
reviews (see Section 5.5.9), data extraction is still largely a manual process. Electronic
searches for text can provide a useful aid to locating information within a report.
Examples include using search facilities in PDF viewers, internet browsers and word
processing software. However, text searching should not be considered a replacement
for reading the report, since information may be presented using variable terminology
and presented in multiple formats.

5.5.2 Who should extract data?

Data extractors should have at least a basic understanding of the topic, and have knowl-
edgeof studydesign, dataanalysis andstatistics. They shouldpayattention todetailwhile
following instructions on the forms. Because errors that occur at the data extraction stage
are rarely detected by peer reviewers, editors, or users of systematic reviews, it is recom-
mended thatmore than one person extract data fromevery report tominimize errors and
reduce introduction of potential biases by review authors (seeMECIR Box 5.5.a). As amin-
imum, information that involves subjective interpretation and information that is critical
to the interpretation of results (e.g. outcome data) should be extracted independently by
at least twopeople (seeMECIRBox5.5.a). Incommonwith implementationof the selection
process (Chapter 4, Section 4.6), it is preferable that data extractors are fromcomplemen-
tary disciplines, for example a methodologist and a topic area specialist. It is important
that everyone involved in data extraction has practice using the form and, if the form
was designed by someone else, receives appropriate training.
Evidence in support of duplicate data extraction comes from several indirect sources.

One study observed that independent data extraction by two authors resulted in fewer
errors than data extraction by a single author followed by verification by a second
(Buscemi et al 2006). A high prevalence of data extraction errors (errors in 20 out of
34 reviews) has been observed (Jones et al 2005). A further study of data extraction
to compute standardized mean differences found that a minimum of seven out of
27 reviews had substantial errors (Gøtzsche et al 2007).

5.5.3 Training data extractors

Training of data extractors is intended to familiarize them with the review topic and
methods, the data collection form or data system, and issues that may arise during data
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extraction. Results of the pilot testing of the form should prompt discussion among
review authors and extractors of ambiguous questions or responses to establish consist-
ency. Training should take place at the onset of the data extraction process and period-
ically over the course of the project (Li et al 2015). For example, when data related to a
single item on the form are present in multiple locations within a report (e.g. abstract,
main body of text, tables, and figures) or in several sources (e.g. publications, Clinical-
Trials.gov, or CSRs), the development and documentation of instructions to follow an
agreed algorithm are critical and should be reinforced during the training sessions.
Some have proposed that some information in a report, such as its authors, be

blinded to the review author prior to data extraction and assessment of risk of bias
(Jadad et al 1996). However, blinding of review authors to aspects of study reports gen-
erally is not recommended for Cochrane Reviews as there is little evidence that it alters
the decisions made (Berlin 1997).

5.5.4 Extracting data from multiple reports of the same study

Studies frequently are reported in more than one publication or in more than one
source (Tramèr et al 1997, von Elm et al 2004). A single source rarely provides complete
information about a study; on the other hand, multiple sources may contain conflicting
information about the same study (Mayo-Wilson et al 2017a, Mayo-Wilson et al 2017b,
Mayo-Wilson et al 2018). Because the unit of interest in a systematic review is the study
and not the report, information from multiple reports often needs to be collated and
reconciled. It is not appropriate to discard any report of an included study without

MECIR Box 5.5.a Relevant expectations for conduct of intervention reviews

C45: Extracting study characteristics in duplicate (Highly desirable)

Use (at least) two people working
independently to extract study
characteristics from reports of each study,
and define in advance the process for
resolving disagreements.

Duplicating the data extraction process
reduces both the risk of making mistakes
and the possibility that data selection is
influenced by a single person’s biases.
Dual data extraction may be less
important for study characteristics than it
is for outcome data, so it is not a
mandatory standard for the former.

C46: Extracting outcome data in duplicate (Mandatory)

Use (at least) two people working
independently to extract outcome data
from reports of each study, and define in
advance the process for resolving
disagreements.

Duplicating the data extraction process
reduces both the risk of making mistakes
and the possibility that data selection is
influenced by a single person’s biases.
Dual data extraction is particularly
important for outcome data, which feed
directly into syntheses of the evidence
and hence to conclusions of the review.
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careful examination, since it may contain valuable information not included in the pri-
mary report. Review authors will need to decide between two strategies:

• Extract data from each report separately, then combine information across multiple
data collection forms.

• Extract data from all reports directly into a single data collection form.

The choice of which strategy to use will depend on the nature of the reports and may
vary across studies and across reports. For example, when a full journal article andmul-
tiple conference abstracts are available, it is likely that the majority of information will
be obtained from the journal article; completing a new data collection form for each
conference abstract may be a waste of time. Conversely, when there are two or more
detailed journal articles, perhaps relating to different periods of follow-up, then it is
likely to be easier to perform data extraction separately for these articles and collate
information from the data collection forms afterwards. When data from all reports are
extracted into a single data collection form, review authors should identify the ‘main’
data source for each study when sources include conflicting data and these differences
cannot be resolved by contacting authors (Mayo-Wilson et al 2018). Flow diagrams such
as those modified from the PRISMA statement can be particularly helpful when collat-
ing and documenting information from multiple reports (Mayo-Wilson 2018).

5.5.5 Reliability and reaching consensus

When more than one author extracts data from the same reports, there is potential for
disagreement. After data have been extracted independently by two or more extractors,
responses must be compared to assure agreement or to identify discrepancies. An
explicit procedure or decision rule should be specified in the protocol for identifying
and resolving disagreements. Most often, the source of the disagreement is an error
by one of the extractors and is easily resolved. Thus, discussion among the authors is
a sensible first step. More rarely, a disagreement may require arbitration by another per-
son. Any disagreement that cannot be resolved should be addressed by contacting the
study authors; if this is unsuccessful, the disagreement should be reported in the review.
The presence and resolution of disagreements should be carefully recorded. Main-

taining a copy of the data ‘as extracted’ (in addition to the consensus data) allows
assessment of reliability of coding. Examples of ways in which this can be achieved
include the following:

• Use one author’s (paper) data collection form and record changes after consensus in
a different ink colour.

• Enter consensus data onto an electronic form.

• Record original data extracted and consensus data in separate forms (some online
tools do this automatically).

Agreement of coded items before reaching consensus can be quantified, for example
using kappa statistics (Orwin 1994), although this is not routinely done in Cochrane
Reviews. If agreement is assessed, this should be done only for themost important data
(e.g. key risk of bias assessments, or availability of key outcomes).
Throughout the review process informal consideration should be given to the reliability

of data extraction. For example, if after reaching consensus on the first few studies, the
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authors notea frequentdisagreement for specific data, thencoding instructionsmayneed
modification. Furthermore, an author’s coding strategymay change over time, as the cod-
ing rules are forgotten, indicating a need for retraining and, possibly, some recoding.

5.5.6 Extracting data from clinical study reports

Clinical study reports (CSRs) obtained for a systematic review are likely to be in PDF
format. Although CSRs can be thousands of pages in length and very time-consuming
to review, they typically follow the content and format required by the International
Conference on Harmonisation (ICH 1995). Information in CSRs is usually presented
in a structured and logical way. For example, numerical data pertaining to important
demographic, efficacy, and safety variables are placed within the main text in tables
and figures. Because of the clarity and completeness of information provided in CSRs,
data extraction from CSRs may be clearer and conducted more confidently than from
journal articles or other short reports.
To extract data from CSRs efficiently, review authors should familiarize themselves

with the structure of the CSRs. In practice, review authors may want to browse or create
‘bookmarks’ within a PDF document that record section headers and subheaders and
search key words related to the data extraction (e.g. randomization). In addition, it may
be useful to utilize optical character recognition software to convert tables of data in
the PDF to an analysable format when additional analyses are required, saving time
and minimizing transcription errors.
CSRs may containmany outcomes and present many results for a single outcome (due

to different analyses) (Mayo-Wilson et al 2017b). We recommend review authors extract
results only for outcomes of interest to the review (Section 5.3.6). With regard to different
methods of analysis, review authors should have a plan and pre-specify preferredmetrics
in their protocol for extracting results pertaining to different populations (e.g. ‘all rando-
mized’, ‘all participants taking at least one dose of medication’), methods for handling
missing data (e.g. ‘complete case analysis’, ‘multiple imputation’), and adjustment (e.g.
unadjusted, adjusted for baseline covariates). It may be important to record the range of
analysis options available, even if not all are extracted in detail. In some cases it may be
preferable to use metrics that are comparable across multiple included studies, which
may not be clear until data collection for all studies is complete.
CSRs are particularly useful for identifying outcomes assessed but not presented to the

public. For efficacy outcomes and systematically collected adverse events, review
authors can compare what is described in the CSRs with what is reported in published
reports to assess the risk of bias due to missing outcome data (Chapter 8, Section 8.6)
and in selection of reported result (Chapter 8, Section 8.8). Note that non-systematically
collected adverse events are not amenable to such comparisons because these adverse
events may not be known ahead of time and thus not pre-specified in the protocol.

5.5.7 Extracting data from regulatory reviews

Data most relevant to systematic reviews can be found in the medical and statistical
review sections of a regulatory review. Both of these are substantially longer than jour-
nal articles (Turner 2013). A list of all trials on a drug usually can be found in themedical
review. Because trials are referenced by a combination of numbers and letters, it may
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be difficult for the review authors to link the trial with other reports of the same trial
(Section 5.2.1).
Many of the documents downloaded from the US Food and Drug Administration’s

website for older drugs are scanned copies and are not searchable because of redac-
tion of confidential information (Turner 2013). Optical character recognition software
can convert most of the text. Reviews for newer drugs have been redacted electroni-
cally; documents remain searchable as a result.
Compared to CSRs, regulatory reviews contain less information about trial design,

execution, and results. They provide limited information for assessing the risk of bias.
In terms of extracting outcomes and results, review authors should follow the guidance
provided for CSRs (Section 5.5.6).

5.5.8 Extracting data from figures with software

Sometimes numerical data needed for systematic reviews are only presented in figures.
Review authors may request the data from the study investigators, or alternatively,
extract the data from the figures either manually (e.g. with a ruler) or by using software.
Numerous tools are available,manyofwhich are free. Those available at the timeofwrit-
ing include tools called Plot Digitizer, WebPlotDigitizer, Engauge, Dexter, ycasd, GetData
GraphDigitizer. The softwareworks by taking an image of a figure and then digitizing the
data points off the figure using the axes and scales set by the users. The numbers
exported can be used for systematic reviews, although additional calculations may be
needed to obtain the summary statistics, such as calculation of means and standard
deviations from individual-level data points (or conversion of time-to-event data pre-
sented on Kaplan-Meier plots to hazard ratios; see Chapter 6, Section 6.8.2).
It has been demonstrated that software is more convenient and accurate than visual

estimation or use of a ruler (Gross et al 2014, Jelicic Kadic et al 2016). Review authors
should consider using software for extracting numerical data from figures when the
data are not available elsewhere.

5.5.9 Automating data extraction in systematic reviews

Because data extraction is time-consuming and error-prone, automating or semi-
automating this step may make the extraction process more efficient and accurate.
The state of science relevant to automating data extraction is summarized here
(Jonnalagadda et al 2015).

• At least 26 studies have tested various natural language processing and machine
learning approaches for facilitating data extraction for systematic reviews.

• Each tool focuses on only a limited number of data elements (ranges from one to
seven). Most of the existing tools focus on the PICO information (e.g. number of par-
ticipants, their age, sex, country, recruiting centres, intervention groups, outcomes,
and time points). A few are able to extract study design and results (e.g. objectives,
study duration, participant flow), and two extract risk of bias information (Marshall
et al 2016, Millard et al 2016). To date, well over half of the data elements needed for
systematic reviews have not been explored for automated extraction.
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• Most tools highlight the sentence(s) that may contain the data elements as opposed
to directly recording these data elements into a data collection form or a data
system.

• There is no gold standard or common dataset to evaluate the performance of these
tools, limiting our ability to interpret the significance of the reported accuracy
measures.

At the time of writing, we cannot recommend a specific tool for automating data
extraction for routine systematic review production. There is a need for review authors
to work with experts in informatics to refine these tools and evaluate them rigorously.
Such investigations should address how the tool will fit into existing workflows. For
example, the automated or semi-automated data extraction approaches may first
act as checks for manual data extraction before they can replace it.

5.5.10 Suspicions of scientific misconduct

Systematic review authors can uncover suspected misconduct in the published litera-
ture. Misconduct includes fabrication or falsification of data or results, plagiarism, and
research that does not adhere to ethical norms. Review authors need to be aware of
scientific misconduct because the inclusion of fraudulent material could undermine the
reliability of a review’s findings. Plagiarism of results data in the form of duplicated
publication (either by the same or by different authors) may, if undetected, lead to
study participants being double counted in a synthesis.
It is preferable to identify potential problems before, rather than after, publication of

the systematic review, so that readers are notmisled. However, empirical evidence indi-
cates that the extent to which systematic review authors explore misconduct varies
widely (Elia et al 2016). Text-matching software and systems such as CrossCheck
may be helpful for detecting plagiarism, but they can detect only matching text, so data
tables or figures need to be inspected by hand or using other systems (e.g. to detect
image manipulation). Lists of data such as in a meta-analysis can be a useful means of
detecting duplicated studies. Furthermore, examination of baseline data can lead to
suspicions of misconduct for an individual randomized trial (Carlisle et al 2015). For
example, Al-Marzouki and colleagues concluded that a trial report was fabricated or
falsified on the basis of highly unlikely baseline differences between two randomized
groups (Al-Marzouki et al 2005).
Cochrane Review authors are advised to consult with their Cochrane Review Group

editors if cases of suspectedmisconduct are identified. Searching for comments, letters
or retractions may uncover additional information. Sensitivity analyses can be used to
determine whether the studies arousing suspicion are influential in the conclusions of
the review. Guidance for editors for addressing suspected misconduct will be available
from Cochrane’s Editorial Publishing and Policy Resource (see community.cochrane.
org). Further information is available from the Committee on Publication Ethics
(COPE; publicationethics.org), including a series of flowcharts on how to proceed if var-
ious types of misconduct are suspected. Cases should be followed up, typically includ-
ing an approach to the editors of the journals in which suspect reports were published.
It may be useful to write first to the primary investigators to request clarification of
apparent inconsistencies or unusual observations.
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Because investigations may take time, and institutions may not always be respon-
sive (Wager 2011), articles suspected of being fraudulent should be classified as
‘awaiting assessment’. If a misconduct investigation indicates that the publication
is unreliable, or if a publication is retracted, it should not be included in the system-
atic review, and the reason should be noted in the ‘excluded studies’ section.

5.5.11 Key points in planning and reporting data extraction

In summary, the methods section of both the protocol and the review should detail:

• the data categories that are to be extracted;

• how extracted data from each report will be verified (e.g. extraction by two review
authors, independently);

• whether data extraction is undertaken by content area experts, methodologists,
or both;

• pilot testing, training and existence of coding instructions for the data collec-
tion form;

• how data are extracted from multiple reports from the same study; and

• how disagreements are handled when more than one author extracts data from each
report.

5.6 Extractingstudyresultsandconvertingtothedesiredformat

In most cases, it is desirable to collect summary data separately for each intervention
group of interest and to enter these into software in which effect estimates can be cal-
culated, such as RevMan. Sometimes the required datamay be obtained only indirectly,
and the relevant results may not be obvious. Chapter 6 provides many useful tips and
techniques to deal with common situations. When summary data cannot be obtained
from each intervention group, or where it is important to use results of adjusted ana-
lyses (for example to account for correlations in crossover or cluster-randomized trials)
effect estimates may be available directly.

5.7 Managing and sharing data

When data have been collected for each individual study, it is helpful to organize them
into a comprehensive electronic format, such as a database or spreadsheet, before enter-
ing data into ameta-analysis or other synthesis. When data are collated electronically, all
or a subset of them can easily be exported for cleaning, consistency checks and analysis.
Tabulation of collected information about studies can facilitate classification of stud-

ies into appropriate comparisons and subgroups. It also allows identification of com-
parable outcome measures and statistics across studies. It will often be necessary to
perform calculations to obtain the required statistics for presentation or synthesis. It is
important through this process to retain clear information on the provenance of the
data, with a clear distinction between data from a source document and data obtained

5 Collecting data

136



through calculations. Statistical conversions, for example from standard errors to
standard deviations, ideally should be undertaken with a computer rather than using
a hand calculator to maintain a permanent record of the original and calculated num-
bers as well as the actual calculations used.
Ideally, data only need to be extracted once and should be stored in a secure and

stable location for future updates of the review, regardless of whether the original
review authors or a different group of authors update the review (Ip et al 2012). Stan-
dardizing and sharing data collection tools as well as data management systems
among review authors working in similar topic areas can streamline systematic review
production. Review authors have the opportunity to work with trialists, journal editors,
funders, regulators, and other stakeholders to make study data (e.g. CSRs, IPD, and any
other form of study data) publicly available, increasing the transparency of research.
When legal and ethical to do so, we encourage review authors to share the data used in
their systematic reviews to reduce waste and to allow verification and reanalysis
because data will not have to be extracted again for future use (Mayo-Wilson et al 2018).
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6

Choosing effect measures and computing
estimates of effect
Julian PT Higgins, Tianjing Li, Jonathan J Deeks

KEY POINTS

• The types of outcome data that review authors are likely to encounter are dichoto-
mous data, continuous data, ordinal data, count or rate data and time-to-event data.

• There are several different ways of comparing outcome data between two intervention
groups (‘effect measures’) for each data type. For example, dichotomous outcomes can
be compared between intervention groups using a risk ratio, an odds ratio, a risk dif-
ference or a number needed to treat. Continuous outcomes can be compared between
intervention groups using a mean difference or a standardized mean difference.

• Effect measures are either ratiomeasures (e.g. risk ratio, odds ratio) or differencemea-
sures (e.g. mean difference, risk difference). Ratio measures are typically analysed on a
logarithmic scale.

• Results extracted from study reports may need to be converted to a consistent, or usa-
ble, format for analysis.

6.1 Types of data and effect measures

6.1.1 Types of data

A key early step in analysing results of studies of effectiveness is identifying the data
type for the outcome measurements. Throughout this chapter we consider outcome
data of five common types:

1) dichotomous (or binary) data, where each individual’s outcome is one of only two
possible categorical responses;

2) continuous data, where each individual’s outcome is a measurement of a numerical
quantity;

This chapter should be cited as: Higgins JPT, Li T, Deeks JJ (editors). Chapter 6: Choosing effect measures
and computing estimates of effect. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ,
Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK):
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3) ordinal data (including measurement scales), where each individual’s outcome is
one of several ordered categories, or generated by scoring and summing categorical
responses;

4) counts and rates calculated from counting the number of events experienced by
each individual; and

5) time-to-event (typically survival) data that analyse the time until an event occurs,
but where not all individuals in the study experience the event (censored data).

The ways in which the effect of an intervention can be assessed depend on the nature
of the data being collected. In this chapter, for each of the above types of data, we
review definitions, properties and interpretation of standard measures of intervention
effect, and provide tips on how effect estimates may be computed from data likely to
be reported in sources such as journal articles. Formulae to estimate effects (and their
standard errors) for the commonly used effect measures are provided in a supplemen-
tary document Statistical algorithms in Review Manager, as well as other standard text-
books (Deeks et al 2001). Chapter 10 discusses issues in the selection of one of these
measures for a particular meta-analysis.

6.1.2 Effect measures

By effect measures, we refer to statistical constructs that compare outcome data
between two intervention groups. Examples include odds ratios (which compare the
odds of an event between two groups) and mean differences (which compare mean
values between two groups). Effect measures can broadly be divided into ratio
measures and difference measures (sometimes also called relative and absolute
measures, respectively). For example, the odds ratio is a ratio measure and the mean
differences is a difference measure.
Estimates of effect describe themagnitude of the intervention effect in terms of how

different the outcome data were between the two groups. For ratio effect measures, a
value of 1 represents no difference between the groups. For difference measures, a
value of 0 represents no difference between the groups. Values higher and lower than
these ‘null’ values may indicate either benefit or harm of an experimental intervention,
depending both on how the interventions are ordered in the comparison (e.g. A versus
B or B versus A), and on the nature of the outcome.
The true effects of interventions are never known with certainty, and can only be esti-

mated by the studies available. Every estimate should always be expressed with a
measure of that uncertainty, such as a confidence interval or standard error (SE).

6.1.2.1 A note on ratio measures of intervention effect: the use of log scales
The values of ratio measures of intervention effect (such as the odds ratio, risk ratio,
rate ratio and hazard ratio) usually undergo log transformations before being analysed,
and they may occasionally be referred to in terms of their log transformed values (e.g.
log odds ratio). Typically the natural log transformation (log base e, written ‘ln’) is used.
Ratio summary statistics all have the common features that the lowest value that

they can take is 0, that the value 1 corresponds to no intervention effect, and that
the highest value that they can take is infinity. This number scale is not symmetric.
For example, whilst an odds ratio (OR) of 0.5 (a halving) and an OR of 2 (a doubling)
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are opposites such that they should average to no effect, the average of 0.5 and 2 is not
an OR of 1 but an OR of 1.25. The log transformation makes the scale symmetric: the
log of 0 is minus infinity, the log of 1 is zero, and the log of infinity is infinity. In the
example, the log of the above OR of 0.5 is –0.69 and the log of the OR of 2 is 0.69.
The average of –0.69 and 0.69 is 0 which is the log transformed value of an OR of 1,
correctly implying no intervention effect on average.
Graphical displays for meta-analyses performed on ratio scales usually use a log

scale. This has the effect of making the confidence intervals appear symmetric, for
the same reasons.

6.1.2.2 A note on effects of interest
Review authors should not confuse effect measures with effects of interest. The effect of
interest in any particular analysis of a randomized trial is usually either the effect of
assignment to intervention (the ‘intention-to-treat’ effect) or the effect of adhering
to intervention (the ‘per-protocol’ effect). These effects are discussed in Chapter 8
(Section 8.2.2). The data collected for inclusion in a systematic review, and the compu-
tations performed to produce effect estimates, will differ according to the effect of
interest to the review authors. Most often in Cochrane Reviews the effect of interest
will be the effect of assignment to intervention, for which an intention-to-treat analysis
will be sought. Most of this chapter relates to this situation. However, specific analyses
that have estimated the effect of adherence to intervention may be encountered.

6.2 Study designs and identifying the unit of analysis

6.2.1 Unit-of-analysis issues

An important principle in randomized trials is that the analysis must take into account
the level at which randomization occurred. Inmost circumstances the number of obser-
vations in the analysis should match the number of ‘units’ that were randomized. In a
simple parallel group design for a clinical trial, participants are individually randomized
to one of two intervention groups, and a single measurement for each outcome from
each participant is collected and analysed. However, there are numerous variations on
this design. Authors should consider whether in each study:

1) groups of individuals were randomized together to the same intervention
(i.e. cluster-randomized trials);

2) individuals underwent more than one intervention (e.g. in a crossover trial, or simul-
taneous treatment of multiple sites on each individual); and

3) there were multiple observations for the same outcome (e.g. repeated measure-
ments, recurring events, measurements on different body parts).

Review authors should consider the impact on the analysis of any such clustering,
matching or other non-standard design features of the included studies (see MECIR
Box 6.2.a). A more detailed list of situations in which unit-of-analysis issues commonly
arise follows, together with directions to relevant discussions elsewhere in this
Handbook.

6.2 Study designs and identifying the unit of analysis
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6.2.2 Cluster-randomized trials

In a cluster-randomized trial, groups of participants are randomized to different inter-
ventions. For example, the groups may be schools, villages, medical practices, patients
of a single doctor or families (see Chapter 23, Section 23.1).

6.2.3 Crossover trials

In a crossover trial, all participants receive all interventions in sequence: they are ran-
domized to an ordering of interventions, and participants act as their own control (see
Chapter 23, Section 23.2).

6.2.4 Repeated observations on participants

In studies of long duration, results may be presented for several periods of follow-up
(for example, at 6 months, 1 year and 2 years). Results from more than one time point
for each study cannot be combined in a standard meta-analysis without a unit-of-
analysis error. Some options in selecting and computing effect estimates are as follows.

1) Obtain individual participant data and perform an analysis (such as time-to-event
analysis) that uses the whole follow-up for each participant. Alternatively, compute
an effect measure for each individual participant that incorporates all time points,
such as total number of events, an overall mean, or a trend over time. Occasionally,
such analyses are available in published reports.

2) Define several different outcomes, based on different periods of follow-up, and plan
separate analyses. For example, time frames might be defined to reflect short-term,
medium-term and long-term follow-up.

MECIR Box 6.2.a Relevant expectations for conduct of intervention reviews

C70: Addressing non-standard designs (Mandatory)

Consider the impact on the analysis of
clustering, matching or other non- standard
design features of the included studies.

Cluster-randomized studies, crossover
studies, studies involving measurements
onmultiple body parts, and other designs
need to be addressed specifically, since a
naive analysis might underestimate or
overestimate the precision of the study.
Failure to account for clustering is likely
to overestimate the precision of the
study, that is, to give it confidence
intervals that are too narrow and a
weight that is too large. Failure to
account for correlation is likely to
underestimate the precision of the study,
that is, to give it confidence intervals that
are too wide and a weight that is too
small.
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3) Select a single time point and analyse only data at this time for studies in which it is
presented. Ideally this should be a clinically important time point. Sometimes it
might be chosen to maximize the data available, although authors should be aware
of the possibility of reporting biases.

4) Select the longest follow-up from each study. This may induce a lack of consistency
across studies, giving rise to heterogeneity.

6.2.5 Events that may re-occur

If the outcome of interest is an event that can occur more than once, then care must be
taken to avoid a unit-of-analysis error. Count data should not be treated as if they are
dichotomous data (see Section 6.7).

6.2.6 Multiple treatment attempts

Similarly, multiple treatment attempts per participant can cause a unit-of-analysis
error. Care must be taken to ensure that the number of participants randomized,
and not the number of treatment attempts, is used to calculate confidence intervals.
For example, in subfertility studies, women may undergo multiple cycles, and authors
might erroneously use cycles as the denominator rather than women. This is similar to
the situation in cluster-randomized trials, except that each participant is the ‘cluster’
(see methods described in Chapter 23, Section 23.1).

6.2.7 Multiple body parts I: body parts receive the same intervention

In somestudies, peopleare randomized, butmultipleparts (or sites)of thebody receive the
same intervention, a separate outcome judgement beingmade for eachbodypart, and the
number of bodyparts is usedas thedenominator in the analysis. For example, eyesmaybe
mistakenly used as the denominator without adjustment for the non-independence
between eyes. This is similar to the situation in cluster-randomized studies, except that
participants are the ‘clusters’ (see methods described in Chapter 23, Section 23.1).

6.2.8 Multiple body parts II: body parts receive different interventions

A different situation is that in which different parts of the body are randomized to
different interventions. ‘Split-mouth’ designs in oral health are of this sort, in which
different areas of the mouth are assigned different interventions. These trials have
similarities to crossover trials: whereas in crossover studies individuals receive multiple
interventions at different times, in these trials they receive multiple interventions at
different sites. See methods described in Chapter 23 (Section 23.2). It is important
to distinguish these trials from those in which participants receive the same interven-
tion at multiple sites (Section 6.2.7).

6.2.9 Multiple intervention groups

Studies that compare more than two intervention groups need to be treated with care.
Such studies are often included in meta-analysis by making multiple pair-wise compar-
isons between all possible pairs of intervention groups. A serious unit-of-analysis
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problem arises if the same group of participants is included twice in the same
meta-analysis (for example, if ‘Dose 1 vs Placebo’ and ‘Dose 2 vs Placebo’ are both
included in the same meta-analysis, with the same placebo patients in both compar-
isons). Review authors should approachmultiple intervention groups in an appropriate
way that avoids arbitrary omission of relevant groups and double-counting of partici-
pants (see MECIR Box 6.2.b) (see Chapter 23, Section 23.3). One option is network
meta-analysis, as discussed in Chapter 11.

6.3 Extracting estimates of effect directly

In reviews of randomized trials, it is generally recommended that summary data from
each intervention group are collected as described in Sections 6.4.2 and 6.5.2, so that
effects can be estimated by the review authors in a consistent way across studies. On
occasion, however, it is necessary or appropriate to extract an estimate of effect
directly from a study report (some might refer to this as ‘contrast-based’ data extrac-
tion rather than ‘arm-based’ data extraction). Some situations in which this is the case
include:

1) For specific types of randomized trials: analyses of cluster-randomized trials and
crossover trials should account for clustering or matching of individuals, and it is
often preferable to extract effect estimates from analyses undertaken by the trial
authors (see Chapter 23).

2) For specific analyses of randomized trials: there may be other reasons to extract
effect estimates directly, such as when analyses have been performed to adjust
for variables used in stratified randomization or minimization, or when analysis
of covariance has been used to adjust for baseline measures of an outcome. Other
examples of sophisticated analyses include those undertaken to reduce risk of bias,
to handle missing data or to estimate a ‘per-protocol’ effect using instrumental vari-
ables analysis (see also Chapter 8).

3) For specific types of outcomes: time-to-event data are not conveniently summarized
by summary statistics from each intervention group, and it is usually more

MECIR Box 6.2.b Relevant expectations for conduct of intervention reviews

C66: Addressing studies with more than two groups (Mandatory)

If multi-arm studies are included, analyse
multiple intervention groups in an
appropriate way that avoids arbitrary
omission of relevant groups and double-
counting of participants.

Excluding relevant groups decreases
precision and double-counting increases
precision spuriously; both are
inappropriate and unnecessary.
Alternative strategies include combining
intervention groups, separating
comparisons into different forest plots
and using multiple treatments meta-
analysis.
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convenient to extract hazard ratios (see Section 6.8.2). Similarly, for ordinal data
and rate data it may be convenient to extract effect estimates (see Sections 6.6.2
and 6.7.2).

4) For non-randomized studies: when extracting data from non-randomized studies,
adjusted effect estimates may be available (e.g. adjusted odds ratios from logistic
regression analyses, or adjusted rate ratios from Poisson regression analyses).
These are generally preferable to analyses based on summary statistics, because
they usually reduce the impact of confounding. The variables that have been used
for adjustment should be recorded (see Chapter 24).

5) When summary data for each group are not available: on occasion, summary data for
each intervention group may be sought, but cannot be extracted. In such situations
it may still be possible to include the study in a meta-analysis (using the generic
inverse variance method) if an effect estimate is extracted directly from the study
report.

An estimate of effect may be presented along with a confidence interval or a P value.
It is usually necessary to obtain a SE from these numbers, since software procedures for
performing meta-analyses using generic inverse-variance weighted averages mostly
take input data in the form of an effect estimate and its SE from each study (see
Chapter 10, Section 10.3). The procedure for obtaining a SE depends on whether the
effect measure is an absolute measure (e.g. mean difference, standardized mean dif-
ference, risk difference) or a ratio measure (e.g. odds ratio, risk ratio, hazard ratio, rate
ratio). We describe these procedures in Sections 6.3.1 and 6.3.2, respectively. However,
for continuous outcome data, the special cases of extracting results for a mean from
one intervention arm, and extracting results for the difference between two means, are
addressed in Section 6.5.2.
A limitation of this approach is that estimates and SEs of the same effect measure

must be calculated for all the other studies in the same meta-analysis, even if they pro-
vide the summary data by intervention group. For example, when numbers in each out-
come category by intervention group are known for some studies, but only ORs are
available for other studies, then ORs would need to be calculated for the first set of
studies to enable meta-analysis with the second set of studies. Statistical software such
as RevMan may be used to calculate these ORs (in this example, by first analysing them
as dichotomous data), and the confidence intervals calculated may be transformed to
SEs using the methods in Section 6.3.2.

6.3.1 Obtaining standard errors from confidence intervals and P values:
absolute (difference) measures

When a 95% confidence interval (CI) is available for an absolute effect measure (e.g.
standardized mean difference, risk difference, rate difference), then the SE can be cal-
culated as

upper limit− lower limit /3 92

For 90% confidence intervals 3.92 should be replaced by 3.29, and for 99% confidence
intervals it should be replaced by 5.15. Specific considerations are required for contin-
uous outcome data when extracting mean differences. This is because confidence
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intervals should have been computed using t distributions, especially when the sample
sizes are small: see Section 6.5.2.3 for details.
Where exact P values are quoted alongside estimates of intervention effect, it is

possible to derive SEs. While all tests of statistical significance produce P values,
different tests use different mathematical approaches. The method here assumes
P values have been obtained through a particularly simple approach of dividing the
effect estimate by its SE and comparing the result (denoted Z) with a standard normal
distribution (statisticians often refer to this as a Wald test).
The first step is to obtain the Z value corresponding to the reported P value from a

table of the standard normal distribution. A SE may then be calculated as

SE = intervention effect estimate/Z

As an example, suppose a conference abstract presents an estimate of a risk difference
of 0.03 (P = 0.008). The Z value that corresponds to a P value of 0.008 is Z = 2.652. This
can be obtained from a table of the standard normal distribution or a computer pro-
gram (for example, by entering =abs(normsinv(0.008/2)) into any cell in a Microsoft
Excel spreadsheet). The SE of the risk difference is obtained by dividing the risk differ-
ence (0.03) by the Z value (2.652), which gives 0.011.
Where significance tests have used other mathematical approaches, the estimated

SEs may not coincide exactly with the true SEs. For P values that are obtained from
t-tests for continuous outcome data, refer instead to Section 6.5.2.3.

6.3.2 Obtaining standard errors from confidence intervals and P values:
ratio measures

The process of obtaining SE for ratio measures is similar to that for absolute measures,
but with an additional first step. Analyses of ratio measures are performed on the
natural log scale (see Section 6.1.2.1). For a ratio measure, such as a risk ratio, odds
ratio or hazard ratio (which we denote generically as RR here), first calculate

lower limit = ln lower confidence limit given for RR

upper limit = ln upper confidence limit given for RR

intervention effect estimate = lnRR

Then the formulae in Section 6.3.1 can be used. Note that the SE refers to the log of the
ratio measure. When using the generic inverse variance method in RevMan, the data
should be entered on the natural log scale, that is as lnRR and the SE of lnRR, as
calculated here (see Chapter 10, Section 10.3).

6.4 Dichotomous outcome data

6.4.1 Effect measures for dichotomous outcomes

Dichotomous (binary) outcome data arise when the outcome for every participant is
one of two possibilities, for example, dead or alive, or clinical improvement or no clin-
ical improvement. This section considers the possible summary statistics to use when
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the outcome of interest has such a binary form. The most commonly encountered
effect measures used in randomized trials with dichotomous data are:

1) the risk ratio (RR; also called the relative risk);
2) the odds ratio (OR);
3) the risk difference (RD; also called the absolute risk reduction); and
4) the number needed to treat for an additional beneficial or harmful out-

come (NNT).

Details of the calculations of the first three of these measures are given in Box 6.4.a.
Numbers needed to treat are discussed in detail in Chapter 15 (Section 15.4), as they
are primarily used for the communication and interpretation of results.
Methods for meta-analysis of dichotomous outcome data are covered in Chapter 10

(Section 10.4).
Aside: as events of interest may be desirable rather than undesirable, it would be pref-
erable to use a more neutral term than risk (such as probability), but for the sake of
convention we use the terms risk ratio and risk difference throughout. We also use
the term ‘risk ratio’ in preference to ‘relative risk’ for consistency with other terminol-
ogy. The two are interchangeable and both conveniently abbreviate to ‘RR’. Note also
that we have been careful with the use of the words ‘risk’ and ‘rates’. These words are
often treated synonymously. However, we have tried to reserve use of the word ‘rate’
for the data type ‘counts and rates’ where it describes the frequency of events in a
measured period of time.

Box 6.4.a Calculation of risk ratio (RR), odds ratio (OR) and risk difference (RD) from a
2×2 table

The results of a two-group randomized trial with a dichotomous outcome can be
displayed as a 2×2 table:

Event
(‘Success’)

No event
(‘Fail’)

Total

Experimental intervention SE FE NE

Comparator intervention SC FC NC

where SE, SC, FE and FC are the numbers of participants with each outcome (‘S’ or ‘F’)
in each group (‘E’ or ‘C’). The following summary statistics can be calculated:

RR =
risk of event in experimental group
risk of event in comparator group

=
SE/NE

SC/NC

OR =
odds of event in experimental group
odds of event in comparator group

=
SE/FE
SC/FC

=
SEFC
FESC

RD = risk of event in experimental group risk of event in comparator group

=
SE
NE

−
SC
NC
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6.4.1.1 Risk and odds
In general conversation the terms ‘risk’ and ‘odds’ are used interchangeably (and also
with the terms ‘chance’, ‘probability’ and ‘likelihood’) as if they describe the same
quantity. In statistics, however, risk and odds have particular meanings and are
calculated in different ways. When the difference between them is ignored, the results
of a systematic review may be misinterpreted.
Risk is the concept more familiar to health professionals and the general public. Risk

describes the probability with which a health outcome will occur. In research, risk is
commonly expressed as a decimal number between 0 and 1, although it is occasionally
converted into a percentage. In ‘Summary of findings’ tables in Cochrane Reviews, it is
often expressed as a number of individuals per 1000 (see Chapter 14, Section 14.1.4). It
is simple to grasp the relationship between a risk and the likely occurrence of events: in
a sample of 100 people the number of events observed will on average be the risk
multiplied by 100. For example, when the risk is 0.1, about 10 people out of every
100 will have the event; when the risk is 0.5, about 50 people out of every 100 will have
the event. In a sample of 1000 people, these numbers are 100 and 500 respectively.
Odds is a concept that may be more familiar to gamblers. The ‘odds’ refers to the

ratio of the probability that a particular event will occur to the probability that it will
not occur, and can be any number between zero and infinity. In gambling, the odds
describes the ratio of the size of the potential winnings to the gambling stake; in health
care it is the ratio of the number of people with the event to the number without. It is
commonly expressed as a ratio of two integers. For example, an odds of 0.01 is often
written as 1 : 100, odds of 0.33 as 1 : 3, and odds of 3 as 3 : 1. Odds can be converted to
risks, and risks to odds, using the formulae:

risk =
odds

1 + odds
; odds =

risk
1−risk

The interpretation of odds is more complicated than for a risk. The simplest way to
ensure that the interpretation is correct is first to convert the odds into a risk. For exam-
ple, when the odds are 1 : 10, or 0.1, one person will have the event for every 10 who do
not, and, using the formula, the risk of the event is 0.1/(1 + 0.1) = 0.091. In a sample of
100, about 9 individuals will have the event and 91 will not. When the odds are equal to
1, one person will have the event for every person who does not, so in a sample of 100,
100 × 1/(1 + 1) = 50 will have the event and 50 will not.
The difference between odds and risk is small when the event is rare (as illustrated in

the example above where a risk of 0.091 was seen to be similar to an odds of 0.1). When
events are common, as is often the case in clinical trials, the differences between odds
and risks are large. For example, a risk of 0.5 is equivalent to an odds of 1; and a risk of
0.95 is equivalent to odds of 19.
Effect measures for randomized trials with dichotomous outcomes involve compar-

ing either risks or odds from two intervention groups. To compare them we can look at
their ratio (risk ratio or odds ratio) or the difference in risk (risk difference).

6.4.1.2 Measures of relative effect: the risk ratio and odds ratio
Measures of relative effect express the expected outcome in one group relative to that
in the other. The risk ratio (RR, or relative risk) is the ratio of the risk of an event in
the two groups, whereas the odds ratio (OR) is the ratio of the odds of an event
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(see Box 6.4.a). For both measures a value of 1 indicates that the estimated effects are
the same for both interventions.
Neither the risk ratio nor the odds ratio can be calculated for a study if there are no

events in the comparator group. This is because, as can be seen from the formulae in
Box 6.4.a, wewould be trying to divide by zero. The odds ratio also cannot be calculated
if everybody in the intervention group experiences an event. In these situations, and
others where SEs cannot be computed, it is customary to add ½ to each cell of the
2×2 table (for example, RevMan automatically makes this correction when necessary).
In the case where no events (or all events) are observed in both groups the study
provides no information about relative probability of the event and is omitted from
the meta-analysis. This is entirely appropriate. Zeros arise particularly when the event
of interest is rare, such as unintended adverse outcomes. For further discussion of
choice of effect measures for such sparse data (often with lots of zeros) see
Chapter 10 (Section 10.4.4).
Risk ratios describe the multiplication of the risk that occurs with use of the

experimental intervention. For example, a risk ratio of 3 for an intervention
implies that events with intervention are three times more likely than events with-
out intervention. Alternatively we can say that intervention increases the risk of
events by 100 × (RR – 1)% = 200%. Similarly, a risk ratio of 0.25 is interpreted as
the probability of an event with intervention being one-quarter of that without
intervention. This may be expressed alternatively by saying that intervention
decreases the risk of events by 100 × (1 – RR)% = 75%. This is known as the
relative risk reduction (see also Chapter 15, Section 15.4.1). The interpretation
of the clinical importance of a given risk ratio cannot be made without knowledge
of the typical risk of events without intervention: a risk ratio of 0.75 could corre-
spond to a clinically important reduction in events from 80% to 60%, or a small,
less clinically important reduction from 4% to 3%. What constitutes clinically
important will depend on the outcome and the values and preferences of the per-
son or population.
The numerical value of the observed risk ratio must always lie somewhere between

0 and 1/CGR, where CGR (abbreviation of ‘comparator group risk’, sometimes referred
to as the control group risk or the control event rate) is the observed risk of the event
in the comparator group expressed as a number between 0 and 1. This means that for
common events large values of risk ratio are impossible. For example, when the
observed risk of events in the comparator group is 0.66 (or 66%) then the observed
risk ratio cannot exceed 1.5. This boundary applies only for increases in risk, and can
cause problems when the results of an analysis are extrapolated to a different
population in which the comparator group risks are above those observed in
the study.
Odds ratios, like odds, are more difficult to interpret (Sinclair and Bracken 1994,

Sackett et al 1996). Odds ratios describe the multiplication of the odds of the outcome
that occur with use of the intervention. To understand what an odds ratio means in
terms of changes in numbers of events it is simplest to convert it first into a risk ratio,
and then interpret the risk ratio in the context of a typical comparator group risk, as
outlined here. The formula for converting an odds ratio to a risk ratio is provided in
Chapter 15 (Section 15.4.4). Sometimes it may be sensible to calculate the RR for more
than one assumed comparator group risk.
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6.4.1.3 Warning: OR and RR are not the same
Since risk and odds are different when events are common, the risk ratio and the odds
ratio also differ when events are common. This non-equivalence does not indicate that
either is wrong: both are entirely valid ways of describing an intervention effect.
Problems may arise, however, if the odds ratio is misinterpreted as a risk ratio. For
interventions that increase the chances of events, the odds ratio will be larger than
the risk ratio, so the misinterpretation will tend to overestimate the intervention effect,
especially when events are common (with, say, risks of events more than 20%). For
interventions that reduce the chances of events, the odds ratio will be smaller than
the risk ratio, so that, again, misinterpretation overestimates the effect of the interven-
tion. This error in interpretation is unfortunately quite common in published reports of
individual studies and systematic reviews.

6.4.1.4 Measure of absolute effect: the risk difference
The risk difference is the difference between the observed risks (proportions of
individuals with the outcome of interest) in the two groups (see Box 6.4.a). The risk
difference can be calculated for any study, even when there are no events in either
group. The risk difference is straightforward to interpret: it describes the difference
in the observed risk of events between experimental and comparator interventions;
for an individual it describes the estimated difference in the probability of experiencing
the event. However, the clinical importance of a risk difference may depend on the
underlying risk of events in the population. For example, a risk difference of 0.02 (or
2%) may represent a small, clinically insignificant change from a risk of 58% to 60%
or a proportionally much larger and potentially important change from 1% to 3%.
Although the risk difference provides more directly relevant information than relative
measures (Laupacis et al 1988, Sackett et al 1997), it is still important to be aware of the
underlying risk of events, and consequences of the events, when interpreting a risk dif-
ference. Absolute measures, such as the risk difference, are particularly useful when
considering trade-offs between likely benefits and likely harms of an intervention.
The risk difference is naturally constrained (like the risk ratio), which may create dif-

ficulties when applying results to other patient groups and settings. For example, if a
study or meta-analysis estimates a risk difference of –0.1 (or –10%), then for a group
with an initial risk of, say, 7% the outcome will have an impossible estimated negative
probability of –3%. Similar scenarios for increases in risk occur at the other end of the
scale. Such problems can arise only when the results are applied to populations with
different risks from those observed in the studies.
The number needed to treat is obtained from the risk difference. Although it is often

used to summarize results of clinical trials, NNTs cannot be combined in a meta-
analysis (see Chapter 10, Section 10.4.3). However, odds ratios, risk ratios and risk dif-
ferences may be usefully converted to NNTs and used when interpreting the results of a
meta-analysis as discussed in Chapter 15 (Section 15.4).

6.4.1.5 What is the event?
In the context of dichotomous outcomes, healthcare interventions are intended either
to reduce the risk of occurrence of an adverse outcome or increase the chance of a
good outcome. It is common to use the term ‘event’ to describe whatever the outcome
or state of interest is in the analysis of dichotomous data. For example, when
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participants have particular symptoms at the start of the study the event of interest is
usually recovery or cure. If participants are well or, alternatively, at risk of some adverse
outcome at the beginning of the study, then the event is the onset of disease or
occurrence of the adverse outcome.
It is possible to switch events and non-events and consider instead the proportion of

patients not recovering or not experiencing the event. For meta-analyses using risk
differences or odds ratios the impact of this switch is of no great consequence: the
switch simply changes the sign of a risk difference, indicating an identical effect size
in the opposite direction, whilst for odds ratios the new odds ratio is the reciprocal
(1/x) of the original odds ratio.
In contrast, switching the outcome can make a substantial difference for risk ratios,

affecting the effect estimate, its statistical significance, and the consistency of interven-
tion effects across studies. This is because the precision of a risk ratio estimate differs
markedly between those situations where risks are low and those where risks are high.
In a meta-analysis, the effect of this reversal cannot be predicted easily. The identifi-
cation, before data analysis, of which risk ratio is more likely to be the most relevant
summary statistic is therefore important. It is often convenient to choose to focus on
the event that represents a change in state. For example, in treatment studies where
everyone starts in an adverse state and the intention is to ‘cure’ this, it may be more
natural to focus on ‘cure’ as the event. Alternatively, in prevention studies where
everyone starts in a ‘healthy’ state and the intention is to prevent an adverse event,
it may bemore natural to focus on ‘adverse event’ as the event. A general rule of thumb
is to focus on the less common state as the event of interest. This reduces the problems
associated with extrapolation (see Section 6.4.1.2) and may lead to less heterogeneity
across studies. Where interventions aim to reduce the incidence of an adverse event,
there is empirical evidence that risk ratios of the adverse event are more consistent
than risk ratios of the non-event (Deeks 2002).

6.4.2 Data extraction for dichotomous outcomes

To calculate summary statistics and include the result in a meta-analysis, the only data
required for a dichotomous outcome are the numbers of participants in each of the
intervention groups who did and did not experience the outcome of interest (the num-
bers needed to fill in a standard 2×2 table, as in Box 6.4.a). In RevMan, these can be
entered as the numbers with the outcome and the total sample sizes for the two
groups. Although in theory this is equivalent to collecting the total numbers and the
numbers experiencing the outcome, it is not always clear whether the reported total
numbers are the whole sample size or only those for whom the outcome wasmeasured
or observed. Collecting the numbers of actual observations is preferable, as it avoids
assumptions about any participants for whom the outcome was not measured.
Occasionally the numbers of participants who experienced the event must be derived
from percentages (although it is not always clear which denominator to use, because
rounded percentages may be compatible with more than one numerator).
Sometimes the numbers of participants and numbers of events are not available, but

an effect estimate such as an odds ratio or risk ratio may be reported. Such datamay be
included in meta-analyses (using the generic inverse variance method) only when they
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are accompanied by measures of uncertainty such as a SE, 95% confidence interval or
an exact P value (see Section 6.3).

6.5 Continuous outcome data

6.5.1 Effect measures for continuous outcomes

The term ‘continuous’ in statistics conventionally refers to a variable that can take any
value in a specified range. When dealing with numerical data, this means that a number
may be measured and reported to an arbitrary number of decimal places. Examples of
truly continuous data are weight, area and volume. In practice, we can use the same
statistical methods for other types of data, most commonly measurement scales and
counts of large numbers of events (see Section 6.6.1).
A common feature of continuous data is that a measurement used to assess the out-

come of each participant is also measured at baseline, that is, before interventions are
administered. This gives rise to the possibility of computing effects based on change
frombaseline (also called a change score). When effect measures are based on change
from baseline, a single measurement is created for each participant, obtained either by
subtracting the post-intervention measurement from the baseline measurement or by
subtracting the baseline measurement from the post-intervention measurement.
Analyses then proceed as for any other type of continuous outcome variable.
Two summary statistics are commonly used for meta-analysis of continuous data:

the mean difference and the standardized mean difference. These can be calculated
whether the data from each individual are post-intervention measurements or
change-from-baseline measures. It is also possible to measure effects by taking ratios
of means, or to use other alternatives.
Sometimes review authors may consider dichotomizing continuous outcome mea-

sures so that the result of the trial can be expressed as an odds ratio, risk ratio or risk
difference. This might be done either to improve interpretation of the results (see
Chapter 15, Section 15.5), or because the majority of the studies present results after
dichotomizing a continuous measure. Results reported as means and SDs can, under
some assumptions, be converted to risks (Anzures-Cabrera et al 2011). Typically a nor-
mal distribution is assumed for the outcome variable within each intervention group.
Methods for meta-analysis of continuous outcome data are covered in Chapter 10

(Section 10.5).

6.5.1.1 The mean difference (or difference in means)
The mean difference (MD, or more correctly, ‘difference in means’) is a standard sta-
tistic that measures the absolute difference between the mean value in two groups of a
randomized trial. It estimates the amount by which the experimental intervention
changes the outcome on average compared with the comparator intervention. It
can be used as a summary statistic in meta-analysis when outcome measurements
in all studies are made on the same scale.

Aside: analyses based on this effect measure were historically termed ‘weighted mean
difference’ (WMD) analyses in the Cochrane Database of Systematic Reviews. This name
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is potentially confusing: although the meta-analysis computes a weighted average of
these differences in means, no weighting is involved in calculation of a statistical sum-
mary of a single study. Furthermore, all meta-analyses involve a weighted combination
of estimates, yet we do not use the word ‘weighted’ when referring to other methods.

6.5.1.2 The standardized mean difference
The standardized mean difference (SMD) is used as a summary statistic in meta-
analysis when the studies all assess the same outcome, but measure it in a variety
of ways (for example, all studies measure depression but they use different psychomet-
ric scales). In this circumstance it is necessary to standardize the results of the studies
to a uniform scale before they can be combined. The SMD expresses the size of the
intervention effect in each study relative to the between-participant variability in out-
comemeasurements observed in that study. (Again in reality the intervention effect is a
difference in means and not a mean of differences.)

SMD =
difference in mean outcome between groups

standard deviation of outcome among participants

Thus, studies for which the difference in means is the same proportion of the standard
deviation (SD) will have the same SMD, regardless of the actual scales used to make the
measurements.
However, the method assumes that the differences in SDs among studies reflect

differences in measurement scales and not real differences in variability among
study populations. If in two trials the true effect (as measured by the difference
in means) is identical, but the SDs are different, then the SMDs will be different. This
may be problematic in some circumstances where real differences in variability
between the participants in different studies are expected. For example, where early
explanatory trials are combined with later pragmatic trials in the same review, prag-
matic trials may include a wider range of participants and may consequently have
higher SDs. The overall intervention effect can also be difficult to interpret as it is
reported in units of SD rather than in units of any of the measurement scales used in
the review, but several options are available to aid interpretation (see Chapter 15,
Section 15.6).
The term ‘effect size’ is frequently used in the social sciences, particularly in the

context of meta-analysis. Effect sizes typically, though not always, refer to versions
of the SMD. It is recommended that the term ‘SMD’ be used in Cochrane Reviews in
preference to ‘effect size’ to avoid confusion with the more general plain language
use of the latter term as a synonym for ‘intervention effect’ or ‘effect estimate’.
It should be noted that the SMD method does not correct for differences in the

direction of the scale. If some scales increase with disease severity (for example,
a higher score indicates more severe depression) whilst others decrease (a higher
score indicates less severe depression), it is essential to multiply the mean values
from one set of studies by –1 (or alternatively to subtract the mean from the max-
imum possible value for the scale) to ensure that all the scales point in the
same direction, before standardization. Any such adjustment should be described
in the statistical methods section of the review. The SD does not need to be
modified.
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Different variations on the SMD are available depending on exactly what choice of SD
is chosen for the denominator. The particular definition of SMD used in Cochrane
Reviews is the effect size known in social science as Hedges’ (adjusted) g. This uses
a pooled SD in the denominator, which is an estimate of the SD based on outcome data
from both intervention groups, assuming that the SDs in the two groups are similar. In
contrast, Glass’ delta (Δ) uses only the SD from the comparator group, on the basis that
if the experimental intervention affects between-person variation, then such an impact
of the intervention should not influence the effect estimate.
To overcome problems associated with estimating SDs within small studies, and

with real differences across studies in between-person variability, it may sometimes
be desirable to standardize using an external estimate of SD. External estimates
might be derived, for example, from a cross-sectional analysis of many individuals
assessed using the same continuous outcome measure (the sample of individuals
might be derived from a large cohort study). Typically the external estimate would
be assumed to be known without error, which is likely to be reasonable if it is based
on a large number of individuals. Under this assumption, the statistical methods used
for MDs would be used, with both the MD and its SE divided by the externally
derived SD.

6.5.1.3 The ratio of means
The ratio of means (RoM) is a less commonly used statistic that measures the relative
difference between the mean value in two groups of a randomized trial (Friedrich et al
2008). It estimates the amount by which the average value of the outcome is multiplied
for participants on the experimental intervention compared with the comparator
intervention. For example, a RoM of 2 for an intervention implies that the mean score
in the participants receiving the experimental intervention is on average twice as high
as that of the group without intervention. It can be used as a summary statistic in meta-
analysis when outcomemeasurements can only be positive. Thus it is suitable for single
(post-intervention) assessments but not for change-from-baseline measures (which
can be negative).
An advantage of the RoM is that it can be used in meta-analysis to combine results

from studies that used different measurement scales. However, it is important that
these different scales have comparable lower limits. For example, a RoM might
meaningfully be used to combine results from a study using a scale ranging from
0 to 10 with results from a study ranging from 1 to 50. However, it is unlikely to be
reasonable to combine RoM results from a study using a scale ranging from 0 to
10 with RoM results from a study using a scale ranging from 20 to 30: it is not possible
to obtain RoM values outside of the range 0.67 to 1.5 in the latter study, whereas such
values are readily obtained in the former study. RoM is not a suitable effect measure
for the latter study.
The RoMmight be a particularly suitable choice of effect measure when the outcome

is a physical measurement that can only take positive values, but when different
studies use different measurement approaches that cannot readily be converted from
one to another. For example, it was used in a meta-analysis where studies assessed
urine output using some measures that did, and some measures that did not, adjust
for body weight (Friedrich et al 2005).
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6.5.1.4 Other effect measures for continuous outcome data
Other effect measures for continuous outcome data include the following.

• Standardized difference in terms of the minimal important differences (MID) on each
scale. This expresses the MD as a proportion of the amount of change on a scale that
would be considered clinically meaningful (Johnston et al 2010).

• Prevented fraction. This expresses the MD in change scores in relation to the compar-
ator group mean change. Thus it describes how much change in the comparator
group might have been prevented by the experimental intervention. It has commonly
been used in dentistry (Dubey et al 1965).

• Difference in percentage change from baseline. This is a version of the MD in which
each intervention group is summarized by the mean change divided by the mean
baseline level, thus expressing it as a percentage. The measure has often been used,
for example, for outcomes such as cholesterol level, blood pressure and glaucoma.
Care is needed to ensure that the SE correctly accounts for correlation between base-
line and post-intervention values (Vickers 2001).

• Direct mapping from one scale to another. If conversion factors are available that map
one scale to another (e.g. pounds to kilograms) then these should be used. Methods
are also available that allow these conversion factors to be estimated (Ades
et al 2015).

6.5.2 Data extraction for continuous outcomes

To perform a meta-analysis of continuous data using MDs, SMDs or ratios of means,
review authors should seek:

• the mean value of the outcome measurements in each intervention group;

• the standard deviation of the outcome measurements in each intervention
group; and

• the number of participants for whom the outcome was measured in each interven-
tion group.

Due to poor and variable reporting it may be difficult or impossible to obtain these
numbers from the data summaries presented. Studies vary in the statistics they use to
summarize the average (sometimes using medians rather than means) and variation
(sometimes using SEs, confidence intervals, interquartile ranges and ranges rather than
SDs). They also vary in the scale chosen to analyse the data (e.g. post-intervention
measurements versus change from baseline; raw scale versus logarithmic scale).
A particularly misleading error is to misinterpret a SE as a SD. Unfortunately, it is not

always clear which is being reported and some intelligent reasoning, and comparison
with other studies, may be required. SDs and SEs are occasionally confused in the
reports of studies, and the terminology is used inconsistently.
When needed, missing information and clarification about the statistics presented

should always be sought from the authors. However, for several measures of variation
there is an approximate or direct algebraic relationship with the SD, so it may be
possible to obtain the required statistic even when it is not published in a paper, as
explained in Sections 6.5.2.1 to 6.5.2.6. More details and examples are available
elsewhere (Deeks 1997a, Deeks 1997b). Section 6.5.2.7 discusses options whenever
SDs remain missing after attempts to obtain them.
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Sometimes the numbers of participants, means and SDs are not available, but an
effect estimate such as a MD or SMD has been reported. Such data may be included
in meta-analyses using the generic inverse variance method only when they are accom-
panied by measures of uncertainty such as a SE, 95% confidence interval or an exact
P value. A suitable SE from a confidence interval for a MD should be obtained using the
early steps of the process described in Section 6.5.2.3. For SMDs, see Section 6.3.

6.5.2.1 Extracting post-intervention versus change from baseline data
Commonly, studies in a review will have reported a mixture of changes from baseline
and post-intervention values (i.e. values at various follow-up time points, including
‘final value’). Some studies will report both; others will report only change scores or
only post-intervention values. As explained in Chapter 10 (Section 10.5.2), both post-
intervention values and change scores can sometimes be combined in the same
analysis so this is not necessarily a problem. Authors may wish to extract data on both
change from baseline and post-intervention outcomes if the required means and SDs
are available (see Section 6.5.2.7 for cases where the applicable SDs are not available).
The choice of measure reported in the studies may be associated with the direction and
magnitude of results. Review authors should seek evidence of whether such selective
reporting may be the case in one or more studies (see Chapter 8, Section 8.7).
A final problemwith extracting information on change from baseline measures is that

often baseline and post-intervention measurements may have been reported for
different numbers of participants due to missed visits and study withdrawals. It may
be difficult to identify the subset of participants who report both baseline and post-
intervention measurements for whom change scores can be computed.

6.5.2.2 Obtaining standard deviations from standard errors and confidence
intervals for group means
A standard deviation can be obtained from the SE of a mean by multiplying by the
square root of the sample size:

SD = SE × N

Whenmaking this transformation, the SE must be calculated from within a single inter-
vention group, and must not be the SE of the mean difference between two
intervention groups.
The confidence interval for a mean can also be used to calculate the SD. Again, the

following applies to the confidence interval for a mean value calculated within an
intervention group and not for estimates of differences between interventions (for
these, see Section 6.5.2.3). Most reported confidence intervals are 95% confidence
intervals. If the sample size is large (say larger than 100 in each group), the 95%
confidence interval is 3.92 SE wide (3.92 = 2 × 1.96). The SD for each group is obtained
by dividing the width of the confidence interval by 3.92, and then multiplying by the
square root of the sample size in that group:

SD = N × upper limit− lower limit /3 92

For 90% confidence intervals, 3.92 should be replaced by 3.29, and for 99% confidence
intervals it should be replaced by 5.15.
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If the sample size is small (say fewer than 60 participants in each group) then con-
fidence intervals should have been calculated using a value from a t distribution. The
numbers 3.92, 3.29 and 5.15 are replaced with slightly larger numbers specific to the t
distribution, which can be obtained from tables of the t distribution with degrees of
freedom equal to the group sample size minus 1. Relevant details of the t distribution
are available as appendices of many statistical textbooks or from standard computer
spreadsheet packages. For example the t statistic for a 95% confidence interval from a
sample size of 25 can be obtained by typing =tinv(1-0.95,25-1) in a cell in a Microsoft
Excel spreadsheet (the result is 2.0639). The divisor, 3.92, in the formula above would be
replaced by 2 × 2.0639 = 4.128.
For moderate sample sizes (say between 60 and 100 in each group), either a t distri-

bution or a standard normal distribution may have been used. Review authors should
look for evidence of which one, and use a t distribution when in doubt.
As an example, consider data presented as follows:

Group Sample size Mean 95% CI

Experimental intervention 25 32.1 (30.0, 34.2)

Comparator intervention 22 28.3 (26.5, 30.1)

The confidence intervals should have been based on t distributions with 24 and
21 degrees of freedom, respectively. The divisor for the experimental intervention
group is 4.128, from above. The SD for this group is √25 × (34.2 – 30.0)/4.128 = 5.09. Cal-
culations for the comparator group are performed in a similar way.
It is important to check that the confidence interval is symmetrical about the

mean (the distance between the lower limit and the mean is the same as the
distance between the mean and the upper limit). If this is not the case, the con-
fidence interval may have been calculated on transformed values (see
Section 6.5.2.4).

6.5.2.3 Obtaining standard deviations from standard errors, confidence
intervals, t statistics and P values for differences in means
Standard deviations can be obtained from a SE, confidence interval, t statistic or
P value that relates to a difference between means in two groups (i.e. the MD).
The MD is required in the calculations from the t statistic or the P value. An
assumption that the SDs of outcome measurements are the same in both groups
is required in all cases. The same SD is then used for both intervention groups.
We describe first how a t statistic can be obtained from a P value, then how a SE
can be obtained from a t statistic or a confidence interval, and finally how a SD is
obtained from the SE. Review authors may select the appropriate steps in this
process according to what results are available to them. Related methods can
be used to derive SDs from certain F statistics, since taking the square root of
an F statistic may produce the same t statistic. Care often is required to ensure
that an appropriate F statistic is used. Advice from a knowledgeable statistician
is recommended.
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1) From P value to t statistic

Where actual P values obtained from t-tests are quoted, the corresponding t statistic
may be obtained from a table of the t distribution. The degrees of freedom are
given by NE + NC – 2, where NE and NC are the sample sizes in the experimental and
comparator groups. We will illustrate with an example. Consider a trial of an exper-
imental intervention (NE = 25) versus a comparator intervention (NC = 22), where the
MD = 3.8. The P value for the comparison was P = 0.008, obtained using a two-sample
t-test.
The t statistic that corresponds with a P value of 0.008 and 25 + 22 – 2 = 45 degrees of

freedom is t = 2.78. This can be obtained from a table of the t distribution with
45 degrees of freedom or a computer (for example, by entering =tinv(0.008, 45) into
any cell in a Microsoft Excel spreadsheet).
Difficulties are encountered when levels of significance are reported (such as

P < 0.05 or even P = NS (‘not significant’, which usually implies P > 0.05) rather than
exact P values. A conservative approach would be to take the P value at the upper
limit (e.g. for P < 0.05 take P = 0.05, for P < 0.01 take P = 0.01 and for P < 0.001 take
P = 0.001). However, this is not a solution for results that are reported as P = NS, or
P > 0.05 (see Section 6.5.2.7).

2) From t statistic to standard error

The t statistic is the ratio of the MD to the SE of the MD. The SE of the MD can therefore
be obtained by dividing it by the t statistic:

SE =
MD
t

where |X| denotes ‘the absolute value of X’. In the example, where MD = 3.8 and t = 2.78,
the SE of the MD is obtained by dividing 3.8 by 2.78, which gives 1.37.

3) From confidence interval to standard error

If a 95% confidence interval is available for the MD, then the same SE can be calcu-
lated as:

SE = upper limit− lower limit /3 92

as long as the trial is large. For 90% confidence intervals divide by 3.29 rather than 3.92;
for 99% confidence intervals divide by 5.15. If the sample size is small (say fewer than
60 participants in each group) then confidence intervals should have been calculated
using a t distribution. The numbers 3.92, 3.29 and 5.15 are replaced with larger numbers
specific to both the t distribution and the sample size, and can be obtained from tables of
the t distribution with degrees of freedom equal to NE + NC – 2, where NE and NC are the
sample sizes in the two groups. Relevant details of the t distribution are available as
appendices of many statistical textbooks or from standard computer spreadsheet
packages. For example, the t statistic for a 95% confidence interval from a comparison
of a sample size of 25 with a sample size of 22 can be obtained by typing =tinv(1-0.95,
25+22-2) in a cell in a Microsoft Excel spreadsheet.
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4) From standard error to standard deviation

The within-group SD can be obtained from the SE of the MD using the following
formula:

SD =
SE
1
NE

+
1
NC

In the example,

SD =
1 37
1
25

+
1
22

= 4 69

Note that this SD is the average of the SDs of the experimental and comparator arms,
and should be entered into RevMan twice (once for each intervention group).

6.5.2.4 Transformations and skewed data
Studies may present summary statistics calculated after a transformation has been
applied to the raw data. For example, means and SDs of logarithmic values may be
available (or, equivalently, a geometric mean and its confidence interval). Such results
should be collected, as they may be included in meta-analyses, or – with certain
assumptions – may be transformed back to the raw scale (Higgins et al 2008).
For example, a trial reported meningococcal antibody responses 12 months after

vaccination with meningitis C vaccine and a control vaccine (MacLennan et al 2000),
as geometric mean titres of 24 and 4.2 with 95% confidence intervals of 17 to 34 and
3.9 to 4.6, respectively. These summaries were obtained by finding the means and con-
fidence intervals of the natural logs of the antibody responses (for vaccine 3.18 (95% CI
2.83 to 3.53), and control 1.44 (1.36 to 1.53)), and taking their exponentials (anti-logs).
A meta-analysis may be performed on the scale of these natural log antibody responses,
rather than the geometric means. SDs of the log-transformed data may be derived from
the latter pair of confidence intervals using methods described in Section 6.5.2.1. For fur-
ther discussion of meta-analysis with skewed data, see Chapter 10 (Section 10.5.3).

6.5.2.5 Interquartile ranges
Interquartile ranges describe where the central 50% of participants’ outcomes lie.
When sample sizes are large and the distribution of the outcome is similar to the nor-
mal distribution, the width of the interquartile range will be approximately 1.35 SDs. In
other situations, and especially when the outcome’s distribution is skewed, it is not
possible to estimate a SD from an interquartile range. Note that the use of interquartile
ranges rather than SDs often can indicate that the outcome’s distribution is skewed.
Wan and colleagues provided a sample size-dependent extension to the formula for
approximating the SD using the interquartile range (Wan et al 2014).

6.5.2.6 Ranges
Ranges are very unstable and, unlike othermeasures of variation, increasewhen the sam-
ple size increases. They describe the extremes of observed outcomes rather than the
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average variation. One commonapproach has been tomakeuse of the fact that, with nor-
mally distributed data, 95% of values will lie within 2 × SD either side of themean. The SD
may therefore be estimated to be approximately one-quarter of the typical range of data
values. This method is not robust and we recommend that it not be used. Walter and Yao
based an imputation method on the minimum and maximum observed values. Their
enhancement of the “range’method provided a lookup table, according to sample size,
of conversion factors from range to SD (Walter and Yao 2007). Alternative methods have
beenproposed toestimateSDs fromrangesandquantiles (Hozoetal 2005,Wanet al 2014,
Bland 2015), although to our knowledge these have not been evaluated using empirical
data. As a general rule, we recommend that ranges should not be used to estimate SDs.

6.5.2.7 No information on variability
Missing SDs are a common feature of meta-analyses of continuous outcome data.
When none of the above methods allow calculation of the SDs from the trial report
(and the information is not available from the trialists) then a review author may be
forced to impute (‘fill in’) the missing data if they are not to exclude the study from
the meta-analysis.
The simplest imputation is to borrow the SD from one or more other studies.

Furukawa and colleagues found that imputing SDs either from other studies in the same
meta-analysis, or from studies in another meta-analysis, yielded approximately correct
results in two case studies (Furukawa et al 2006). If several candidate SDs are available,
review authors should decide whether to use their average, the highest, a ‘reasonably
high’ value, or some other strategy. For meta-analyses of MDs, choosing a higher SD
down-weights a study and yields a wider confidence interval. However, for SMD
meta-analyses, choosing a higher SD will bias the result towards a lack of effect. More
complicated alternatives are available for making use of multiple candidate SDs. For
example, Marinho and colleagues implemented a linear regression of log(SD) on
log(mean), because of a strong linear relationship between the two (Marinho et al 2003).
All imputation techniques involve making assumptions about unknown statistics,

and it is best to avoid using them wherever possible. If the majority of studies in a
meta-analysis have missing SDs, these values should not be imputed. A narrative
approach might then be needed for the synthesis (see Chapter 12). However, imputa-
tion may be reasonable for a small proportion of studies comprising a small proportion
of the data if it enables them to be combined with other studies for which full data are
available. Sensitivity analyses should be used to assess the impact of changing the
assumptions made.

6.5.2.8 Imputing standard deviations for changes from baseline
A special case of missing SDs is for changes from baseline measurements. Often, only
the following information is available:

Baseline Final Change

Experimental intervention (sample size) mean, SD mean, SD mean

Comparator intervention (sample size) mean, SD mean, SD mean
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Note that the mean change in each group can be obtained by subtracting the post-
intervention mean from the baseline mean even if it has not been presented explicitly.
However, the information in this tabledoesnotallowus tocalculate theSDof the changes.
We cannot knowwhether the changes were very consistent or very variable across indivi-
duals. Some other information in a paper may help us determine the SD of the changes.
When there is not enough information available in a paper to calculate the SDs for the

changes, they can be imputed, for example, by using change-from-baseline SDs for the
same outcome measure from other studies in the review. However, the appropriateness
of using a SD from another study relies on whether the studies used the same measure-
ment scale, had the same degree of measurement error, had the same time interval
between baseline and post-intervention measurement, and in a similar population.
When statistical analyses comparing the changes themselves are presented (e.g. con-

fidence intervals, SEs, t statistics, P values, F statistics) then the techniques described in
Section 6.5.2.3 may be used. Also note that an alternative to these methods is simply to
use a comparison of post-intervention measurements, which in a randomized trial in
theory estimates the same quantity as the comparison of changes from baseline.
The following alternative technique may be used for calculating or imputing missing

SDs for changes from baseline (Follmann et al 1992, Abrams et al 2005). A typically unre-
ported number known as the correlation coefficient describes how similar the baseline
and post-intervention measurements were across participants. Here we describe
(1) how to calculate the correlation coefficient from a study that is reported in consid-
erable detail and (2) how to impute a change-from-baseline SD in another study, mak-
ing use of a calculated or imputed correlation coefficient. Note that the methods in
(2) are applicable both to correlation coefficients obtained using (1) and to correlation
coefficients obtained in other ways (for example, by reasoned argument). Methods in
(2) should be used sparingly because one can never be sure that an imputed correlation
is appropriate. This is because correlations between baseline and post-intervention
values usually will, for example, decrease with increasing time between baseline
and post-intervention measurements, as well as depending on the outcomes, charac-
teristics of the participants and intervention effects.

1) Calculating a correlation coefficient from a study reported in considerable
detail

Suppose a study presents means and SDs for change as well as for baseline and post-
intervention (‘Final’) measurements, for example:

Baseline Final Change

Experimental intervention (sample size 129) mean = 15.2
SD = 6.4

mean = 16.2
SD = 7.1

mean = 1.0
SD = 4.5

Comparator intervention (sample size 135) mean = 15.7
SD = 7.0

mean = 17.2
SD = 6.9

mean = 1.5
SD = 4.2

An analysis of change from baseline is available from this study, using only the data in
the final column. We can use other data in this study to calculate two correlation
coefficients, one for each intervention group. Let us use the following notation:
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Baseline Final Change

Experimental intervention
(sample size NE)

ME,baseline, SDE,baseline ME,final, SDE,final ME,change, SDE,change

Comparator intervention
(sample size NC)

MC,baseline, SDC,baseline MC,final, SDC,final MC,change, SDC,change

The correlation coefficient in the experimental group, CorrE, can be calculated as:

CorrE =
SD2

E,baseline + SD2
E, final − SD2

E,change

2 × SDE,baseline × SDE, final

and similarly for the comparator intervention, to obtain CorrC. In the example, these
turn out to be

CorrE =
6 42 + 7 12 −4 52

2 × 6 4 × 7 1
= 0 78,

CorrC =
7 02 + 6 92 −4 22

2 × 7 0 × 6 9
= 0 82

When either the baseline or post-intervention SD is unavailable, then it may be substi-
tutedby theother,providing it is reasonable toassumethat the interventiondoesnotalter
the variabilityof theoutcomemeasure. Assuming thecorrelationcoefficients fromthe two
interventiongroupsare reasonably similar toeachother, a simple averagecanbe takenas
a reasonablemeasure of the similarity of baseline and finalmeasurements across all indi-
viduals in thestudy (in theexample, theaverageof0.78and0.82 is0.80). It is recommended
that correlation coefficients be computed formany (if not all) studies in themeta-analysis
and examined for consistency. If the correlation coefficients differ, then either the sample
sizesare toosmall for reliable estimation, the intervention isaffecting thevariability inout-
comemeasures, or the intervention effect depends on baseline level, and the use of aver-
age is best avoided. In addition, if a value less than 0.5 is obtained (correlation coefficients
liebetween–1and1), then there is littlebenefit inusing change frombaseline andananal-
ysis of post-intervention measurements will be more precise.

2) Imputing a change-from-baseline standard deviation using a correlation
coefficient

Now consider a study for which the SD of changes from baseline is missing. When base-
line and post-intervention SDs are known, we can impute the missing SD using an
imputed value, Corr, for the correlation coefficient. The value Corr may be calculated
from another study in the meta-analysis (using the method in (1)), imputed from else-
where, or hypothesized based on reasoned argument. In all of these situations, a sensi-
tivity analysis should be undertaken, trying different values of Corr, to determinewhether
the overall result of the analysis is robust to the use of imputed correlation coefficients.
To impute a SD of the change from baseline for the experimental intervention, use

SDE,change = SD2
E,baseline + SD

2
E, final − 2 × Corr × SDE,baseline × SDE, final

6 Choosing effect measures

166



and similarly for the comparator intervention. Again, if either of the SDs (at baseline
and post-intervention) is unavailable, then one may be substituted by the other as long
as it is reasonable to assume that the intervention does not alter the variability of the
outcome measure.
As an example, consider the following data:

Baseline Final Change

Experimental intervention
(sample size 35)

mean = 12.4
SD = 4.2

mean = 15.2
SD = 3.8

mean = 2.8

Comparator intervention
(sample size 38)

mean = 10.7
SD = 4.0

mean = 13.8
SD = 4.4

mean = 3.1

Using the correlation coefficient calculated in step 1 above of 0.80, we can impute the
change-from-baseline SD in the comparator group as:

SDC,change = 4 02 + 4 42 − 2 × 0 80 × 4 0 × 4 4 = 2 68

6.5.2.9 Missing means
Missing mean values sometimes occur for continuous outcome data. If a median is
available instead, then this will be very similar to the mean when the distribution of
the data is symmetrical, and so occasionally can be used directly in meta-analyses.
However, means and medians can be very different from each other when the data
are skewed, and medians often are reported because the data are skewed (see
Chapter 10, Section 10.5.3). Nevertheless, Hozo and colleagues conclude that the
median may often be a reasonable substitute for a mean (Hozo et al 2005).
Wan and colleagues proposed a formula for imputing a missing mean value based on

the lower quartile, median and upper quartile summary statistics (Wan et al 2014).
Bland derived an approximation for a missing mean using the sample size, the mini-
mum and maximum values, the lower and upper quartile values, and the median
(Bland 2015). Both of these approaches assume normally distributed outcomes but
have been observed to perform well when analysing skewed outcomes; the same sim-
ulation study indicated that the Wan method had better properties (Weir et al 2018).
Caveats about imputing values summarized in Section 6.5.2.7 should be observed.

6.5.2.10 Combining groups
Sometimes it is desirable to combine two reported subgroups into a single group. For
example, a study may report results separately for men and women in each of the inter-
vention groups. The formulae in Table 6.5.a can be used to combine numbers into a
single sample size, mean and SD for each intervention group (i.e. combining across
men and women in each intervention group in this example). Note that the rather com-
plex-looking formula for the SD produces the SD of outcome measurements as if the
combined group had never been divided into two. This SD is different from the usual
pooled SD that is used to compute a confidence interval for a MD or as the denominator
in computing the SMD. This usual pooled SD provides a within-subgroup SD rather than
an SD for the combined group, so provides an underestimate of the desired SD.
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These formulae are also appropriate for use in studies that compared three or more
interventions, two of which represent the same intervention category as defined for the
purposes of the review. In that case, it may be appropriate to combine these two
groups and consider them as a single intervention (see Chapter 23, Section 23.3).
For example, ‘Group 1’ and ‘Group 2’ may refer to two slightly different variants of
an intervention to which participants were randomized, such as different doses of
the same drug.
When there are more than two groups to combine, the simplest strategy is to

apply the above formula sequentially (i.e. combine Group 1 and Group 2 to create
Group ‘1+2’, then combine Group ‘1+2’ and Group 3 to create Group ‘1+2+3’, and so on).

6.6 Ordinal outcome data and measurement scales

6.6.1 Effect measures for ordinal outcomes and measurement scales

Ordinal outcome data arise when each participant is classified in a category and when
the categories have a natural order. For example, a ‘trichotomous’ outcome such as the
classification of disease severity into ‘mild’, ‘moderate’ or ‘severe’, is of ordinal type. As
the number of categories increases, ordinal outcomes acquire properties similar to
continuous outcomes, and probably will have been analysed as such in a randomized
trial.
Measurement scales are one particular type of ordinal outcome frequently used to

measure conditions that are difficult to quantify, such as behaviour, depression and
cognitive abilities. Measurement scales typically involve a series of questions or tasks,
each of which is scored and the scores then summed to yield a total ‘score’. If the items
are not considered of equal importance a weighted sum may be used.
Methods are available for analysing ordinal outcome data that describe effects in

terms of proportional odds ratios (Agresti 1996). Suppose that there are three cate-
gories, which are ordered in terms of desirability such that 1 is the best and 3 the worst.
The data could be dichotomized in two ways: either category 1 constitutes a success

Table 6.5.a Formulae for combining summary statistics across two groups: Group 1 (with sample
size = N1, mean = M1 and SD = SD1) and Group 2 (with sample size = N2, mean = M2 and SD = SD2)

Combined groups

Sample size N1 +N2

Mean N1M1 +N2M2

N1 +N2

SD

N1 −1 SD2
1 + N2 −1 SD2

2 +
N1N2

N1 +N2
M2

1 + M2
2−2M1M2

N1 +N2 −1
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and categories 2 and 3 a failure; or categories 1 and 2 constitute a success and category
3 a failure. A proportional odds model assumes that there is an equal odds ratio for
both dichotomies of the data. Therefore, the odds ratio calculated from the propor-
tional odds model can be interpreted as the odds of success on the experimental inter-
vention relative to comparator, irrespective of how the ordered categories might be
divided into success or failure. Methods (specifically polychotomous logistic regression
models) are available for calculating study estimates of the log odds ratio and its SE.
Methods specific to ordinal data become unwieldy (and unnecessary) when the num-

ber of categories is large. In practice, longer ordinal scales acquire properties similar to
continuous outcomes, and are often analysed as such, whilst shorter ordinal scales are
often made into dichotomous data by combining adjacent categories together until
only two remain. The latter is especially appropriate if an established, defensible
cut-point is available. However, inappropriate choice of a cut-point can induce bias,
particularly if it is chosen to maximize the difference between two intervention arms
in a randomized trial.
Where ordinal scales are summarized using methods for dichotomous data, one of

the two sets of grouped categories is defined as the event and intervention effects are
described using risk ratios, odds ratios or risk differences (see Section 6.4.1). When ordi-
nal scales are summarized using methods for continuous data, the mean score is cal-
culated in each group and intervention effect is expressed as a MD or SMD, or possibly a
RoM (see Section 6.5.1). Difficulties will be encountered if studies have summarized
their results using medians (see Section 6.5.2.5). Methods for meta-analysis of ordinal
outcome data are covered in Chapter 10 (Section 10.7).

6.6.2 Data extraction for ordinal outcomes

The data to be extracted for ordinal outcomes depend on whether the ordinal scale will
be dichotomized for analysis (see Section 6.4), treated as a continuous outcome (see
Section 6.5.2) or analysed directly as ordinal data. This decision, in turn, will be influ-
enced by the way in which study authors analysed and reported their data. It may be
impossible to pre-specify whether data extraction will involve calculation of numbers of
participants above and below a defined threshold, or mean values and SDs. In practice,
it is wise to extract data in all forms in which they are given as it will not be clear which
is the most common form until all studies have been reviewed. In some circumstances
more than one form of analysis may justifiably be included in a review.
Where ordinal data are to be dichotomized and there are several options for selecting

a cut-point (or the choice of cut-point is arbitrary) it is sensible to plan from the outset
to investigate the impact of choice of cut-point in a sensitivity analysis (see Chapter 10,
Section 10.14). To collect the data that would be used for each alternative dichotomi-
zation, it is necessary to record the numbers in each category of short ordinal scales to
avoid having to extract data from a paper more than once. This approach of recording
all categorizations is also sensible when studies used slightly different short ordinal
scales and it is not clear whether there is a cut-point that is common across all the
studies which can be used for dichotomization.
It is also necessary to record the numbers in each category of the ordinal scale for

each intervention group when the proportional odds ratio method will be used (see
Chapter 10, Section 10.7).
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6.7 Count and rate data

6.7.1 Effect measures for counts and rates

Some types of event can happen to a person more than once, for example, a myocar-
dial infarction, an adverse reaction or a hospitalization. It may be preferable, or nec-
essary, to address the number of times these events occur rather than simply whether
each person experienced an event or not (that is, rather than treating them as dichot-
omous data). We refer to this type of data as count data. For practical purposes, count
data may be conveniently divided into counts of rare events and counts of common
events.
Counts of rare events are often referred to as ‘Poisson data’ in statistics. Analyses of

rare events often focus on rates. Rates relate the counts to the amount of time during
which they could have happened. For example, the result of one arm of a clinical trial
could be that 18 myocardial infarctions (MIs) were experienced, across all participants
in that arm, during a period of 314 person-years of follow-up (that is, the total number
of years for which all the participants were collectively followed). The rate is 0.057 per
person-year or 5.7 per 100 person-years. The summary statistic usually used in meta-
analysis is the rate ratio (also abbreviated to RR), which compares the rate of events in
the two groups by dividing one by the other.
Suppose EE events occurred during TE person-years of follow-up in the experimental

intervention group, and EC events during TC person-years in the comparator interven-
tion group. The rate ratio is:

rate ratio =
EE/TE
EC/TC

=
EETC
ECTE

As a ratio measure, this rate ratio should then be log transformed for analysis (see
Section 6.3.2). An approximate SE of the log rate ratio is given by:

SEof ln rate ratio =
1
EE

+
1
EC

A correction of 0.5 may be added to each count in the case of zero events. Note that the
choice of time unit (i.e. patient-months, woman-years, etc) is irrelevant since it is can-
celled out of the rate ratio and does not figure in the SE. However, the units should still
be displayed when presenting the study results.
It is also possible to use a rate difference (or difference in rates) as a summary sta-

tistic, although this is much less common:

rate difference =
EE
TE

−
EC
TC

An approximate SE for the rate difference is:

SEof rate difference =
EE
T2
E
+
EC
T2
C

Counts of more common events, such as counts of decayed, missing or filled teeth, may
often be treated in the same way as continuous outcome data. The intervention effect
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used will be the MD which will compare the difference in the mean number of events
(possibly standardized to a unit time period) experienced by participants in the inter-
vention group compared with participants in the comparator group.

6.7.2 Data extraction for counts and rates

Data that are inherently counts may have been analysed in several ways. Both primary
investigators and review authors will need to decide whether to make the outcome of
interest dichotomous, continuous, time-to-event or a rate (see Section 6.8).
Although it is preferable to decide how count data will be analysed in a review in

advance, the choice often is determined by the format of the available data, and thus
cannot be decided until the majority of studies have been reviewed. Review authors
should plan to extract count data in the form in which they are reported.
Sometimes detailed data on events and person-years at risk are not available, but

results calculated from them are. For example, an estimate of a rate ratio or rate dif-
ferencemay be presented. Such datamay be included inmeta-analyses only when they
are accompanied by measures of uncertainty such as a 95% confidence interval (see
Section 6.3), from which a SE can be obtained and the generic inverse variance method
used for meta-analysis.

6.7.2.1 Extracting counts as dichotomous data
A common error is to attempt to treat count data as dichotomous data. Suppose that in
the example just presented, the 18 MIs in 314 person-years arose from 157 patients
observed on average for 2 years. One may be tempted to quote the results as 18/
157, or even 18/314. This is inappropriate if multiple MIs from the same patient could
have contributed to the total of 18 (say if the 18 arose through 12 patients having single
MIs and 3 patients each having 2 MIs). The total number of events could theoretically
exceed the number of patients, making the results nonsensical. For example, over the
course of one year, 35 epileptic participants in a study could experience a total of
63 seizures.
To consider the outcome as a dichotomous outcome, the author must determine the

number of participants in each intervention group, and the number of participants in
each intervention group who experienced at least one event (or some other appropriate
criterion which classified all participants into one of two possible groups). Any time ele-
ment in the data is lost through this approach, though it may be possible to create a
series of dichotomous outcomes, for example at least one stroke during the first year of
follow-up, at least one stroke during the first two years of follow-up, and so on. It may
be difficult to derive such data from published reports.

6.7.2.2 Extracting counts as continuous data
To extract counts as continuous data (i.e. the mean number of events per patient),
guidance in Section 6.5.2 should be followed, although particular attention should
be paid to the likelihood that the data will be highly skewed.
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6.7.2.3 Extracting counts as time-to-event data
For rare events that can happen more than once, an author may be faced with studies
that treat the data as time-to-first-event. To extract counts as time-to-event data, guid-
ance in Section 6.8.2 should be followed.

6.7.2.4 Extracting counts as rate data
When it is possible to extract the total number of events in each group, and the total
amount of person-time at risk in each group, then count data can be analysed as rates
(see Chapter 10, Section 10.8). Note that the total number of participants is not required
for an analysis of rate data but should be recorded as part of the description of the study.

6.8 Time-to-event data

6.8.1 Effect measures for time-to-event outcomes

Time-to-event data arise when interest is focused on the time elapsing before an event
is experienced. They are known generically as survival data in the medical statistics
literature, since death is often the event of interest, particularly in cancer and heart
disease. Time-to-event data consist of pairs of observations for each individual: first,
a length of time during which no event was observed, and second, an indicator of
whether the end of that time period corresponds to an event or just the end of obser-
vation. Participants who contribute some period of time that does not end in an event
are said to be ‘censored’. Their event-free time contributes information and they are
included in the analysis. Time-to-event data may be based on events other than death,
such as recurrence of a disease event (for example, time to the end of a period free of
epileptic fits) or discharge from hospital.
Time-to-event data can sometimes be analysed as dichotomous data. This requires

the status of all patients in a study to be known at a fixed time point. For example, if all
patients have been followed for at least 12 months, and the proportion who have
incurred the event before 12 months is known for both groups, then a 2×2 table can
be constructed (see Box 6.4.a) and intervention effects expressed as risk ratios, odds
ratios or risk differences.
It is not appropriate to analyse time-to-event data using methods for continuous out-

comes (e.g. using mean times-to-event), as the relevant times are only known for the
subset of participants who have had the event. Censored participants must be
excluded, which almost certainly will introduce bias.
Themost appropriate way of summarizing time-to-event data is to usemethods of sur-

vival analysis and express the intervention effect as a hazard ratio. Hazard is similar in
notion to risk, but is subtly different in that it measures instantaneous risk and may
change continuously (for example, one’s hazard of death changes as one crosses a busy
road). A hazard ratio describes how many times more (or less) likely a participant is to
suffer the event at a particular point in time if they receive the experimental rather than
the comparator intervention. When comparing interventions in a study or meta-analysis,
a simplifying assumption is often made that the hazard ratio is constant across the
follow-up period, even though hazards themselves may vary continuously. This is known
as the proportional hazards assumption.
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6.8.2 Data extraction for time-to-event outcomes

Meta-analysis of time-to-event data commonly involves obtaining individual patient
data from the original investigators, re-analysing the data to obtain estimates of the
hazard ratio and its statistical uncertainty, and then performing a meta-analysis
(see Chapter 26). Conducting a meta-analysis using summary information from pub-
lished papers or trial reports is often problematic as the most appropriate summary
statistics often are not presented.
Where summary statistics are presented, three approaches can be used to obtain

estimates of hazard ratios and their uncertainty from study reports for inclusion in a
meta-analysis using the generic inverse variance methods. For practical guidance,
review authors should consult Tierney and colleagues (Tierney et al 2007).
The first approach can be used when trialists have analysed the data using a Cox

proportional hazards model (or some other regression models for survival data).
Cox models produce direct estimates of the log hazard ratio and its SE, which are suf-
ficient to perform a generic inverse variance meta-analysis. If the hazard ratio is quoted
in a report together with a confidence interval or P value, an estimate of the SE can be
obtained as described in Section 6.3.
The second approach is to estimate the hazard ratio approximately using statistics

computed during a log-rank analysis. Collaboration with a knowledgeable statistician
is advised if this approach is followed. The log hazard ratio (experimental relative to
comparator) is estimated by (O − E)/V, which has SE = 1/√V, where O is the observed
number of events on the experimental intervention, E is the log-rank expected number
of events on the experimental intervention, O − E is the log-rank statistic and V is the
variance of the log-rank statistic (Simmonds et al 2011).
These statistics sometimes can be extracted from quoted statistics and survival curves

(Parmar et al 1998, Williamson et al 2002). Alternatively, use can sometimes be made of
aggregated data for each intervention group in each trial. For example, suppose that the
data comprise the number of participants who have the event during the first year, sec-
ond year, etc, and the number of participants who are event free and still being followed
up at the end of each year. A log-rank analysis can be performed on these data, to pro-
vide the O – E and V values, although careful thought needs to be given to the handling of
censored times. Because of the coarse grouping the log hazard ratio is estimated only
approximately. In some reviews it has been referred to as a log odds ratio (Early Breast
Cancer Trialists’ Collaborative Group 1990). When the time intervals are large, a more
appropriate approach is one based on interval-censored survival (Collett 1994).
The third approach is to reconstruct approximate individual participant data from

published Kaplan-Meier curves (Guyot et al 2012). This allows reanalysis of the data
to estimate the hazard ratio, and also allows alternative approaches to analysis of
the time-to-event data.

6.9 Conditional outcomes only available for
subsets of participants

Some study outcomes may only be applicable to a proportion of participants. For
example, in subfertility trials the proportion of clinical pregnancies that miscarry
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following treatment is often of interest to clinicians. By definition this outcome
excludes participants who do not achieve an interim state (clinical pregnancy), so
the comparison is not of all participants randomized. As a general rule it is better to
re-define such outcomes so that the analysis includes all randomized participants.
In this example, the outcome could be whether the woman has a ‘successful pregnancy’
(becoming pregnant and reaching, say, 24 weeks or term). If miscarriage is the outcome
of interest, then appropriate analysis can be performed using individual participant
data, but is rarely possible using summary data. Another example is provided by a mor-
bidity outcome measured in the medium or long term (e.g. development of chronic
lung disease), when there is a distinct possibility of a death preventing assessment
of the morbidity. A convenient way to deal with such situations is to combine the out-
comes, for example as ‘death or chronic lung disease’.
Challenges arise when a continuous outcome (say a measure of functional ability or

quality of life following stroke) is measured only on those who survive to the end of
follow-up. Two unsatisfactory options are: (i) imputing zero functional ability scores
for those who die (which may not appropriately represent the death state and will make
the outcome severely skewed), and (ii) analysing the available data (which must be inter-
preted as a non-randomized comparison applicable only to survivors). The results of
these analyses must be interpreted taking into account any disparity in the proportion
of deaths between the two intervention groups. More sophisticated options are available,
which may increasingly be applied by trial authors (Colantuoni et al 2018).
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Considering bias and conflicts of interest
among the included studies
Isabelle Boutron, Matthew J Page, Julian PT Higgins, Douglas G Altman, Andreas
Lundh, Asbjørn Hróbjartsson; on behalf of the Cochrane Bias Methods Group

KEY POINTS

• Review authors should seek to minimize bias. We draw a distinction between two
places in which bias should be considered. The first is in the results of the individual
studies included in a systematic review. The second is in the result of the meta-
analysis (or other synthesis) of findings from the included studies.

• Problems with the design and execution of individual studies of healthcare interven-
tions raise questions about the internal validity of their findings; empirical evidence
provides support for this concern.

• An assessment of the internal validity of studies included in a Cochrane Review should
emphasize the risk of bias in their results, that is, the risk that they will over-estimate
or under-estimate the true intervention effect.

• Results of meta-analyses (or other syntheses) across studies may additionally be
affected by bias due to the absence of results from studies that should have been
included in the synthesis.

• Review authors should consider source of funding and conflicts of interest of authors
of the study, which may inform the exploration of directness and heterogeneity of
study results, assessment of risk of bias within studies, and assessment of risk of bias
in syntheses owing to missing results.

7.1 Introduction

Cochrane Reviews seek to minimize bias. We define bias as a systematic error, or devi-
ation from the truth, in results. Biases can lead to under-estimation or over-estimation
of the true intervention effect and can vary in magnitude: some are small (and trivial
compared with the observed effect) and some are substantial (so that an apparent
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finding may be due entirely to bias). A source of bias may even vary in direction across
studies. For example, bias due to a particular design flaw such as lack of allocation
sequence concealment may lead to under-estimation of an effect in one study but
over-estimation in another (Jüni et al 2001).
Bias can arise because of the actions of primary study investigators or because of

the actions of review authors, or may be unavoidable due to constraints on how
research can be undertaken in practice. Actions of authors can, in turn, be influenced
by conflicts of interest. In this chapter we introduce issues of bias in the context of a
Cochrane Review, covering both biases in the results of included studies and biases in
the results of a synthesis. We introduce the general principles of assessing the risk
that bias may be present, as well as the presentation of such assessments and their
incorporation into analyses. Finally, we address how source of funding and conflicts
of interest of study authors may impact on study design, conduct and reporting.
Conflicts of interest held by review authors are also of concern; these should
be addressed using editorial procedures and are not covered by this chapter (see
Chapter 1, Section 1.3).
We draw a distinction between two places in which bias should be considered.

The first is in the results of the individual studies included in a systematic review.
Since the conclusions drawn in a review depend on the results of the included
studies, if these results are biased, then a meta-analysis of the studies will produce
a misleading conclusion. Therefore, review authors should systematically take into
account risk of bias in results of included studies when interpreting the results of
their review.
The second place in which bias should be considered is the result of themeta-analysis

(or other synthesis) of findings from the included studies. This result will be affected by
biases in the included studies, and may additionally be affected by bias due to the
absence of results from studies that should have been included in the synthesis.
Specifically, the conclusions of the review may be compromised when decisions about
how, when and where to report results of eligible studies are influenced by the nature
and direction of the results. This is the problem of ‘non-reporting bias’ (also described
as ‘publication bias’ and ‘selective reporting bias’). There is convincing evidence that
results that are statistically non-significant and unfavourable to the experimental
intervention are less likely to be published than statistically significant results, and
hence are less easily identified by systematic reviews (see Section 7.2.3). This leads
to results being missing systematically from syntheses, which can lead to syntheses
over-estimating or under-estimating the effects of an intervention. For this reason,
the assessment of risk of bias due to missing results is another essential component
of a Cochrane Review.
Both the risk of bias in included studies and risk of bias due to missing results may be

influenced by conflicts of interest of study investigators or funders. For example,
investigators with a financial interest in showing that a particular drug works may
exclude participants who did not respond favourably to the drug from the analysis,
or fail to report unfavourable results of the drug in a manuscript.
Further discussion of assessing risk of bias in the results of an individual rando-

mized trial is available in Chapter 8, and of a non-randomized study in Chapter 25.
Further discussion of assessing risk of bias due to missing results is available in
Chapter 13.
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7.1.1 Why consider risk of bias?

There is good empirical evidence that particular features of the design, conduct and
analysis of randomized trials lead to bias on average, and that some results of rando-
mized trials are suppressed from dissemination because of their nature. However, it is
usually impossible to know to what extent biases have affected the results of a partic-
ular study or analysis (Savović et al 2012). For these reasons, it is more appropriate to
consider whether a result is at risk of bias rather than claiming with certainty that it is
biased. Most recent tools for assessing the internal validity of findings from quantitative
studies in health now focus on risk of bias, whereas previous tools targeted the broader
notion of ‘methodological quality’ (see also Section 7.1.2).
Bias should not be confused with imprecision. Bias refers to systematic error,

meaning that multiple replications of the same study would reach the wrong answer
on average. Imprecision refers to random error, meaning that multiple replications of
the same study will produce different effect estimates because of sampling variation,
but would give the right answer on average. Precision depends on the number of par-
ticipants and (for dichotomous outcomes) the number of events in a study, and is
reflected in the confidence interval around the intervention effect estimate from each
study. The results of smaller studies are subject to greater sampling variation and
hence are less precise. A small trial may be at low risk of bias yet its result may be
estimated very imprecisely, with a wide confidence interval. Conversely, the results
of a large trial may be precise (narrow confidence interval) but also at a high risk
of bias.
Bias should also not be confused with the external validity of a study, that is, the

extent to which the results of a study can be generalized to other populations and set-
tings. For example, a study may enrol participants who are not representative of the
population who most commonly experience a particular clinical condition. The results
of this study may have limited generalizability to the wider population, but will not nec-
essarily give a biased estimate of the effect in the highly specific population on which it
is based. Factors influencing the applicability of an included study to the review ques-
tion are covered in Chapters 14 and 15.

7.1.2 From quality scales to domain-based tools

Critical assessment of included studies has long been an important component of a
systematic review or meta-analysis, and methods have evolved greatly over time. Early
appraisal tools were structured as quality ‘scales’, which combined information on
several features into a single score. However, this approach was questioned after it
was revealed that the type of quality scale used could significantly influence the inter-
pretation of the meta-analysis results (Jüni et al 1999). That is, risk ratios of trials
deemed ‘high quality’ by some scales suggested that the experimental intervention
was superior, whereas when trials were deemed ‘high quality’ by other scales, the
opposite was the case. The lack of a theoretical framework underlying the concept
of ‘quality’ assessed by these scales resulted in tools mixing different concepts such
as risk of bias, imprecision, relevance, applicability, ethics, and completeness of report-
ing. Furthermore, the summary score combining these components is difficult to inter-
pret (Jüni et al 2001).
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In 2008, Cochrane released the Cochrane risk-of-bias (RoB) tool, which was slightly
revised in 2011 (Higgins et al 2011). The tool was built on the following key principles.

1) The tool focused on a single concept: risk of bias. It did not consider other concepts
such as the quality of reporting, precision (the extent to which results are free of
random errors), or external validity (directness, applicability or generalizability).

2) The tool was based on a domain-based (or component) approach, in which different
types of bias are considered in turn. Users were asked to assess seven domains: ran-
dom sequence generation, allocation sequence concealment, blinding of partici-
pants and personnel, blinding of outcome assessment, incomplete outcome
data, selective outcome reporting, and other sources of bias. There was no scoring
system in the tool.

3) The domains were selected to characterize mechanisms through which bias may be
introduced into a trial, based on a combination of theoretical considerations and
empirical evidence.

4) The assessment of risk of bias required judgement and should thus be completely
transparent. Review authors provided a judgement for each domain, rated as ‘low’,
‘high’ or ‘unclear’ risk of bias, and provided reasons to support their judgement.

This tool has been implemented widely both in Cochrane Reviews and non-Cochrane
reviews (Jørgensen et al 2016). However, user testing has raised some concerns related
to the modest inter-rater reliability of some domains (Hartling et al 2013), the need to
rethink the theoretical background of the ‘selective outcome reporting’ domain (Page
and Higgins 2016), the misuse of the ‘other sources of bias’ domain (Jørgensen et al
2016), and the lack of appropriate consideration of the risk-of-bias assessment in
the analyses and interpretation of results (Hopewell et al 2013).
To address these concerns, a new version of the Cochrane risk-of-bias tool, RoB 2,

has been developed. The tool, described in Chapter 8, includes important innovations
in the assessment of risk of bias in randomized trials. The structure of the tool is sim-
ilar to that of the ROBINS-I tool for non-randomized studies of interventions
(described in Chapter 25). Both tools include a fixed set of bias domains, which
are intended to cover all issues that might lead to a risk of bias. To help reach
risk-of-bias judgements, a series of ‘signalling questions’ are included within each
domain. Also, the assessment is typically specific to a particular result. This is because
the risk of bias may differ depending on how an outcome is measured and how the
data for the outcome are analysed. For example, if two analyses for a single outcome
are presented, one adjusted for baseline prognostic factors and the other not, then
the risk of bias in the two results may be different. The risk of bias in at least one
specific result for each included study should be assessed in all Cochrane Reviews
(MECIR Box 7.1.a).

7.2 Empirical evidence of bias

Where possible, assessments of risk of bias in a systematic review should be informed
by evidence. The following sections summarize some of the key evidence about bias
that informs our guidance on risk-of-bias assessments in Cochrane Reviews.
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7.2.1 Empirical evidence of bias in randomized trials:meta-epidemiologic studies

Many empirical studies have shown that methodological features of the design, conduct
and reporting of studies are associated with biased intervention effect estimates. This
evidence is mainly based on meta-epidemiologic studies using a large collection
of meta-analyses to investigate the association between a reported methodological
characteristic and intervention effect estimates in randomized trials. The first meta-
epidemiologic study was published in 1995. It showed exaggerated intervention effect
estimates when intervention allocation methods were inadequate or unclear and when
trials were not described as double-blinded (Schulz et al 1995). These results were sub-
sequently confirmed in several meta-epidemiologic studies, showing that lack of report-
ing of adequate random sequence generation, allocation sequence concealment, double
blinding and more specifically blinding of outcome assessors tend to yield higher inter-
vention effect estimates on average (Dechartres et al 2016a, Page et al 2016).
Evidence from meta-epidemiologic studies suggests that the influence of methodo-

logical characteristics such as lack of blinding and inadequate allocation sequence con-
cealment varies by the type of outcome. For example, the extent of over-estimation is
larger when the outcome is subjectively measured (e.g. pain) and therefore likely to be
influenced by knowledge of the intervention received, and lower when the outcome is
objectively measured (e.g. death) and therefore unlikely to be influenced by knowledge
of the intervention received (Wood et al 2008, Savović et al 2012).

7.2.2 Trial characteristics explored in meta-epidemiologic studies that are
not considered sources of bias

Researchers have also explored the influence of other trial characteristics that are not
typically considered a threat to a direct causal inference for intervention effect

MECIR Box 7.1.a Relevant expectations for conduct of intervention reviews

C52: Assessing risk of bias (Mandatory)

Assess the risk of bias in at least one specific
result for each included study. For
randomized trials, the RoB 2 tool should be
used, involving judgements and support for
those judgements across a series of
domains of bias, as described in this
Handbook.

The risk of bias in at least one specific
result for every included study must be
explicitly considered to determine the
extent to which its findings can be
believed, noting that risks of bias might
vary by result. Recommendations for
assessing bias in randomized studies
included in Cochrane Reviews are now
well established. The RoB 2 tool – as
described in thisHandbook –must be used
for all randomized trials in new reviews.
This does not prevent other tools
being used.
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estimates. Recent meta-epidemiologic studies have shown that effect estimates were
lower in prospectively registered trials compared with trials not registered or registered
retrospectively (Dechartres et al 2016b, Odutayo et al 2017). Others have shown an
association between sample size and effect estimates, with larger effects observed
in smaller trials (Dechartres et al 2013). Studies have also shown a consistent associ-
ation between intervention effect and single or multiple centre status, with single-
centre trials showing larger effect estimates, even after controlling for sample size
(Dechartres et al 2011).
In some of these cases, plausible bias mechanisms can be hypothesized. For exam-

ple, both the number of centres and sample size may be associated with intervention
effect estimates because of non-reporting bias (e.g. single-centre studies and small
studies may be more likely to be published when they have larger, statistically signif-
icant effects than when they have smaller, non-significant effects); or single-centre and
small studies may be subject to less stringent controls and checks. However, alternative
explanations are possible, such as differences in factors relating to external validity
(e.g. participants in small, single-centre trials may be more homogenous than partici-
pants in other trials). Because of this, these factors are not directly captured by the risk-
of-bias tools recommended by Cochrane. Review authors should record these charac-
teristics systematically for each study included in the systematic review (e.g. in the
‘Characteristics of included studies’ table) where appropriate. For example, trial regis-
tration status should be recorded for all randomized trials identified.

7.2.3 Empirical evidence of non-reporting biases

A list of the key types of non-reporting biases is provided in Table 7.2.a. In the sections
that follow, we provide some of the evidence that underlies this list.

Table 7.2.a Definitions of some types of non-reporting biases

Type of reporting bias Definition

Publication bias The publication or non-publication of research findings, depending on
the nature and direction of the results.

Time-lag bias The rapid or delayed publication of research findings, depending on the
nature and direction of the results.

Language bias The publication of research findings in a particular language,
depending on the nature and direction of the results.

Citation bias The citation or non-citation of research findings, depending on the
nature and direction of the results.

Multiple (duplicate)
publication bias

Themultiple or singular publication of research findings, depending on
the nature and direction of the results.

Location bias The publication of research findings in journals with different ease of
access or levels of indexing in standard databases, depending on the
nature and direction of results.

Selective (non-) reporting
bias

The selective reporting of some outcomes or analyses, but not others,
depending on the nature and direction of the results.
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7.2.3.1 Selective publication of study reports
There is convincing evidence that the publication of a study report is influenced by the
nature and direction of its results (Chan et al 2014). Direct empirical evidence of such
selective publication (or ‘publication bias’) is obtained from analysing a cohort of stud-
ies in which there is a full accounting of what is published and unpublished (Franco et al
2014). Schmucker and colleagues analysed the proportion of published studies in
39 cohorts (including 5112 studies identified from research ethics committees and
12,660 studies identified from trials registers) (Schmucker et al 2014). Only half of
the studies were published, and studies with statistically significant results were more
likely to be published than those with non-significant results (odds ratio (OR) 2.8; 95%
confidence interval (CI) 2.2 to 3.5) (Schmucker et al 2014). Similar findings were
observed by Scherer and colleagues, who conducted a systematic review of 425 studies
that explored subsequent full publication of research initially presented at biomedical
conferences (Scherer et al 2018). Only 37% of the 307,028 abstracts presented at con-
ferences were published later in full (60% for randomized trials), and abstracts with
statistically significant results in favour of the experimental intervention (versus results
in favour of the comparator intervention) were more likely to be published in full (OR
1.17; 95% CI 1.07 to 1.28) (Scherer et al 2018). By examining a cohort of 164 trials sub-
mitted to the FDA for regulatory approval, Rising and colleagues found that trials with
favourable results were more likely than those with unfavourable results to be pub-
lished (OR 4.7; 95% CI 1.33 to 17.1) (Rising et al 2008).
In addition to being more likely than unpublished randomized trials to have statis-

tically significant results, published trials also tend to report larger effect estimates in
favour of the experimental intervention than trials disseminated elsewhere (e.g. in con-
ference abstracts, theses, books or government reports) (ratio of odds ratios 0.90; 95%
CI 0.82 to 0.98) (Dechartres et al 2018). This bias has been observed in studies in many
scientific disciplines, including the medical, biological, physical and social sciences
(Polanin et al 2016, Fanelli et al 2017).

7.2.3.2 Other types of selective dissemination of study reports
The length of time between completion of a study and publication of its results can be
influenced by the nature and direction of the study results (‘time-lag bias’). Several
studies suggest that randomized trials with results that favour the experimental inter-
vention are published in journals about one year earlier on average than trials with
unfavourable results (Hopewell et al 2007, Urrutia et al 2016).
Investigators working in a non-English speaking country may publish some of their

work in local, non-English language journals, which may not be indexed in the major
biomedical databases (‘language bias’). It has long been assumed that investigators are
more likely to publish positive studies in English-language journals than in local, non-
English language journals (Morrison et al 2012). Contrary to this belief, Dechartres and
colleagues identified larger intervention effects in randomized trials published in a lan-
guage other than English than in English (ratio of odds ratios 0.86; 95% CI 0.78 to 0.95),
which the authors hypothesized may be related to the higher risk of bias observed in
the non-English language trials (Dechartres et al 2018). Several studies have found that
in most cases there were no major differences between summary estimates of meta-
analyses restricted to English-language studies compared with meta-analyses includ-
ing studies in languages other than English (Morrison et al 2012, Dechartres et al 2018).
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The number of times a study report is cited appears to be influenced by the nature
and direction of its results (‘citation bias’). In a meta-analysis of 21 methodological
studies, Duyx and colleagues observed that articles with statistically significant results
were cited 1.57 times the rate of articles with non-significant results (rate ratio 1.57;
95% CI 1.34 to 1.83) (Duyx et al 2017). They also found that articles with results in a
positive direction (regardless of their statistical significance) were cited at 2.14 times
the rate of articles with results in a negative direction (rate ratio 2.14; 95% CI 1.29
to 3.56) (Duyx et al 2017). In an analysis of 33,355 studies across all areas of science,
Fanelli and colleagues found that the number of citations received by a study was pos-
itively correlated with the magnitude of effects reported (Fanelli et al 2017). If positive
studies aremore likely to be cited, theymay bemore likely to be located, and thusmore
likely to be included in a systematic review.
Investigators may report the results of their study across multiple publications; for

example, Blümle and colleagues found that of 807 studies approved by a research eth-
ics committee in Germany from 2000 to 2002, 135 (17%) had more than one corre-
sponding publication (Blümle et al 2014). Evidence suggests that studies with
statistically significant results or larger treatment effects are more likely to lead to mul-
tiple publications (‘multiple (duplicate) publication bias’) (Easterbrook et al 1991,
Tramèr et al 1997), which makes it more likely that they will be located and included
in a meta-analysis.
Research suggests that the accessibility or level of indexing of journals is associated

with effect estimates in trials (‘location bias’). For example, a study of 61 meta-analyses
found that trials published in journals indexed in Embase but not MEDLINE yielded
smaller effect estimates than trials indexed in MEDLINE (ratio of odds ratios 0.71;
95% CI 0.56 to 0.90); however, the risk of bias due to not searching Embase may be
minor, given the lower prevalence of Embase-unique trials (Sampson et al 2003). Also,
Moher and colleagues estimate that 18,000 biomedical research studies are tucked
away in ‘predatory’ journals, which actively solicit manuscripts and charge publications
fees without providing robust editorial services (such as peer review and archiving or
indexing of articles) (Moher et al 2017). The direction of bias associated with non-
inclusion of studies published in predatory journals depends on whether they are pub-
lishing valid studies with null results or studies whose results are biased towards find-
ing an effect.

7.2.3.3 Selective dissemination of study results
The need to compress a substantial amount of information into a few journal pages,
along with a desire for the most noteworthy findings to be published, can lead to omis-
sion from publication of results for some outcomes because of the nature and direction
of the findings. Particular results may not be reported at all (‘selective non-reporting
of results’) or be reported incompletely (‘selective under-reporting of results’, e.g.
stating only that “P > 0.05” rather than providing summary statistics or an effect esti-
mate and measure of precision) (Kirkham et al 2010). In such instances, the data nec-
essary to include the results in a meta-analysis are unavailable. Excluding such studies
from the synthesis ignores the information that no significant difference was found,
and biases the synthesis towards finding a difference (Schmid 2016).
Evidence of selective non-reporting and under-reporting of results in randomized

trials has been obtained by comparing what was pre-specified in a trial protocol with

7 Considering bias and conflicts of interest

184



what is available in the final trial report. In two landmark studies, Chan and collea-
gues found that results were not reported for at least one benefit outcome in 71% of
randomized trials in one cohort (Chan et al 2004a) and 88% in another (Chan et al
2004b). Results were under-reported (e.g. stating only that “P > 0.05”) for at least
one benefit outcome in 92% of randomized trials in one cohort and 96% in another.
Statistically significant results for benefit outcomes were twice as likely as
non-significant results to be completely reported (range of odds ratios 2.4 to 2.7)
(Chan et al 2004a, Chan et al 2004b). Reviews of studies investigating selective
non-reporting and under-reporting of results suggest that it is more common for
outcomes defined by trialists as secondary rather than primary (Jones et al 2015,
Li et al 2018).
Selective non-reporting and under-reporting of results occurs for both benefit and

harm outcomes. Examining the studies included in a sample of 283 Cochrane Reviews,
Kirkham and colleagues suspected that 50% of 712 studies with results missing for the
primary benefit outcome of the review were missing because of the nature of the
results (Kirkham et al 2010). This estimate was slightly higher (63%) in 393 studies with
results missing for the primary harm outcome of 322 systematic reviews (Saini
et al 2014).

7.3 General procedures for risk-of-bias assessment

7.3.1 Collecting information for assessment of risk of bias

Information for assessing the risk of bias can be found in several sources, including
published articles, trials registers, protocols, clinical study reports (i.e. documents pre-
pared by pharmaceutical companies, which provide extensive detail on trial methods
and results), and regulatory reviews (see also Chapter 5, Section 5.2).
Published articles are the most frequently used source of information for assessing

risk of bias. This source is theoretically very valuable because it has been reviewed by
editors and peer reviewers, who ideally will have prompted authors to report their
methods transparently. However, the completeness of reporting of published articles
is, in general, quite poor, and essential information for assessing risk of bias is fre-
quently missing. For example, across 20,920 randomized trials included in 2001
Cochrane Reviews, the percentage of trials at unclear risk of bias was 49% for random
sequence generation, 57% for allocation sequence concealment; 31% for blinding and
25% for incomplete outcome data (Dechartres et al 2017). Nevertheless, more recent
trials were less likely to be judged at unclear risk of bias, suggesting that reporting is
improving over time (Dechartres et al 2017).
Trials registers can be a useful source of information to obtain results of studies that

have not yet been published (Riveros et al 2013). However, registers typically report
only limited information about methods used in the trial to inform an assessment of
risk of bias (Wieseler et al 2012). Protocols, which outline the objectives, design, meth-
odology, statistical consideration and procedural aspects of a clinical study, may pro-
vide more detailed information on the methods used than that provided in the results
report of a study. They are increasingly being published or made available by journals
who publish the final report of a study. Protocols are also available in some trials
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registers, particularly ClinicalTrials.gov (Zarin et al 2016), on websites dedicated to data
sharing such as ClinicalStudyDataRequest.com, or from drug regulatory authorities
such as the European Medicines Agency. Clinical study reports are another highly useful
source of information (Wieseler et al 2012, Jefferson et al 2014).
It may be necessary to contact study investigators to request access to the trial

protocol, to clarify incompletely reported information or understand discrepant infor-
mation available in different sources. To reduce the risk that study authors provide
overly positive answers to questions about study design and conduct, we suggest
review authors use open-ended questions. For example, to obtain information about
the randomization process, review authors might consider asking: ‘What process did
you use to assign each participant to an intervention?’ To obtain information about
blinding of participants, it might be useful to request something like, ‘Please describe
anymeasures used to ensure that trial participants were unaware of the intervention to
which they were assigned’. More focused questions can then be asked to clarify remain-
ing uncertainties.

7.3.2 Performing assessments of risk of bias

Risk-of-bias assessments in Cochrane Reviews should be performed independently
by at least two people (MECIR Box 7.3.a). Doing so can minimize errors in assess-
ments and ensure that the judgement is not influenced by a single person’s precon-
ceptions. Review authors should also define in advance the process for resolving
disagreements. For example, both assessors may attempt to resolve disagreements
via discussion, and if that fails, call on another author to adjudicate the final judge-
ment. Review authors assessing risk of bias should have either content or methodo-
logical expertise (or both), and an adequate understanding of the relevant
methodological issues addressed by the risk-of-bias tool. There is some evidence that
intensive, standardized training may significantly improve the reliability of risk-of-
bias assessments (da Costa et al 2017). To improve reliability of assessments, a review
team could consider piloting the risk-of-bias tool on a sample of articles. This may
help ensure that criteria are applied consistently and that consensus can be reached.
Three to six papers should provide a suitable sample for this. We do not recommend
the use of statistical measures of agreement (such as kappa statistics) to describe the
extent to which assessments by multiple authors were the same. It is more important
that reasons for any disagreement are explored and resolved.

MECIR Box 7.3.a Relevant expectations for conduct of intervention reviews

C53: Assessing risk of bias in duplicate (Mandatory)

Use (at least) two people working
independently to apply the risk-of-bias tool
to each result in each included study, and
define in advance the process for resolving
disagreements.

Duplicating the risk-of-bias assessment
reduces both the risk of making mistakes
and the possibility that assessments are
influenced by a single person’s biases.
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The process for reaching risk-of-bias judgements should be transparent. In other
words, readers should be able to discern why a particular result was rated at low risk
of bias and why another was rated at high risk of bias. This can be achieved by review
authors providing information in risk-of-bias tables to justify the judgement made.
Such information may include direct quotes from study reports that articulate which
methods were used, and an explanation for why such a method is flawed. Cochrane
Review authors are expected to record the source of information (including the precise
location within a document) that informed each risk-of-bias judgement (MECIR
Box 7.3.b).
Many results are often available in trial reports, so review authors should think care-

fully about which results to assess for risk of bias. We suggest that review authors
assess risk of bias in results for outcomes that are included in the ‘Summary of findings’
table (MECIR Box 7.3.c). Such tables typically include seven or fewer patient-important
outcomes (for more details on constructing a ‘Summary of findings’ table, see
Chapter 14).
Novel methods for assessing risk of bias are emerging, including machine learning

systems designed to semi-automate risk-of-bias assessment (Marshall et al 2016,
Millard et al 2016). These methods involve using a sample of previous risk-of-bias
assessments to train machine learning models to predict risk of bias from PDFs of study
reports, and extract supporting text for the judgements. Some of these approaches
showed good performance for identifying relevant sentences to identify information
pertinent to risk of bias from the full-text content of research articles describing clinical
trials. A study showed that about one-third of articles could be assessed by just one
reviewer if such a tool is used instead of the two required reviewers (Millard et al
2016). However, reliability in reaching judgements about risk of bias compared with
human reviewers was slight to moderate depending on the domain assessed (Gates
et al 2018).

MECIR Box 7.3.b Relevant expectations for conduct of intervention reviews

C54: Supporting judgements of risk of bias (Mandatory)

Justify judgements of risk of bias (high, low
and some concerns) and provide this
information in the risk-of-bias tables (as
‘Support for judgement’).

Providing support for the judgement
makes the process transparent.

C55: Providing sources of information for risk-of-bias assessments (Mandatory)

Collect the source of information for each
risk-of-bias judgement (e.g. quotation,
summary of information from a trial report,
correspondence with investigator, etc).
Where judgements are based on
assumptions made on the basis of
information provided outside publicly
available documents, this should be stated.

Readers, editors and referees should
have the opportunity to see for
themselves from where supports for
judgements have been obtained.

7.3 General procedures for risk-of-bias assessment
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7.4 Presentation of assessment of risk of bias

Risk-of-bias assessments may be presented in a Cochrane Review in various ways. A full
risk-of-bias table includes responses to each signalling question within each domain
(see Chapter 8, Section 8.2) and risk-of-bias judgements, along with text to support
each judgement. Such full tables are lengthy and are unlikely to be of great interest
to readers, so should generally not be included in the main body of the review. It is
nevertheless good practice to make these full tables available for reference.
We recommend the use of forest plots that present risk-of-bias judgements alongside

the results of each study included in a meta-analysis (see Figure 7.4.a). This will give a
visual impression of the relative contributions of the studies at different levels of risk of
bias, especially when considered in combination with the weight given to each study.
This may assist authors in reaching overall conclusions about the risk of bias of the
synthesized result, as discussed in Section 7.6. Optionally, forest plots or other tables
or graphs can be ordered (stratified) by judgements on each risk-of-bias domain or by
the overall risk-of-bias judgement for each result.
Review authors may wish to generate bar graphs illustrating the relative contribu-

tions of studies with each of risk-of-bias judgement (low risk of bias, some concerns,
and high risk of bias). When dividing up a bar into three regions for this purpose, it
is preferable to determine the regions according to statistical information (e.g. preci-
sion, or weight in a meta-analysis) arising from studies in each category, rather than
according to the number of studies in each category.

7.5 Summary assessments of risk of bias

Review authors should make explicit summary judgements about the risk of bias for
important results both within studies and across studies (see MECIR Box 7.5.a). The
tools currently recommended by Cochrane for assessing risk of bias within included

MECIR Box 7.3.c Relevant expectations for conduct of intervention reviews

C56: Ensuring results of outcomes included in ‘Summary of findings’ tables are assessed
for risk of bias (Highly desirable)

Ensure that assessments of risk of bias
cover the outcomes included in the
‘Summary of findings’ table.

It may not be feasible to assess the risk of
bias in every single result available across
the included studies, particularly if a large
number of studies and results are
available. Review author should strive to
assess risk of bias in the results of
outcomes that are most important to
patients. Such outcomes will typically be
included in ‘Summary of findings’ tables,
which present the findings of seven or
fewer patient-important outcomes.
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Figure 7.4.a Forest plot displaying RoB 2 risk-of-bias judgements for each randomized trial included in a meta-analysis of mental health first aid (MHFA)
knowledge scores. Adapted from Morgan et al (2018).
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studies (RoB 2 and ROBINS-I) produce an overall judgement of risk of bias for the result
being assessed. These overall judgements are derived from assessments of individual
bias domains as described, for example, in Chapter 8 (Section 8.2).
To summarize risk of bias across study results in a synthesis, review authors should fol-

low guidance for assessing certainty in the body of evidence (e.g. using GRADE), as
described in Chapter 14 (Section 14.2.2). When a meta-analysis is dominated by study
resultsathigh riskofbias, thecertaintyof thebodyofevidencemaybe ratedasbeing lower
than if suchstudieswereexcluded fromthemeta-analysis.Section7.6discussessomepos-
sible courses of action that may be preferable to retaining such studies in the synthesis.

7.6 Incorporating assessment of risk of bias into analyses

7.6.1 Introduction

When performing and presenting meta-analyses, review authors should address risk of
bias in the results of included studies (MECIR Box 7.6.a). It is not appropriate to present

MECIR Box 7.5.a Relevant expectations for conduct of intervention reviews

C57: Summarizing risk-of-bias assessments (Highly desirable)

Summarize the risk of bias for each
key outcome for each study.

This reinforces the linkbetweenthecharacteristics
of the study design and their possible impact on
the results of the study, and is an important
prerequisite for the GRADE approach to assessing
the certainty of the body of evidence.

MECIR Box 7.6.a Relevant expectations for conduct of intervention reviews

C58: Addressing risk of bias in the synthesis (Highly desirable)

Address risk of bias in the synthesis
(whether quantitative or non-quantitative).
For example, present analyses stratified
according to summary risk of bias, or
restricted to studies at low risk of bias.

Review authors should consider how
study biases affect results. This is useful
in determining the strength of
conclusions and how future research
should be designed and conducted.

C59: Incorporating assessments of risk of bias (Mandatory)

If randomized trials have been assessed
using one or more tools in addition to the
RoB 2 tool, use the RoB 2 tool as the
primary assessment of bias for interpreting
results, choosing the primary analysis, and
drawing conclusions.

For consistency of approach across
Cochrane Reviews of Interventions, the
RoB 2 tool should take precedence when
two or more tools are used for assessing
risk of bias in randomized trials. The RoB
2 tool also feeds directly into the GRADE
approach for assessing the certainty of
the body of evidence.
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analyses and interpretations while ignoring flaws identified during the assessment of risk
of bias. In this section we present suitable strategies for addressing risk of bias in results
from studies included in ameta-analysis, either in order to understand the impact of bias
or to determine a suitable estimate of intervention effect (Section 7.6.2). For the latter,
decisions often involve a trade-off between bias and precision. A meta-analysis that
includes all eligible studies may produce a result with high precision (narrow confidence
interval) but be seriously biased because of flaws in the conduct of some of the studies.
However, includingonly thestudiesat lowriskofbias inall domainsassessedmayproduce
a result that is unbiased but imprecise (if there are only a few studies at low risk of bias).

7.6.2 Including risk-of-bias assessments in analyses

Broadly speaking, studies at high risk of bias should be given reduced weight in
meta-analyses compared with studies at low risk of bias. However, methodological
approaches for weighting studies according to their risk of bias are not sufficiently well
developed that they can currently be recommended for use in Cochrane Reviews.
When risks of bias vary across studies in a meta-analysis, four broad strategies are

available to incorporate assessments into the analysis. The choice of strategy will influ-
ence which result to present as the main finding for a particular outcome (e.g. in the
Abstract). The intended strategy should be described in the protocol for the review.

1) Primary analysis restricted to studies at low risk of bias

The first approach involves restricting the primary analysis to studies judged to be at
low risk of bias overall. Review authors who restrict their primary analysis in this way
are encouraged to perform sensitivity analyses to show how conclusions might be
affected if studies at a high risk of bias were included.

2) Present multiple (stratified) analyses

Stratifying according to the overall risk of bias will produce multiple estimates of the
intervention effect: for example, one based on all studies, one based on studies at low
risk of bias, and one based on studies at high risk of bias. Two or more such estimates
might be considered with equal prominence (e.g. the first and second of these). How-
ever, presenting the results in this way may be confusing for readers. In particular, peo-
ple who need to make a decision usually require a single estimate of effect.
Furthermore, ‘Summary of findings’ tables typically present only a single result for each
outcome. On the other hand, a stratified forest plot presents all the information trans-
parently. Though we would generally recommend stratification is done on the basis of
overall risk of bias, review authors may choose to conduct subgroup analyses based on
specific bias domains (e.g. risk of bias arising from the randomization process).
Formal comparisons of intervention effects according to risk of bias can be done with

a test for differences across subgroups (e.g. comparing studies at high risk of bias with
studies at low risk of bias), or by usingmeta-regression (for more details see Chapter 10,
Section 10.11.4). However, review authors should be cautious in planning and carrying
out such analyses, because an individual review may not have enough studies in each
category of risk of bias to identify meaningful differences. Lack of a statistically signif-
icant difference between studies at high and low risk of bias should not be interpreted
as absence of bias, because these analyses typically have low power.

7.6 Incorporating assessment of risk of bias
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The choice between strategies (1) and (2) should be based to large extent on the bal-
ance between the potential for bias and the loss of precision when studies at high or
unclear risk of bias are excluded.

3) Present all studies and provide a narrative discussion of risk of bias

The simplest approach to incorporating risk-of-bias assessments in results is to present
an estimated intervention effect based on all available studies, together with a descrip-
tion of the risk of bias in individual domains, or a description of the summary risk of
bias, across studies. This is the only feasible option when all studies are at the same risk
of bias. However, when studies have different risks of bias, we discourage such an
approach for two reasons. First, detailed descriptions of risk of bias in the Results
section, together with a cautious interpretation in the Discussion section, will often
be lost in the Authors’ conclusions, Abstract and ‘Summary of findings’ table, so that
the final interpretation ignores the risk of bias and decisions continue to be based, at
least in part, on compromised evidence. Second, such an analysis fails to down-weight
studies at high risk of bias and so will lead to an overall intervention effect that is too
precise, as well as being potentially biased.
When the primary analysis is based on all studies, summary assessments of risk of

bias should be incorporated into explicit measures of the certainty of evidence for each
important outcome, for example, by using the GRADE system (Guyatt et al 2008). This
incorporation can help to ensure that judgements about the risk of bias, as well as
other factors affecting the quality of evidence, such as imprecision, heterogeneity
and publication bias, are considered appropriately when interpreting the results of
the review (see Chapters 14 and 15).

4) Adjust effect estimates for bias

A final, more sophisticated, option is to adjust the result from each study in an attempt
to remove the bias. Adjustments are usually undertaken within a Bayesian framework,
with assumptions about the size of the bias and its uncertainty being expressed
through prior distributions (see Chapter 10, Section 10.13). Prior distributions may
be based on expert opinion or on meta-epidemiological findings (Turner et al 2009,
Welton et al 2009). The approach is increasingly used in decision making, where adjust-
ments can additionally be made for applicability of the evidence to the decision at
hand. However, we do not encourage use of bias adjustments in the context of a
Cochrane Review because the assumptions required are strong, limited methodologi-
cal expertise is available, and it is not possible to account for issues of applicability due
to the diverse intended audiences for Cochrane Reviews. The approach might be enter-
tained as a sensitivity analysis in some situations.

7.7 Considering risk of bias due to missing results

The 2011 Cochrane risk-of-bias tool for randomized trials encouraged a study-level
judgement about whether there has been selective reporting, in general, of the trial
results. As noted in Section 7.2.3.3, selective reporting can arise in several ways:
(1) selective non-reporting of results, where results for some of the analysed outcomes
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are selectively omitted from a published report; (2) selective under-reporting of data,
where results for some outcomes are selectively reported with inadequate detail for the
data to be included in a meta-analysis; and (3) bias in selection of the reported result,
where a result has been selected for reporting by the study authors, on the basis of the
results, frommultiple measurements or analyses that have been generated for the out-
come domain (Page and Higgins 2016).
The RoB 2 and ROBINS-I tools focus solely on risk of bias as it pertains to a specific

trial result. With respect to selective reporting, RoB 2 and ROBINS-I examine whether a
specific result from the trial is likely to have been selected from multiple possible
results on the basis of the findings (scenario 3 above). Guidance on assessing the risk
of bias in selection of the reported result is available in Chapter 8 (for randomized trials)
and Chapter 25 (for non-randomized studies of interventions).
If there is no result (i.e. it has been omitted selectively from the report or under-

reported), then a risk-of-bias assessment at the level of the study result is not applicable.
Selective non-reporting of results and selective under-reporting of data are therefore not
covered by the RoB 2 and ROBINS-I tools. Instead, selective non-reporting of results and
under-reporting of data should be assessed at the level of the synthesis across studies.
Both practices lead to a situation similar to that when an entire study report is unavail-
able because of the nature of the results (also known as publication bias). Regardless of
whether an entire study report or only a particular result of a study is unavailable, the
same consequence can arise: bias in a synthesis because available results differ system-
atically from missing results (Page et al 2018). Chapter 13 provides detailed guidance on
assessing risk of bias due to missing results in a systematic review.

7.8 Considering source of funding and conflict of interest of
authors of included studies

Readers of a trial report often need to reflect on whether conflicts of interest have influ-
enced the design, conduct, analysis and reporting of a trial. It is therefore now common
for scientific journals to require authors of trial reports to provide a declaration of con-
flicts of interest (sometimes called ‘competing’ or ‘declarations of’ interest), to report
funding sources and to describe any funder’s role in the trial.
In this section, we characterize conflicts of interest in randomized trials and discuss

how conflicts of interest may impact on trial design and effect estimates. We also sug-
gest how review authors can collect, process and use information on conflicts of inter-
est in the assessment of:

• directness of studies to the review’s research question;

• heterogeneity in results due to differences in the designs of eligible studies;

• risk of bias in results of included studies;

• risk of bias in a synthesis due to missing results.

At the time of writing, a formal Tool for Addressing Conflicts of Interest in Trials (TACIT)
is being developed under the auspices of the Cochrane Bias Methods Group. The TACIT
development process has informed the content of this section, and we encourage read-
ers to check http://tacit.one for more detailed guidance that will become available.

7.8 Considering source of funding and conflict of interest of authors of included studies
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7.8.1 Characteristics of conflicts of interest

The Institute of Medicine defined conflicts of interest as “a set of circumstances that
creates a risk that professional judgment or actions regarding a primary interest will
be unduly influenced by a secondary interest” (Lo et al 2009). In a clinical trial, the pri-
mary interest is to provide patients, clinicians and health policy makers with an unbi-
ased and clinically relevant estimate of an intervention effect. Secondary interest may
be both financial and non-financial.
Financial conflicts of interest involve both financial interests related to a specific trial

(for example, a company funding a trial of a drug produced by the same company) and
financial interests related to the authors of a trial report (for example, authors’ own-
ership of stocks or employment by a drug company).
For drug and device companies and other manufacturers, the financial difference

between a negative and positive pivotal trial can be considerable. For example, the
mean stock price of the companies funding 23 positive pivotal oncology trials increased
by 14% after disclosure of the results (Rothenstein et al 2011). Industry funding is com-
mon, especially in drug trials. In a study of 200 trial publications from 2015, 68 (38%) of
178 trials with funding declarations were industry funded (Hakoum et al 2017). Also, in a
cohort of oncology drug trials, industry funded 44% of trials and authors declared con-
flicts of interest in 69% of trials (Riechelmann et al 2007).
The degree of funding, and the type of the involvement of industry funders, may differ

across trials. In some situations, involvement includes only the provision of free study
medication for a trial that has otherwise been planned and conducted independently,
and funded largely, by public means. In other situations, a company fully funds and
controls a trial. In rarer cases, head-to-head trials comparing two drugs may be funded
by the two different companies producing the drugs.
A Cochrane Methodology Review analysed 75 studies of the association between

industry funding and trial results (Lundh et al 2017). The authors concluded that trials
funded by a drug or device company were more likely to have positive conclusions and
statistically significant results, and that this association could not be explained by dif-
ferences in risk of bias between industry and non-industry funded trials. However,
industry and non-industry trials may differ in ways that may confound the association;
for example due to choice of patient population, comparator interventions or out-
comes. Only one of the included studies used ameta-epidemiological design and found
no clear association between industry funding and the magnitude of intervention
effects (Als-Nielsen et al 2003). Similar to the association with industry funding, other
studies have reported that results of trials conducted by authors with a financial con-
flict of interest were more likely to be positive (Ahn et al 2017).
Conflicts of interest may also be non-financial (Viswanathan et al 2014). Character-

izations of non-financial conflicts of interest differ somewhat, but typically distinguish
between conflicts related mainly to an individual (e.g. adherence to a theory or ideol-
ogy), relationships to other individuals (e.g. loyalty to friends, family members or close
colleagues), or relationship to groups (e.g. work place or professional groups). In med-
icine, non-financial conflicts of interest have received less attention than financial con-
flicts of interest. In addition, financial and non-financial conflicts are often intertwined;
for example, non-financial conflicts related to institutional association can be consid-
ered as indirect financial conflicts linked to employment. Definitions of what should be
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characterized as a ‘non-financial’ conflict of interest, and, in particular, whether per-
sonal beliefs, experiences or intellectual commitments should be considered conflicts
of interest, have been debated (Bero and Grundy 2016).
It is useful to differentiate between non-financial conflicts of interest of a trial

researcher and the basic interests and hopes involved in doing good trial research.
Most researchers conducting a trial will have an interest in the scientific problem
addressed, a well-articulated theoretical position, anticipation for a specific trial result,
and hopes for publication in a respectable journal. This is not a conflict of interest but a
basic condition for doing health research. However, individual researchers may lose
sight of the primacy of the methodological neutrality at the heart of a scientific enquiry,
and become unduly occupied with the secondary interest of how trial results may affect
academic appearance or chances of future funding. Extreme examples are the publi-
cation of fabricated trial data or trials, some of which have had an impact on systematic
reviews (Marret et al 2009).
Few empirical studies of non-financial conflicts of interest in randomized trials have

been published, and to our knowledge there are none that assess the impact of non-
financial conflicts of interest on trial results and conclusions. However, non-financial
conflicts of interests have been investigated in other types of clinical research; for
example, guideline authors’ specialty appears to have influenced their voting beha-
viour while developing guidelines for mammography screening (Norris et al 2012).

7.8.2 Conflict of interest and trial design

Core decisions on designing a trial involve defining the type of participants to be
included, the type of experimental intervention, the type of comparator, the outcomes
(and timing of outcome assessments) and the choice of analysis. Such decisions will
often reflect a compromise between what is clinically and scientifically ideal and what
is practically possible. However, when investigators have important conflicts of inter-
est, a trial may be designed in a way that increases its chances of detecting a positive
trial result, at the expense of clinical applicability. For example, narrow eligibility cri-
teria may exclude older and frail patients, thus reducing the possibility of detecting clin-
ically relevant harms. Alternatively, trial designers may choose placebo as a
comparator despite an effective intervention being in regular use, or they may focus
on short-term surrogate outcomes rather than clinically relevant long-term outcomes
(Estellat and Ravaud 2012, Wieland et al 2017).
Trial design choices may be more subtle. For example, a trial may be designed to

favour an experimental drug by using an inferior comparator drug when better alter-
natives exist (Safer 2002) or by using a low dose of the comparator drug when the focus
is efficacy and a high dose of the comparator drug when the focus is harms (Mann and
Djulbegovic 2013). In a typical Cochrane Review with fairly broad eligibility criteria aim-
ing to identify and summarize all relevant trials, it is pertinent to consider the degree to
which a given trial result directly relates to the question posed by the review. If all or
most identified trials have narrow eligibility criteria and short-term outcomes, a review
question focusing on broad patient categories and long-term effects can only be
answered indirectly by the included studies. This has implications for the assessment
of the certainty of the evidence provided by the review, which is addressed through the
concept of indirectness in the GRADE framework (see Chapter 14, Section 14.2).
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If results in a meta-analysis display heterogeneity, then differences in design choices
that are driven by conflicts of interest may be one reason for this. Thus, conflicts of
interest may also affect reflections on the certainty of the evidence through the GRADE
concept of inconsistency.

7.8.3 Conflicts of interest and risk of bias in a trial’s effect estimate

Authors of Cochrane Reviews have sometimes included conflicts of interest as an ‘other
source of bias’while using the previous versions of the risk-of-bias tool (Jørgensen et al
2016). Consistent with previous versions of the Handbook, we discourage the inclusion
of conflicts of interest directly in the risk-of-bias assessment. Adding conflicts of interest
to the bias tool is inconsistent with the conceptual structure of the tool, which is built
on mechanistically defined bias domains. Also, restricting consideration of the poten-
tial impact of conflicts of interest to a question of risk of bias in an individual trial result
overlooks other important aspects, such as the design of the trial (see Section 7.8.2)
and potential bias in a meta-analysis due to missing results (see Section 7.8.4).
Conflicts of interest may lead to bias in effect estimates from a trial through several

mechanisms. For example, if those recruiting participants into a trial have important
conflicts of interest and the allocation sequence is not concealed, then they may be
more likely to subvert the allocation process to produce intervention groups that
are systematically unbalanced in favour of their preferred intervention. Similarly, inves-
tigators with important conflicts of interests may decide to exclude from the analysis
some patients who did not respond as anticipated to the experimental intervention,
resulting in bias due to missing outcome data. Furthermore, selective reporting of a
favourable result may be strongly associated with conflicts of interest (McGauran
et al 2010), due to either selective reporting of particular outcome measurements or
selective reporting of particular analyses (Eyding et al 2010, Vedula et al 2013). One
study found that use of modified-intention-to-treat analysis and post-randomization
exclusions occurred more often in trials with industry funding or author conflicts of
interest (Montedori et al 2011). Accessing the trial protocol and statistical analysis plan
to determine which outcomes and analyses were pre-specified is therefore especially
important for a trial with relevant conflicts of interest.
Review authors should explain how consideration of conflicts of interest informed

their risk-of-bias judgements. For example, when information on the analysis plans
is lacking, review authors may judge the risk of bias in selection of the reported result
to be high if the study investigators had important financial conflicts of interest. Con-
versely, if trial investigators have clearly used methods that are likely to minimize bias,
review authors should not judge the risk of bias for each domain higher just because
the investigators happen to have conflicts of interest. In addition, as an optional com-
ponent in the revised risk-of-bias tool, review authors may reflect on the direction of
bias (e.g. bias in favour of the experimental intervention). Information on conflicts of
interest may inform the assessment of direction of bias.

7.8.4 Conflicts of interest and risk of bias in a synthesis of trial results

Conflicts of interest may also affect the decision not to report trial results. Conflicts of
interest are probably one of several important reasons for decisions not to publish
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trials with negative findings, and not to publish unfavourable results (Sterne 2013).
When relevant trial results are systematically missing from a meta-analysis because
of the nature of the findings, the synthesis is at risk of bias due to missing results.
Chapter 13 provides detailed guidance on assessing risk of bias due to missing results
in a systematic review.

7.8.5 Practical approach to identifying and extracting information on
conflicts of interest

When assessing conflicts of interest in a trial, review authors will, to a large degree, rely
on declared conflicts. Source of funding may be reported in a trial publication, and
conflicts of interest may be reported in an accompanying declaration, for example
the International Committee of Medical Journal Editors (ICMJE) declaration. In a ran-
dom sample of 1002 articles published in 2016, authors of 229 (23%) declared having a
conflict of interest (Grundy et al 2018). Unfortunately, undeclared conflicts of interest
and sources of funding are fairly common (Rasmussen et al 2015, Patel et al 2018).
It is always prudent to examine closely the conflicts of interest of lead and corre-

sponding authors, based on information reported in the trial publication and the
author declaration (for example, the ICMJE declaration form). Review authors should
also consider examining conflicts of interest of trial co-authors and any commercial
collaborators with conflicts of interest; for example, a commercial contract research
organization hired by the funder to collect and analyse trial data or the involvement
of a medical writing agency. Due to the high prevalence of undisclosed conflicts of
interest, review authors should consider expanding their search for conflicts of interest
data from other sources (e.g. disclosure in other publications by the authors, the trial
protocol, the clinical study report, and public conflicts of interest registries (e.g. Open
Payments database)).
We suggest that review authors balance the workload involved with the expected

gain, and search additional sources of information on conflicts of interest when
there is reason to suspect important conflicts of interest. As a rule of thumb, in trials
with unclear funding source and no declaration of conflicts of interest from lead or
corresponding authors, we suggest review authors search the Open Payments data-
base, ClinicalTrials.gov, and conflicts of interest declarations in a few previous pub-
lications by the study authors. In trials with no commercial funding (including no
company employee co-authors) and no declared conflicts of interest for lead or cor-
responding authors, we suggest review authors not bother to consult additional
sources. Also, for trials where lead or corresponding authors have clear conflicts
of interest, little additional information may be gained from checking conflicts of
interest of co-authors.
Gaining access to relevant information on financial conflicts of interest is possible for

a considerable number of trials, despite inherent problems of undeclared conflicts. We
expect that the proportion of trials with relevant declarations will increase further.
Access to relevant information on non-financial conflicts of interest is more difficult

togain.Declarationofnon-financial conflicts of interest is requestedbyapproximately 50%
of journals (Shawwa et al 2016). The term was deleted from ICMJE’s declaration in 2010 in
exchange for a broad category of “Other relationships or activities” (Drazen et al 2010).
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Therefore, non-financial conflicts of interests are seldom self-declared, although if availa-
ble, such information should be considered.
Non-financial conflicts of interest are difficult to address due to lack of relevant

empirical studies on their impact on study results, lack of relevant thresholds for impor-
tance, and lack of declaration in many previous trials. However, as a rule of thumb, we
suggest that review authors assume trial authors have no non-financial conflicts of
interest unless there are clear suggestions of the opposite. Examples of such clues
could be a considerable spin in trial publications (Boutron et al 2010), an institutional
relationship pertinent to the intervention tested, or external evidence of a fixated ide-
ological or theoretical position.

7.8.6 Judgement of notable concern about conflict of interest

Review authors should describe funding information and conflicts of interest of authors
for all studies in the ‘Characteristics of included studies’ table (MECIR Box 7.8.a). Also,
review authors may want to explore (e.g. in a subgroup analysis) whether trials with
conflicts of interest have different intervention effect estimates, or more variable effect
estimates, than trials without conflicts of interest. In both cases, review authors need to
aim for a relevant threshold for when any conflict of interest is deemed important. If put
too low, there is a risk that trivial conflicts of interest will cloud important ones; if set
too high, there is the risk that important conflicts of interest are downplayed or
ignored.
This judgement should take into account both the degree of conflicts of interest of

study authors and also the extent of their involvement in the study. We pragmatically
suggest review authors aim for a judgement about whether or not there is reason for
‘notable concern’ about conflicts of interest. This information could be displayed in a
table with three columns:

1) trial identifier;
2) judgement (e.g. ‘notable concern about conflict of interest’ versus ‘no notable con-

cern about conflict of interest’); and
3) rationale for judgement, potentially subdivided according to who had conflicts of

interest (e.g. lead or corresponding authors, other authors) and stage(s) of the trial
to which they contributed (design, conduct, analysis, reporting).

A judgement of ‘notable concern about conflict of interest’ should be based on
reflected assessment of identified conflicts of interest. A hypothetical possibility for
undeclared conflicts of interest is, as a rule of thumb, not considered sufficient reason
for ‘notable concern’. By ‘notable concern’ we imply important conflicts of interest
expected to have a potential impact on study design, risk of bias in study results or risk
of bias in a synthesis due to missing results. For example, financial conflicts of interest
are important in a trial initiated, designed, analysed and reported by drug or device
company employees. Conversely, financial conflicts of interest are less important in
a trial initiated, designed, analysed and reported by academics adhering to the arm’s
length principle when acquiring free trial medication from a drug company, and where
lead authors have no conflicts of interest. Similarly, non-financial conflicts of interest
may be important in a trial of a highly controversial and ideologically loaded question
such as the adverse effect of male circumcision. Non-financial conflicts of interest are
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less concerning in a trial comparing two treatments in general use with no connotation
to highly controversial scientific theories, ideology or professional groups. Mixing trivial
conflicts of interest with important ones may mask the latter and will expand review
author workload considerably.
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Assessing risk of bias in a randomized trial
Julian PT Higgins, Jelena Savović, Matthew J Page, Roy G Elbers,
Jonathan AC Sterne

KEY POINTS

• This chapter details version 2 of the Cochrane risk-of-bias tool for randomized trials
(RoB 2), the recommended tool for use in Cochrane Reviews.

• RoB 2 is structured into a fixed set of domains of bias, focusing on different aspects of
trial design, conduct and reporting.

• Each assessment using the RoB 2 tool focuses on a specific result from a rando-
mized trial.

• Within each domain, a series of questions (‘signalling questions’) aim to elicit informa-
tion about features of the trial that are relevant to risk of bias.

• A judgement about the risk of bias arising from each domain is proposed by an algo-
rithm, based on answers to the signalling questions. Judgements can be ‘Low’, or
‘High’ risk of bias, or can express ‘Some concerns’.

• Answers to signalling questions and judgements about risk of bias should be sup-
ported by written justifications.

• The overall risk of bias for the result is the least favourable assessment across the
domains of bias. Both the proposed domain-level and overall risk-of-bias judgements
can be overridden by the review authors, with justification.

8.1 Introduction

Cochrane Reviews include an assessment of the risk of bias in each included study (see
Chapter 7 for a general discussion of this topic). When randomized trials are included,
the recommended tool is the revised version of the Cochrane tool, known as RoB 2,
described in this chapter. The RoB 2 tool provides a framework for assessing the risk
of bias in a single result (an estimate of the effect of an experimental intervention

This chapter should be cited as: Higgins JPT, Savović J, Page MJ, Elbers RG, Sterne JAC. Chapter 8: Assessing
risk of bias in a randomized trial. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch
VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John
Wiley & Sons, 2019: 205–228.
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compared with a comparator intervention on a particular outcome) from any type of
randomized trial.
The RoB 2 tool is structured into domains through which bias might be introduced

into the result. These domains were identified based on both empirical evidence and
theoretical considerations. This chapter summarizes themain features of RoB 2 applied
to individually randomized parallel-group trials. It describes the process of undertaking
an assessment using the RoB 2 tool, summarizes the important issues for each domain
of bias, and ends with a list of the key differences between RoB 2 and the earlier version
of the tool. Variants of the RoB 2 tool specific to cluster-randomized trials and crossover
trials are summarized in Chapter 23.
The full guidance document for the RoB 2 tool is available at www.riskofbias.info:

it summarizes the empirical evidence underlying the tool and provides detailed expla-
nations of the concepts covered and guidance on implementation.

8.2 Overview of RoB 2

8.2.1 Selecting which results to assess within the review

Before starting an assessment of risk of bias, authors will need to select which specific
results from the included trials to assess. Because trials usually contribute multiple
results to a systematic review, several risk-of-bias assessments may be needed for each
trial, although it is unlikely to be feasible to assess every result for every trial in the
review. It is important not to select results to assess based on the likely judgements
arising from the assessment. An approach that focuses on the main outcomes of
the review (the results contributing to the review’s ‘Summary of findings’ table) may
be the most appropriate approach (see also Chapter 7, Section 7.3.2).

8.2.2 Specifying the nature of the effect of interest: ‘intention-to-treat’ effects
versus ‘per-protocol’ effects

Assessments for one of the RoB 2 domains, ‘Bias due to deviations from intended inter-
ventions’, differ according to whether review authors are interested in quantifying:

1) the effect of assignment to the interventions at baseline, regardless of whether the
interventions are received as intended (the ‘intention-to-treat effect’); or

2) the effect of adhering to the interventions as specified in the trial protocol (the
‘per-protocol effect’) (Hernán and Robins 2017).

If some patients do not receive their assigned intervention or deviate from the
assigned intervention after baseline, these effects will differ, and will each be of inter-
est. For example, the estimated effect of assignment to intervention would be the most
appropriate to inform a health policy question about whether to recommend an inter-
vention in a particular health system (e.g. whether to instigate a screening programme,
or whether to prescribe a new cholesterol-lowering drug), whereas the estimated effect
of adhering to the intervention as specified in the trial protocol would be the most
appropriate to inform a care decision by an individual patient (e.g. whether to be
screened, or whether to take the new drug). Review authors should define the
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intervention effect in which they are interested, and apply the risk-of-bias tool appro-
priately to this effect.
The effect of principal interest should be specified in the review protocol: most sys-

tematic reviews are likely to address the question of assignment rather than adherence
to intervention. On occasion, review authors may be interested in both effects of
interest.
The effect of assignment to intervention should be estimated by an intention-to-

treat (ITT) analysis that includes all randomized participants (Fergusson et al
2002). The principles of ITT analyses are (Piantadosi 2005, Menerit 2012):

1) analyse participants in the intervention groups to which they were randomized,
regardless of the intervention they actually received; and

2) include all randomized participants in the analysis, which requires measuring all
participants’ outcomes.

An ITT analysis maintains the benefit of randomization: that, on average, the inter-
vention groups do not differ at baseline with respect to measured or unmeasured prog-
nostic factors. Note that the term ‘intention-to-treat’ does not have a consistent
definition and is used inconsistently in study reports (Hollis and Campbell 1999, Gravel
et al 2007, Bell et al 2014).
Patients and other stakeholders are often interested in the effect of adhering to the

intervention as described in the trial protocol (the ‘per-protocol effect’), because it
relates most closely to the implications of their choice between the interventions. How-
ever, two approaches to estimation of per-protocol effects that are commonly used in
randomized trials may be seriously biased. These are:

• ‘as-treated’ analyses in which participants are analysed according to the intervention
they actually received, even if their randomized allocation was to a different treat-
ment group; and

• naïve ‘per-protocol’ analyses restricted to individuals who adhered to their assigned
interventions.

Each of these analyses is problematic because prognostic factors may influence
whether individuals adhere to their assigned intervention. If deviations are present, it
is still possible to use data from a randomized trial to derive an unbiased estimate of
the effect of adhering to intervention (Hernán and Robins 2017). However, appropriate
methods require strong assumptions and published applications are relatively rare to
date. When authors wish to assess the risk of bias in the estimated effect of adhering
to intervention, use of results based on modern statistical methods may be at lower risk
of bias than results based on ‘as-treated’ or naïve per-protocol analyses.
Trial authors often estimate the effect of intervention using more than one approach.

Theymay not explain the reasons for their choice of analysis approach, or whether their
aim is to estimate the effect of assignment or adherence to intervention. We recom-
mend that when the effect of interest is that of assignment to intervention, the trial
result included in meta-analyses, and assessed for risk of bias, should be chosen
according to the following order of preference:

1) the result corresponding to a full ITT analysis, as defined above;
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2) the result corresponding to an analysis (sometimes described as a ‘modified
intention-to-treat’ (mITT) analysis) that adheres to ITT principles except that
participants with missing outcome data are excluded (see Section 8.4.2; such an
analysis does not prevent bias due to missing outcome data, which is addressed
in the corresponding domain of the risk-of-bias assessment);

3) a result corresponding to an ‘as-treated’ or naïve ‘per-protocol’ analysis, or an anal-
ysis from which eligible trial participants were excluded.

8.2.3 Domains of bias and how they are addressed

The domains included in RoB 2 cover all types of bias that are currently understood to
affect the results of randomized trials. These are:

1) bias arising from the randomization process;
2) bias due to deviations from intended interventions;
3) bias due to missing outcome data;
4) bias in measurement of the outcome; and
5) bias in selection of the reported result.

Each domain is required, and no additional domains should be added. Table 8.2.a
summarizes the issues addressed within each bias domain.
For each domain, the tool comprises:

1) a series of ‘signalling questions’;
2) a judgement about risk of bias for the domain, which is facilitated by an algorithm

that maps responses to the signalling questions to a proposed judgement;
3) free text boxes to justify responses to the signalling questions and risk-of-bias jud-

gements; and
4) an option to predict (and explain) the likely direction of bias.

The signalling questions aim to provide a structured approach to eliciting informa-
tion relevant to an assessment of risk of bias. They seek to be reasonably factual in
nature, but some may require a degree of judgement. The response options are:

• Yes;

• Probably yes;

• Probably no;

• No;

• No information.

To maximize their simplicity and clarity, the signalling questions are phrased such
that a response of ‘Yes’ may indicate either a low or high risk of bias, depending on
the most natural way to ask the question. Responses of ‘Yes’ and ‘Probably yes’ have
the same implications for risk of bias, as do responses of ‘No’ and ‘Probably no’. The
definitive responses (‘Yes’ and ‘No’) would typically imply that firm evidence is available
in relation to the signalling question; the ‘Probably’ versions would typically imply that
a judgement has been made. Although not required, if review authors wish to calculate
measures of agreement (e.g. kappa statistics) for the answers to the signalling
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Table 8.2.a Bias domains included in version 2 of the Cochrane risk-of-bias tool for randomized trials,
with a summary of the issues addressed

Bias domain Issues addressed*

Bias arising from the
randomization process

Whether:

• the allocation sequence was random;

• the allocation sequence was adequately concealed;

• baseline differences between intervention groups suggest a
problem with the randomization process.

Bias due to deviations from
intended interventions

Whether:

• participants were aware of their assigned intervention during
the trial;

• carers and people delivering the interventions were aware of
participants’ assigned intervention during the trial.

When the review authors’ interest is in the effect of assignment to
intervention (see Section 8.2.2):

• (if applicable) deviations from the intended intervention arose
because of the experimental context (i.e. do not reflect usual
practice); and, if so, whether they were unbalanced between
groups and likely to have affected the outcome;

• an appropriate analysis was used to estimate the effect of
assignment to intervention; and, if not, whether there was
potential for a substantial impact on the result.

When the review authors’ interest is in the effect of adhering to
intervention (see Section 8.2.2):

• (if applicable) important non-protocol interventions were
balanced across intervention groups;

• (if applicable) failures in implementing the intervention could
have affected the outcome;

• (if applicable) study participants adhered to the assigned
intervention regimen;

• (if applicable) an appropriate analysis was used to estimate
the effect of adhering to the intervention.

Bias due to missing outcome
data

Whether:

• data for this outcome were available for all, or nearly all,
participants randomized;

• (if applicable) there was evidence that the result was not
biased by missing outcome data;

• (if applicable) missingness in the outcome was likely to
depend on its true value (e.g. the proportions of missing
outcome data, or reasons for missing outcome data, differ
between intervention groups).

Bias in measurement of the
outcome

Whether:

• the method of measuring the outcome was inappropriate;

• measurement or ascertainment of the outcome could have
differed between intervention groups;

• outcome assessors were aware of the intervention received by
study participants;

(Continued)
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questions, we recommend treating ‘Yes’ and ‘Probably yes’ as the same response, and
‘No’ and ‘Probably no’ as the same response.
The ‘No information’ response should be used only when both (1) insufficient details

are reported to permit a response of ‘Yes’, ‘Probably yes’, ‘No’ or ‘Probably no’, and
(2) in the absence of these details it would be unreasonable to respond ‘Probably
yes’ or ‘Probably no’ given the circumstances of the trial. For example, in the context
of a large trial run by an experienced clinical trials unit for regulatory purposes, if spe-
cific information about the randomization methods is absent, it may still be reasonable
to respond ‘Probably yes’ rather than ‘No information’ to the signalling question about
allocation sequence concealment.
The implications of a ‘No information’ response to a signalling question differ accord-

ing to the purpose of the question. If the question seeks to identify evidence of a prob-
lem, then ‘No information’ corresponds to no evidence of that problem. If the question
relates to an item that is expected to be reported (such as whether any participants
were lost to follow-up), then the absence of information leads to concerns about there
being a problem.
A response option ‘Not applicable’ is available for signalling questions that are

answered only if the response to a previous question implies that they are required.
Signalling questions should be answered independently: the answer to one question

should not affect answers to other questions in the same or other domains other than
through determining which subsequent questions are answered.
Once the signalling questions are answered, the next step is to reach a risk-of-bias

judgement, and assign one of three levels to each domain:

• Low risk of bias;

• Some concerns; or

• High risk of bias.

Table 8.2.a (Continued)

Bias domain Issues addressed*

• (if applicable) assessment of the outcome was likely to have
been influenced by knowledge of intervention received.

Bias in selection of the reported
result

Whether:

• the trial was analysed in accordance with a pre-specified plan
that was finalized before unblinded outcome data were
available for analysis;

• the numerical result being assessed is likely to have been
selected, on the basis of the results, from multiple outcome
measurements within the outcome domain;

• the numerical result being assessed is likely to have been
selected, on the basis of the results, from multiple analyses of
the data.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full risk-of-bias
tool at www.riskofbias.info.
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The RoB 2 tool includes algorithms that map responses to signalling questions to
a proposed risk-of-bias judgement for each domain (see the full documentation at
www.riskofbias.info for details). The algorithms include specific mappings of each pos-
sible combination of responses to the signalling questions (including responses of ‘No
information’) to judgements of low risk of bias, some concerns or high risk of bias.
Use of the word ‘judgement’ is important for the risk-of-bias assessment. The algo-

rithms provide proposed judgements, but review authors should verify these and
change them if they feel this is appropriate. In reaching final judgements, review
authors should interpret ‘risk of bias’ as ‘risk of material bias’. That is, concerns should
be expressed only about issues that are likely to affect the ability to draw reliable con-
clusions from the study.
A free text box alongside the signalling questions and judgements provides space for

review authors to present supporting information for each response. In some instances,
when the same information is likely tobeused toanswermore thanonequestion, one text
box coversmore than one signalling question. Brief, direct quotations from the text of the
study report should be used whenever possible. It is important that reasons are provided
for any judgements that donot follow the algorithms. The tool alsoprovides space to indi-
cateall the sourcesof informationabout thestudyobtained to informthe judgements (e.g.
published papers, trial registry entries, additional information from the study authors).
RoB 2 includes optional judgements of the direction of the bias for each domain and

overall. For some domains, the bias is most easily thought of as being towards or away
from the null. For example, high levels of switching of participants from their assigned
intervention to the other intervention may have the effect of reducing the observed dif-
ference between the groups, leading to the estimated effect of adhering to intervention
(see Section 8.2.2) being biased towards the null. For other domains, the bias is likely to
favour one of the interventions being compared, implying an increase or decrease in
the effect estimate depending on which intervention is favoured. Examples include
manipulation of the randomization process, awareness of interventions received influ-
encing the outcome assessment and selective reporting of results. If review authors do
not have a clear rationale for judging the likely direction of the bias, they should not
guess it and can leave this response blank.

8.2.4 Reaching an overall risk-of-bias judgement for a result

The response options for an overall risk-of-bias judgement are the same as for indi-
vidual domains. Table 8.2.b shows the approach to mapping risk-of-bias judgements
within domains to an overall judgement for the outcome.
Judging a result to be at a particular level of risk of bias for an individual domain

implies that the result has an overall risk of bias at least this severe. Therefore, a
judgement of ‘High’ risk of bias within any domain should have similar implications for
the result, irrespective of which domain is being assessed. In practice this means that if
the answers to the signalling questions yield a proposed judgement of ‘High’ risk of
bias, the assessors should consider whether any identified problems are of sufficient
concern to warrant this judgement for that result overall. If this is not the case, the
appropriate action would be to override the proposed default judgement and provide
justification. ‘Some concerns’ in multiple domains may lead review authors to decide
on an overall judgement of ‘High’ risk of bias for that result or group of results.
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Once an overall judgement has been reached for an individual trial result, this infor-
mation will need to be presented in the review and reflected in the analysis and con-
clusions. For discussion of the presentation of risk-of-bias assessments and how they
can be incorporated into analyses, see Chapter 7. Risk-of-bias assessments also feed
into one domain of the GRADE approach for assessing certainty of a body of evidence,
as discussed in Chapter 14.

8.3 Bias arising from the randomization process

If successfully accomplished, randomization avoids the influence of either known or
unknown prognostic factors (factors that predict the outcome, such as severity of ill-
ness or presence of comorbidities) on the assignment of individual participants to inter-
vention groups. This means that, on average, each intervention group has the same
prognosis before the start of intervention. If prognostic factors influence the interven-
tion group to which participants are assigned then the estimated effect of intervention
will be biased by ‘confounding’, which occurs when there are common causes of inter-
vention group assignment and outcome. Confounding is an important potential cause
of bias in intervention effect estimates from observational studies, because treatment
decisions in routine care are often influenced by prognostic factors.
To randomize participants into a study, an allocation sequence that specifies how

participants will be assigned to interventions is generated, based on a process that
includes an element of chance. We call this allocation sequence generation. Subse-
quently, steps must be taken to prevent participants or trial personnel from knowing
the forthcoming allocations until after recruitment has been confirmed. This process is
often termed allocation sequence concealment.
Knowledge of the next assignment (e.g. if the sequence is openly posted on a bulletin

board) can enable selective enrolment of participants on the basis of prognostic fac-
tors. Participants who would have been assigned to an intervention deemed to be
‘inappropriate’ may be rejected. Other participants may be directed to the ‘appropri-
ate’ intervention, which can be accomplished by delaying their entry into the trial until
the desired allocation appears. For this reason, successful allocation sequence conceal-
ment is a vital part of randomization.
Some review authors confuse allocation sequence concealment with blinding of

assigned interventions during the trial. Allocation sequence concealment seeks to

Table 8.2.b Reaching an overall risk-of-bias judgement for a specific outcome

Overall risk-of-bias
judgement Criteria

Low risk of bias The trial is judged to be at low risk of bias for all domains for this result.

Some concerns The trial is judged to raise some concerns in at least one domain for this
result, but not to be at high risk of bias for any domain.

High risk of bias The trial is judged to be at high risk of bias in at least one domain for this
result.
Or
The trial is judged to have some concerns for multiple domains in a way
that substantially lowers confidence in the result.
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prevent bias in intervention assignment by preventing trial personnel and participants
from knowing the allocation sequence before and until assignment. It can always be
successfully implemented, regardless of the study design or clinical area (Schulz
et al 1995, Jüni et al 2001). In contrast, blinding seeks to prevent bias after assignment
(Jüni et al 2001, Schulz et al 2002) and cannot always be implemented. This is often the
situation, for example, in trials comparing surgical with non-surgical interventions.

8.3.1 Approaches to sequence generation

Randomization with no constraints is called simple randomization or unrestricted
randomization. Sometimes blocked randomization (restricted randomization) is
used to ensure that the desired ratio of participants in the experimental and compar-
ator intervention groups (e.g. 1 : 1) is achieved (Schulz and Grimes 2002, Schulz and
Grimes 2006). This is done by ensuring that the numbers of participants assigned to
each intervention group is balancedwithin blocks of specified size (e.g. for every 10 con-
secutively entered participants): the specified number of allocations to experimental
and comparator intervention groups is assigned in random order within each block.
If the block size is known to trial personnel and the intervention group is revealed after
assignment, then the last allocation within each block can always be predicted. To
avoid this problem multiple block sizes may be used, and randomly varied (random
permuted blocks).
Stratified randomization, in which randomization is performed separately within

subsets of participants defined by potentially important prognostic factors, such as dis-
ease severity and study centres, is also common. In practice, stratified randomization is
usually performed together with blocked randomization. The purpose of combining
these two procedures is to ensure that experimental and comparator groups are similar
with respect to the specified prognostic factors other than intervention. If simple
(rather than blocked) randomization is used in each stratum, then stratification offers
no benefit, but the randomization is still valid.
Another approach that incorporates both general concepts of stratification and

restricted randomization is minimization. Minimization algorithms assign the next
intervention in a way that achieves the best balance between intervention groups in
relation to a specified set of prognostic factors. Minimization generally includes a ran-
dom element (at least for participants enrolled when the groups are balanced with
respect to the prognostic factors included in the algorithm) and should be implemen-
ted along with clear strategies for allocation sequence concealment. Some methodol-
ogists are cautious about the acceptability of minimization, while others consider it to
be an attractive approach (Brown et al 2005, Clark et al 2016).

8.3.2 Allocation sequence concealment and failures of randomization

If future assignments can be anticipated, leading to a failure of allocation sequence
concealment, then bias can arise through selective enrolment of participants into a
study, depending on their prognostic factors. Ways in which this can happen include:

1) knowledge of a deterministic assignment rule, such as by alternation, date of birth
or day of admission;
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2) knowledge of the sequence of assignments, whether randomized or not (e.g. if a
sequence of random assignments is posted on the wall); and

3) ability to predict assignments successfully, based on previous assignments.

The last of these can occur when blocked randomization is used and assignments are
known to the recruiter after each participant is enrolled into the trial. It may then be pos-
sible to predict future assignments for some participants, particularly when blocks are of
a fixed size and are not divided across multiple recruitment centres (Berger 2005).
Attempts to achieve allocation sequence concealment may be undermined in prac-

tice. For example, unsealed allocation envelopes may be opened, while translucent
envelopes may be held against a bright light to reveal the contents (Schulz 1995, Schulz
et al 1995, Jüni et al 2001). Personal accounts suggest that many allocation schemes
have been deduced by investigators because the methods of concealment were inad-
equate (Schulz 1995).
The success of randomization in producing comparable groups is often examined by

comparing baseline values of important prognostic factors between intervention
groups. Corbett and colleagues have argued that risk-of-bias assessments should con-
sider whether participant characteristics are balanced between intervention groups
(Corbett et al 2014). The RoB 2 tool includes consideration of situations in which base-
line characteristics indicate that something may have gone wrong with the randomi-
zation process. It is important that baseline imbalances that are consistent with
chance are not interpreted as evidence of risk of bias. Chance imbalances are
not a source of systematic bias, and the RoB 2 tool does not aim to identify imbalances
in baseline variables that have arisen due to chance.

8.4 Bias due to deviations from intended interventions

This domain relates to biases that arise when there are deviations from the intended
interventions. Such differences could be the administration of additional interventions
that are inconsistent with the trial protocol, failure to implement the protocol interven-
tions as intended, or non-adherence by trial participants to their assigned intervention.
Biases that arise due to deviations from intended interventions are sometimes referred
to as performance biases.
The intended interventions are those specified in the trial protocol. It is often

intended that interventions should change or evolve in response to the health of, or
events experienced by, trial participants. For example, the investigators may intend that:

• in a trial of a new drug to control symptoms of rheumatoid arthritis, participants
experiencing severe toxicities should receive additional care and/or switch to an
alternative drug;

• in a trial of a specified cancer drug regimen, participants whose cancer progresses
should switch to a second-line intervention; or

• in a trial comparing surgical intervention with conservative management of stable
angina, participants who progress to unstable angina receive surgical intervention.

Unfortunately, trial protocols may not fully specify the circumstances in which devia-
tions from the initial intervention should occur, or distinguish changes to intervention
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that are consistent with the intentions of the investigators from those that should be
considered as deviations from the intended intervention. For example, a cancer trial
protocol may not define progression, or specify the second-line drug that should be
used in patients who progress (Hernán and Scharfstein 2018). It may therefore be nec-
essary for review authors to document changes that are and are not considered to be
deviations from intended intervention. Similarly, for trials in which the comparator
intervention is ‘usual care’, the protocol may not specify interventions consistent with
usual care or whether they are expected to be used alongside the experimental inter-
vention. Review authors may therefore need to document what departures from usual
care will be considered as deviations from intended intervention.

8.4.1 Non-protocol interventions

Non-protocol interventions that trial participants might receive during trial follow up
and that are likely to affect the outcome of interest can lead to bias in estimated inter-
vention effects. If possible, review authors should specify potential non-protocol
interventions in advance (at review protocol writing stage). Non-protocol
interventions may be identified through the expert knowledge of members of the
review group, via reviews of the literature, and through discussions with health
professionals.

8.4.2 The role of the effect of interest

As described in Section 8.2.2, assessments for this domain depend on the effect of inter-
est. In RoB 2, the only deviations from the intended intervention that are addressed in
relation to the effect of assignment to the intervention are those that:

1) are inconsistent with the trial protocol;
2) arise because of the experimental context; and
3) influence the outcome.

For example, in an unblinded study participants may feel unlucky to have been
assigned to the comparator group and therefore seek the experimental intervention,
or other interventions that improve their prognosis. Similarly, monitoring patients ran-
domized to a novel intervention more frequently than those randomized to standard
care would increase the risk of bias, unless suchmonitoring was an intended part of the
novel intervention. Deviations from intervention that do not arise because of the
experimental context, such as a patient’s choice to stop taking their assignedmed-
ication, do not lead to bias in the effect of assignment to intervention.
To examine the effect of adhering to the interventions as specified in the trial protocol,

it is important to specify what types of deviations from the intended intervention will be
examined. These will be one or more of:

1) how well the intervention was implemented;
2) how well participants adhered to the intervention (without discontinuing or switch-

ing to another intervention);
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3) whether non-protocol interventions were received alongside the intended interven-
tion and (if so) whether they were balanced across intervention groups; and

If such deviations are present, review authors should consider whether appropriate
statistical methods were used to adjust for their effects.

8.4.3 The role of blinding

Bias due to deviations from intended interventions can sometimes be reduced
or avoided by implementing mechanisms that ensure the participants, carers and
trial personnel (i.e. people delivering the interventions) are unaware of the interven-
tions received. This is commonly referred to as ‘blinding’, although in some areas
(including eye health) the term ‘masking’ is preferred. Blinding, if successful, should
prevent knowledge of the intervention assignment from influencing contamination
(application of one of the interventions in participants intended to receive the other),
switches to non-protocol interventions or non-adherence by trial participants.
Trial reports often describe blinding in broad terms, such as ‘double blind’. This term

makes it difficult to knowwho was blinded (Schulz et al 2002). Such terms are also used
inconsistently (Haahr and Hróbjartsson 2006). A review of methods used for blinding
highlights the variety of methods used in practice (Boutron et al 2006).
Blinding during a trial can be difficult or impossible in some contexts, for example in a

trial comparing a surgical with a non-surgical intervention. Non-blinded (‘open’) trials
may take other measures to avoid deviations from intended intervention, such as treat-
ing patients according to strict criteria that prevent administration of non-protocol
interventions.
Lack of blinding of participants, carers or people delivering the interventions may

cause bias if it leads to deviations from intended interventions. For example, low expec-
tations of improvement among participants in the comparator group may lead them to
seek and receive the experimental intervention. Such deviations from intended inter-
vention that arise due to the experimental context can lead to bias in the estimated
effects of both assignment to intervention and of adhering to intervention.
An attempt to blind participants, carers and people delivering the interventions to

intervention group does not ensure successful blinding in practice. For many blinded
drug trials, the side effects of the drugs allow the possible detection of the intervention
being received for some participants, unless the study compares similar interventions,
for example drugs with similar side effects, or uses an active placebo (Boutron et al
2006, Bello et al 2017, Jensen et al 2017).
Deducing the intervention received, for example among participants experiencing

side effects that are specific to the experimental intervention, does not in itself lead
to a risk of bias. As discussed, cessation of a drug intervention because of toxicity will
usually not be considered a deviation from intended intervention. See the elaborations
that accompany the signalling questions in the full guidance at www.riskofbias.info for
further discussion of this issue.
Risk of bias in this domain may differ between outcomes, even if the same people

were aware of intervention assignments during the trial. For example, knowledge of
the assigned intervention may affect behaviour (such as number of clinic visits), while
not having an important impact on physiology (including risk of mortality).
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Blinding of outcome assessors, to avoid bias inmeasuring the outcome, is considered
separately, in the ‘Bias in measurement of outcomes’ domain. Bias due to differential
rates of dropout (withdrawal from the study) is considered in the ‘Bias due to missing
outcome data’ domain.

8.4.4 Appropriate analyses

For the effect of assignment to intervention, an appropriate analysis should follow the
principles of ITT (see Section 8.2.2). Some authors may report a ‘modified intention-to-
treat’ (mITT) analysis in which participants with missing outcome data are excluded.
Such an analysis may be biased because of the missing outcome data: this is addressed
in the domain ‘Bias due to missing outcome data’. Note that the phrase ‘modified
intention-to-treat’ is used in different ways, and may refer to inclusion of participants
who received at least one dose of treatment (Abraha and Montedori 2010); our use of
the term refers to missing data rather than to adherence to intervention.
Inappropriate analyses include ‘as-treated’ analyses, naïve ‘per-protocol’ analyses,

and other analyses based on post-randomization exclusion of eligible trial participants
on whom outcomes were measured (Hernán and Hernandez-Diaz 2012) (see also
Section 8.2.2).
For the effect of adhering to intervention, appropriate analysis approaches are

described by Hernán and Robins (Hernán and Robins 2017). Instrumental variable
approaches can be used in some circumstances to estimate the effect of intervention
among participants who received the assigned intervention.

8.5 Bias due to missing outcome data

Missing measurements of the outcome may lead to bias in the intervention effect esti-
mate. Possible reasons for missing outcome data include (National Research Coun-
cil 2010):

1) participants withdraw from the study or cannot be located (‘loss to follow-up’ or
‘dropout’);

2) participants do not attend a study visit at which outcomes should have been
measured;

3) participants attend a study visit but do not provide relevant data;
4) data or records are lost or are unavailable for other reasons; and
5) participants can no longer experience the outcome, for example because they

have died.

This domain addresses risk of bias due to missing outcome data, including biases
introduced by procedures used to impute, or otherwise account for, the missing
outcome data.
Some participants may be excluded from an analysis for reasons other than missing

outcome data. In particular, a naïve ‘per-protocol’ analysis is restricted to participants
who received the intended intervention. Potential bias introduced by such analyses, or
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by other exclusions of eligible participants for whom outcome data are available, is
addressed in the domain ‘Bias due to deviations from intended interventions’ (see
Section 8.4).
The ITT principle of measuring outcome data on all participants (see Section 8.2.2) is

frequently difficult or impossible to achieve in practice. Therefore, it can often only be
followed by making assumptions about the missing outcome values. Even when an
analysis is described as ITT, it may exclude participants with missing outcome data
and be at risk of bias (such analyses may be described as ‘modified intention-to-treat’
(mITT) analyses). Therefore, assessments of risk of bias due to missing outcome data
should be based on the issues addressed in the signalling questions for this domain,
and not on the way that trial authors described the analysis.

8.5.1 When do missing outcome data lead to bias?

Analyses excluding individuals with missing outcome data are examples of ‘complete-
case’ analyses (analyses restricted to individuals in whom there were no missing values
of included variables). To understand when missing outcome data lead to bias in such
analyses, we need to consider:

1) the true value of the outcome in participants withmissing outcome data: this is the
value of the outcome that should have been measured but was not; and

2) the missingness mechanism, which is the process that led to outcome data being
missing.

Whether missing outcome data lead to bias in complete case analyses depends on
whether the missingness mechanism is related to the true value of the outcome.
Equivalently, we can consider whether the measured (non-missing) outcomes differ
systematically from the missing outcomes (the true values in participants with miss-
ing outcome data). For example, consider a trial of cognitive behavioural therapy
compared with usual care for depression. If participants who are more depressed
are less likely to return for follow-up, then whether a measurement of depression
is missing depends on its true value, which implies that the measured depression out-
comes will differ systematically from the true values of the missing depression
outcomes.
The specific situations in which a complete case analysis suffers from bias (when

there are missing data) are discussed in detail in the full guidance for the RoB 2 tool
at www.riskofbias.info. In brief:

1) missing outcome data will not lead to bias if missingness in the outcome is unre-
lated to its true value, within each intervention group;

2) missing outcome data will lead to bias if missingness in the outcome depends on
both the intervention group and the true value of the outcome; and

3) missing outcome data will often lead to bias if missingness is related to its true
value and, additionally, the effect of the experimental intervention differs from that
of the comparator intervention.
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8.5.2 When is the amount of missing outcome data small enough to
exclude bias?

It is tempting to classify risk of bias according to the proportion of participants with
missing outcome data.
Unfortunately, there is no sensible threshold for ‘small enough’ in relation to the

proportion of missing outcome data.
In situations where missing outcome data lead to bias, the extent of bias will increase

as the amount of missing outcome data increases. There is a tradition of regarding a
proportion of less than 5% missing outcome data as ‘small’ (with corresponding impli-
cations for risk of bias), and over 20% as ‘large’. However, the potential impact of miss-
ing data on estimated intervention effects depends on the proportion of participants
with missing data, the type of outcome and (for dichotomous outcome) the risk of the
event. For example, consider a study of 1000 participants in the intervention group
where the observed mortality is 2% for the 900 participants with outcome data (18
deaths). Even though the proportion of data missing is only 10%, if the mortality rate
in the 100missing participants is 20% (20 deaths), the overall truemortality of the inter-
vention group would be nearly double (3.8% vs 2%) that estimated from the
observed data.

8.5.3 Judging risk of bias due to missing outcome data

It is not possible to examine directly whether the chance that the outcome is missing
depends on its true value: judgements of risk of bias will depend on the circumstances
of the trial. Therefore, we can only be sure that there is no bias due to missing outcome
data when: (1) the outcome is measured in all participants; (2) the proportion of miss-
ing outcome data is sufficiently low that any bias is too small to be of importance; or
(3) sensitivity analyses (conducted by either the trial authors or the review authors)
confirm that plausible values of the missing outcome data could make no important
difference to the estimated intervention effect.
Indirect evidence that missing outcome data are likely to cause bias can come from

examining: (1) differences between the proportion of missing outcome data in the
experimental and comparator intervention groups; and (2) reasons that outcome data
are missing.
If the effects of the experimental and comparator interventions on the outcome are

different, and missingness in the outcome depends on its true value, then the propor-
tion of participants with missing data is likely to differ between the intervention groups.
Therefore, differing proportions of missing outcome data in the experimental and com-
parator intervention groups provide evidence of potential bias.
Trial reports may provide reasons why participants have missing data. For example,

trials of haloperidol to treat dementia reported various reasons such as ‘lack of effi-
cacy’, ‘adverse experience’, ‘positive response’, ‘withdrawal of consent’ and ‘patient
ran away’, and ‘patient sleeping’ (Higgins et al 2008). It is likely that some of these
(e.g. ‘lack of efficacy’ and ‘positive response’) are related to the true values of the miss-
ing outcome data. Therefore, these reasons increase the risk of bias if the effects of the
experimental and comparator interventions differ, or if the reasons are related to inter-
vention group (e.g. ‘adverse experience’).
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In practice, our ability to assess risk of bias will be limited by the extent to which trial
authors collected and reported reasons that outcome data were missing. The situation
most likely to lead to bias is when reasons for missing outcome data differ between the
intervention groups: for example if participants who became seriously unwell withdrew
from the comparator group while participants who recovered withdrew from the exper-
imental intervention group.
Trial authors may present statistical analyses (in addition to or instead of complete

case analyses) that attempt to address the potential for bias caused by missing out-
come data. Approaches include single imputation (e.g. assuming the participant had
no event; last observation carried forward), multiple imputation and likelihood-based
methods (see Chapter 10, Section 10.12.2). Imputation methods are unlikely to remove
or reduce the bias that occurs when missingness in the outcome depends on its true
value, unless they use information additional to intervention group assignment to pre-
dict themissing values. Review authors may attempt to address missing data using sen-
sitivity analyses, as discussed in Chapter 10 (Section 10.12.3).

8.6 Bias in measurement of the outcome

Errors inmeasurement of outcomes can bias intervention effect estimates. These are often
referred to as measurement error (for continuous outcomes), misclassification (for
dichotomous or categorical outcomes) or under-ascertainment/over-ascertainment
(for events). Measurement errors may be differential or non-differential in relation to
intervention assignment:

• Differential measurement errors are related to intervention assignment. Such errors
are systematically different between experimental and comparator intervention
groups and are less likely when outcome assessors are blinded to intervention
assignment.

• Non-differential measurement errors are unrelated to intervention assignment.

This domain relates primarily to differential errors. Non-differential measurement
errors are not addressed in detail.
Risk of bias in this domain depends on the following five considerations.

1. Whether themethod of measuring the outcome is appropriate. Outcomes in rando-
mized trials should be assessed using appropriate outcomemeasures. For example, port-
ablebloodglucosemachinesusedby trial participantsmaynot reliablymeasurebelow3.1
mmol, leading to an inability to detect differences in rates of severe hypoglycaemia
between an insulin intervention and placebo, and under-representation of the true inci-
denceof this adverseeffect. Suchameasurementwouldbe inappropriate for thisoutcome.

2. Whether measurement or ascertainment of the outcome differs, or could differ,
between intervention groups. The methods used to measure or ascertain outcomes
should be the same across intervention groups. This is usually the case for pre-specified
outcomes, but problems may arise with passive collection of outcome data, as is often
the case for unexpected adverse effects. For example, in a placebo-controlled trial, severe
headaches occur more frequently in participants assigned to a new drug than those

8 Assessing risk of bias in a randomized trial

220



assigned to placebo. These lead to more MRI scans being done in the experimental inter-
vention group, and therefore to more diagnoses of symptomless brain tumours, even
though the drug does not increase the incidence of brain tumours. Even for a pre-specified
outcome measure, the nature of the intervention may lead to methods of measuring
the outcome that are not comparable across intervention groups. For example, an inter-
vention involving additional visits to a healthcare provider may lead to additional oppor-
tunities for outcome events to be identified, compared with the comparator intervention.

3. Who is the outcome assessor. The outcome assessor can be:

1) the participant, when the outcome is a participant-reported outcome such as pain,
quality of life, or self-completed questionnaire;

2) the intervention provider, when the outcome is the result of a clinical examination,
the occurrence of a clinical event or a therapeutic decision such as decision to offer a
surgical intervention; or

3) an observer not directly involved in the intervention provided to the participant,
such as an adjudication committee, or a health professional recording outcomes
for inclusion in disease registries.

4. Whether the outcome assessor is blinded to intervention assignment. Blinding of
outcome assessors is often possible even when blinding of participants and personnel
during the trial is not feasible. However, it is particularly difficult for participant-
reported outcomes: for example, in a trial comparing surgery with medical manage-
ment when the outcome is pain at 3 months. The potential for bias cannot be ignored
even if the outcome assessor cannot be blinded.

5. Whether the assessment of outcome is likely to be influenced by knowledge of
intervention received. For trials in which outcome assessors were not blinded, the risk
of bias will depend on whether the outcome assessment involves judgement, which
depends on the type of outcome. We describe most situations in Table 8.6.a.

8.7 Bias in selection of the reported result

This domain addresses bias that arises because the reported result is selected (based
on its direction, magnitude or statistical significance) from among multiple interven-
tion effect estimates that were calculated by the trial authors. Consideration of risk
of bias requires distinction between

• an outcome domain: this is a state or endpoint of interest, irrespective of how it is
measured (e.g. presence or severity of depression);

• a specific outcome measurement (e.g. measurement of depression using the Ham-
ilton rating scale 6 weeks after starting intervention); and

• an outcome analysis: this is a specific result obtained by analysing one or more out-
come measurements (e.g. the difference in mean change in Hamilton rating scale
scores from baseline to 6 weeks between experimental and comparator groups).

This domain does not address bias due to selective non-reporting (or incomplete
reporting) of outcome domains that were measured and analysed by the trial authors
(Kirkham et al 2010). For example, deaths of trial participants may be recorded by the
trialists, but the reports of the trial might contain no data for deaths, or state only that
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Table 8.6.a Considerations of risk of bias in measurement of the outcome for different types of outcomes

Outcome type Description Examples
Who is the outcome
assessor?

Implications for risk of bias if the
outcome assessor is aware of the
intervention assignment

Participant-
reported
outcomes

Reports coming directly from
participants about how they
function or feel in relation to a
health condition or intervention,
without interpretation by anyone
else. They include any evaluation
obtained directly from participants
through interviews, self-completed
questionnaires or hand-held
devices.

Pain, nausea and health-related
quality of life.

The participant, even if a
blinded interviewer is
questioning the
participant and
completing a
questionnaire on their
behalf.

The outcome assessment is
potentially influenced by
knowledge of intervention
received, leading to a judgement
of at least ‘Some concerns’.
Review authors will need to
judge whether it is likely that
participants’ reporting of the
outcome was influenced by
knowledge of intervention
received, in which case risk of
bias is considered high.

Observer-
reported
outcomes not
involving
judgement

Outcomes reported by an external
observer (e.g. an intervention
provider, independent researcher,
or radiologist) that do not involve
any judgement from the observer.

All-cause mortality or the result of
an automated test.

The observer. The assessment of outcome is
usually not likely to be
influenced by knowledge of
intervention received.

Observer-
reported
outcomes
involving
some
judgement

Outcomes reported by an external
observer (e.g. an intervention
provider, independent researcher,
or radiologist) that involve some
judgement.

Assessment of an X-ray or other
image, clinical examination and
clinical events other than death
(e.g. myocardial infarction) that
require judgements on clinical
definitions or medical records.

The observer. The assessment of outcome is
potentially influenced by
knowledge of intervention
received, leading to a judgement
of at least ‘Some concerns’.
Review authors will need to
judge whether it is likely that
assessment of the outcome was
influenced by knowledge of
intervention received, in which
case risk of bias is considered
high.

8 Assessing risk of bias in a randomized trial

222



Outcomes
that reflect
decisions
made by the
intervention
provider

Outcomes that reflect decisions
made by the intervention provider,
where recording of the decisions
does not involve any judgement,
but where the decision itself can be
influenced by knowledge of
intervention received.

Hospitalization, stopping
treatment, referral to a different
ward, performing a caesarean
section, stopping ventilation and
discharge of the participant.

The care provider making
the decision.

Assessment of outcome is
usually likely to be influenced
by knowledge of intervention
received, if the care provider is
aware of this. This is particularly
important when preferences or
expectations regarding the
effect of the experimental
intervention are strong.

Composite
outcomes

Combination ofmultiple end points
into a single outcome. Typically,
participants who have experienced
any of a specified set of endpoints
are considered to have experienced
the composite outcome.
Composite endpoints can also be
constructed from continuous
outcome measures.

Major adverse cardiac and
cerebrovascular events.

Any of the above. Assessment of risk of bias for
composite outcomes should
take into account the frequency
or contribution of each
component and the risk of bias
due to the most influential
components.
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the effect estimate for mortality was not statistically significant. Such bias puts the
result of a synthesis at risk because results are omitted based on their direction, mag-
nitude or statistical significance. It should therefore be addressed at the review level, as
part of an integrated assessment of the risk of reporting bias (Page and Higgins 2016).
For further guidance, see Chapter 7 and Chapter 13.
Bias in selection of the reported result typically arises from a desire for findings to sup-

port vested interests or to be sufficiently noteworthy to merit publication. It can arise for
both harms and benefits, although themotivationsmay differ. For example, in trials com-
paring an experimental intervention with placebo, trialists who have a preconception or
vested interest in showing that the experimental intervention is beneficial and safe may
be inclined to be selective in reporting efficacy estimates that are statistically significant
and favourable to the experimental intervention, along with harm estimates that are not
significantly different between groups. In contrast, other trialists may selectively report
harm estimates that are statistically significant and unfavourable to the experimental
intervention if they believe that publicizing the existence of a harm will increase their
chances of publishing in a high impact journal.
This domain considers:

1. Whether the trial was analysed in accordance with a pre-specified plan that was
finalized before unblinded outcome data were available for analysis. We strongly
encourage review authors to attempt to retrieve the pre-specified analysis intentions
for each trial (see Chapter 7, Section 7.3.1). Doing so allows for the identification of any
outcome measures or analyses that have been omitted from, or added to, the results
report, post hoc. Review authors should ideally ask the study authors to supply the
study protocol and full statistical analysis plan if these are not publicly available. In
addition, if outcome measures and analyses mentioned in an article, protocol or trial
registration record are not reported, study authors could be asked to clarify whether
those outcome measures were in fact analysed and, if so, to supply the data.
Trial protocols should describe how unexpected adverse outcomes (that potentially

reflect unanticipated harms) will be collected and analysed. However, results based on
spontaneously reported adverse outcomes may lead to concerns that these were
selected based on the finding being noteworthy.
For some trials, the analysis intentions will not be readily available. It is still possible

to assess the risk of bias in selection of the reported result. For example, outcomemea-
sures and analyses listed in the methods section of an article can be compared with
those reported. Furthermore, outcome measures and analyses should be compared
across different papers describing the trial.

2. Selective reporting of a particular outcome measurement (based on the results)
fromamong estimates formultiplemeasurements assessedwithin an outcomedomain.
Examples include:

• reporting only one or a subset of time points at which the outcome was measured;

• use of multiple measurement instruments (e.g. pain scales) and only reporting data
for the instrument with the most favourable result;

• having multiple assessors measure an outcome domain (e.g. clinician-rated and
patient-rated depression scales) and only reporting data for the measure with the
most favourable result; and
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• reporting only the most favourable subscale (or a subset of subscales) for an instru-
ment when measurements for other subscales were available.

3. Selective reporting of a particular analysis (based on the results) from multiple
analyses estimating intervention effects for a specific outcome measurement. Exam-
ples include:

• carrying out analyses of both change scores and post-intervention scores adjusted
for baseline and reporting only the more favourable analysis;

• multiple analyses of a particular outcome measurement with and without adjust-
ment for prognostic factors (or with adjustment for different sets of prognostic
factors);

• a continuously scaled outcome converted to categorical data on the basis of multiple
cut-points; and

• effect estimates generated for multiple composite outcomes with full reporting of
just one or a subset.

Either type of selective reporting will lead to bias if selection is based on the direction,
magnitude or statistical significance of the effect estimate.
Insufficient detail in some documents may preclude full assessment of the risk of bias

(e.g. trialists only state in the trial registry record that they will measure ‘pain’, without
specifying the measurement scale, time point or metric that will be used). Review
authors should indicate insufficient information alongside their responses to signalling
questions.

8.8 Differences from the previous version of the tool

Version 2 of the tool replaces the first version, originally published in version 5 of the
Handbook in 2008, and updated in 2011 (Higgins et al 2011). Research in the field has
progressed, and RoB 2 reflects current understanding of how the causes of bias can
influence study results, and the most appropriate ways to assess this risk.
Authors familiar with the previous version of the tool, which is used widely in

Cochrane and other systematic reviews, will notice several changes:

1) assessment of bias is at the level of an individual result, rather than at a study or
outcome level;

2) the names given to the bias domains describe more clearly the issues targeted and
should reduce confusion arising from terms that are used in different ways or may
be unfamiliar (such as ‘selection bias’ and ‘performance bias’) (Mansournia
et al 2017);

3) signalling questions have been introduced, along with algorithms to assist authors
in reaching a judgement about risk of bias for each domain;

4) a distinction is introduced between considering the effect of assignment to interven-
tion and the effect of adhering to intervention, with implications for the assessment
of bias due to deviations from intended interventions;

5) the assessment of bias arising from the exclusion of participants from the analysis
(for example, as part of a naïve ‘per-protocol’ analysis) is under the domain of bias
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due to deviations from the intended intervention, rather than bias due to missing
outcome data;

6) the concept of selective reporting of a result is distinguished from that of selective
non-reporting of a result, with the latter concept removed from the tool so that it can
be addressed (more appropriately) at the level of the synthesis (see Chapter 13);

7) the option to add new domains has been removed;
8) an explicit process for reaching a judgement about the overall risk of bias in the

result has been introduced.

Because most Cochrane Reviews published before 2019 used the first version of
the tool, authors working on updating these reviews should refer to online
Chapter IV for guidance on considering whether to change methodology when updat-
ing a review.
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9

Summarizing study characteristics and
preparing for synthesis
Joanne E McKenzie, Sue E Brennan, Rebecca E Ryan, Hilary J Thomson,
Renea V Johnston

KEY POINTS

• Synthesis is a process of bringing together data from a set of included studies with the
aim of drawing conclusions about a body of evidence. This will include synthesis of
study characteristics and, potentially, statistical synthesis of study findings.

• A general framework for synthesis can be used to guide the process of planning the
comparisons, preparing for synthesis, undertaking the synthesis, and interpreting and
describing the results.

• Tabulation of study characteristics aids the examination and comparison of PICO
elements across studies, facilitates synthesis of these characteristics and grouping
of studies for statistical synthesis.

• Tabulation of extracted data from studies allows assessment of the number of studies
contributing to a particular meta-analysis, and helps determine what other statistical
synthesis methods might be used if meta-analysis is not possible.

9.1 Introduction

Synthesis is a process of bringing together data from a set of included studies with the
aim of drawing conclusions about a body of evidence. Most Cochrane Reviews on the
effects of interventions will include some type of statistical synthesis. Most commonly
this is the statistical combination of results from two or more separate studies (hence-
forth referred to as meta-analysis) of effect estimates.
An examination of the included studies always precedes statistical synthesis in

Cochrane Reviews. For example, examination of the interventions studied is often
needed to itemize their content so as to determine which studies can be grouped in
a single synthesis. More broadly, synthesis of the PICO (Population, Intervention,
Comparator and Outcome) elements of the included studies underpins interpretation
This chapter should be cited as: McKenzie JE, Brennan SE, Ryan RE, Thomson HJ, Johnston RV. Chapter 9:
Summarizing study characteristics and preparing for synthesis. In: Higgins JPT, Thomas J, Chandler J,
Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions.
2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 229–240.
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of review findings and is an important output of the review in its own right. This syn-
thesis should encompass the characteristics of the interventions and comparators in
included studies, the populations and settings in which the interventions were evalu-
ated, the outcomes assessed, and the strengths and weaknesses of the body of
evidence.
Chapter 2 defined three types of PICO criteria that may be helpful in understanding

decisions that need to be made at different stages in the review.

• The review PICO (planned at the protocol stage) is the PICO on which eligibility of
studies is based (what will be included and what excluded from the review).

• The PICO for each synthesis (also planned at the protocol stage) defines the ques-
tion that the specific synthesis aims to answer, determining how the synthesis will be
structured, specifying planned comparisons (including intervention and comparator
groups, any grouping of outcome and population subgroups).

• The PICO of the included studies (determined at the review stage) is what was actu-
ally investigated in the included studies.

In this chapter, we focus on the PICO for each synthesis and the PICO of the
included studies, as the basis for determining which studies can be grouped for sta-
tistical synthesis and for synthesizing study characteristics. We describe the preliminary
steps undertaken before performing the statistical synthesis. Methods for the statistical
synthesis are described in Chapters 10, 11 and 12.

9.2 A general framework for synthesis

Box 9.2.a provides a general framework for synthesis that can be applied irrespective
of the methods used to synthesize results. Planning for the synthesis should start at
protocol-writing stage, and Chapters 2 and 3 describe the steps involved in planning
the review questions and comparisons between intervention groups. These steps
included specifying which characteristics of the interventions, populations, outcomes
and study design would be grouped together for synthesis (the PICO for each synthesis:
stage 1 in Box 9.2.a).
This chapter primarily concerns stage 2 of the general framework in Box 9.2.a. After

deciding which studies will be included in the review and extracting data, review
authors can start implementing their plan, working through steps 2.1 to 2.5 of the
framework. This process begins with a detailed examination of the characteristics of
each study (step 2.1), and then comparison of characteristics across studies in order
to determine which studies are similar enough to be grouped for synthesis (step
2.2). Examination of the type of data available for synthesis follows (step 2.3). These
three steps inform decisions about whether any modification to the planned compar-
isons or outcomes is necessary, or new comparisons are needed (step 2.4). The last step
of the framework covered in this chapter involves synthesis of the characteristics of
studies contributing to each comparison (step 2.5). The chapter concludes with prac-
tical tips for checking data before synthesis (Section 9.4).
Steps 2.1, 2.2 and 2.5 involve analysis and synthesis of mainly qualitative information

about study characteristics. The process used to undertake these steps is rarely
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described in reviews, yet can require many subjective decisions about the nature and
similarity of the PICO elements of the included studies. The examples described in this
section illustrate approaches for making this process more transparent.

9.3 Preliminary steps of a synthesis

9.3.1 Summarize the characteristics of each study (step 2.1)

A starting point for synthesis is to summarize the PICO characteristics of each study (i.e.
the PICO of the included studies, see Chapter 3) and categorize these PICO elements in
the groups (or domains) pre-specified in the protocol (i.e. the PICO for each synthesis).
The resulting descriptions are reported in the ‘Characteristics of included studies’ table,
and are used in step 2.2 to determine which studies can be grouped for synthesis.
In some reviews, the labels and terminology used in each study are retained when

describing the PICO elements of the included studies. This may be sufficient in areas
with consistent and widely understood terminology that matches the PICO for each
synthesis. However, in most areas, terminology is variable, making it difficult to com-
pare the PICO of each included study to the PICO for each synthesis, or to compare
PICO elements across studies. Standardizing the description of PICO elements across

Box 9.2.a A general framework for synthesis that can be applied irrespective of the
methods used to synthesize results

Stage 1. At protocol stage:
Step 1.1. Set up the comparisons (Chapters 2 and 3).

Stage 2. Summarizing the included studies and preparing for synthesis:
Step 2.1. Summarize the characteristics of each study in a ‘Characteristics of included

studies’ table (see Chapter 5), including examining the interventions to itemize their
content and other characteristics (Section 9.3.1).

Step 2.2. Determine which studies are similar enough to be grouped within each com-
parison by comparing the characteristics across studies (e.g. in a matrix)
(Section 9.3.2).

Step 2.3. Determine what data are available for synthesis (Section 9.3.3; extraction of
data and conversion to the desired format is discussed in Chapters 5 and 6).

Step 2.4. Determine if modification to the planned comparisons or outcomes is nec-
essary, or new comparisons are needed, noting any deviations from the protocol
plans (Section 9.3.4; and Chapters 2 and 3).

Step 2.5. Synthesize the characteristics of the studies contributing to each comparison
(Section 9.3.5).

Stage 3. The synthesis itself:
Step 3.1. Perform a statistical synthesis (if appropriate), or provide structured report-

ing of the effects (Section 9.5; and Chapters 10, 11 and 12).
Step 3.2. Interpret and describe the results, including consideration of the direction of

effect, size of the effect, certainty of the evidence (Chapter 14), and the interven-
tions tested and the populations in which they were tested.
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studies facilitates these comparisons. This standardization includes applying the
labels and terminology used to articulate the PICO for each synthesis (Chapter 3),
and structuring the description of PICO elements. The description of interventions
can be structured using the Template for Intervention Description and Replication
(TIDIeR) checklist, for example (see Chapter 3 and Table 9.3.a).
Table 9.3.a illustrates the use of pre-specified groups to categorize and label inter-

ventions in a review of psychosocial interventions for smoking cessation in pregnancy
(Chamberlain et al 2017). The main intervention strategy in each study was categorized
into one of six groups: counselling, health education, feedback, incentive-based inter-
ventions, social support, and exercise. This categorization determined which studies
were eligible for each comparison (e.g. counselling versus usual care; single or
multi-component strategy). The extract from the ‘Characteristics of included studies’
table shows the diverse descriptions of interventions in three of the 54 studies for which
the main intervention was categorized as ‘counselling’. Other intervention character-
istics, such as duration and frequency, were coded in pre-specified categories to stand-
ardize description of the intervention intensity and facilitate meta-regression (not
shown here).
While this example focuses on categorizing and describing interventions according

to groups pre-specified in the PICO for each synthesis, the same approach applies
to other PICO elements.

9.3.2 Determine which studies are similar enough to be grouped within each
comparison (step 2.2)

Once the PICO of included studies have been coded using labels and descriptions spe-
cified in the PICO for each synthesis, it will be possible to compare PICO elements
across studies and determine which studies are similar enough to be grouped within
each comparison.
Tabulating study characteristics can help to explore and compare PICO elements

across studies, and is particularly important for reviews that are broad in scope, have
diversity across one or more PICO elements, or include large numbers of studies. Data
about study characteristics can be ordered in many different ways (e.g. by comparison
or by specific PICO elements), and tables may include information about one or more
PICO elements. Deciding on the best approach will depend on the purpose of the table
and the stage of the review. A close examination of study characteristics will require
detailed tables; for example, to identify differences in characteristics that were pre-
specified as potentially important modifiers of the intervention effects. As the review
progresses, this detail may be replaced by standardized description of PICO character-
istics (e.g. the coding of counselling interventions presented in Table 9.3.a).
Table 9.3.b illustrates one approach to tabulating study characteristics to enable

comparison and analysis across studies. This table presents a high-level summary of
the characteristics that are most important for determining which comparisons can
bemade. The table was adapted from tables presented in a review of self-management
education programmes for osteoarthritis (Kroon et al 2014). The authors presented a
structured summary of intervention and comparator groups for each study, and then
categorized intervention components thought to be important for enabling patients to
manage their own condition. Table 9.3.b shows selected intervention components, the
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Table 9.3.a Example of categorizing interventions into pre-defined groups

Definition of (selected) intervention groups from the PICO for each synthesis

• Counselling: “provide[s] motivation to quit, support to increase problem solving and coping skills,
andmay incorporate ‘transtheoretical’models of change.… includes…motivational interviewing,
cognitive behaviour therapy, psychotherapy, relaxation, problem solving facilitation, and other
strategies.”∗

• Incentives: “women receive a financial incentive, contingent on their smoking cessation; these
incentives may be gift vouchers.… Interventions that provided a ‘chance’ of incentive (e.g. lottery
tickets) combined with counselling were coded as counselling.”

• Social support: “interventions where the intervention explicitly included provision of support from a
peer (including self-nominated peers, ‘lay’ peers trained by project staff, or support from
healthcare professionals), or from partners” (Chamberlain et al 2017).

Study
ID Precis of intervention description from study

Main
intervention
strategy

Other
intervention
components

Study 1 • Assessment of smoking motivation and
intention to quit.

• Bilingual health educators (Spanish and
English) with bachelors degrees provided
15 minutes of individual counselling that
included risk information and quit messages or
reinforcement. Participants were asked to select
a quit date and nominate a significant other as a
‘quit buddy’.

• Self-help guide ‘Time for a change’ with an
explanation of how to use it and behavioural
counselling.

• Explanation of how to win prizes ($100) by
completing activity sheets.

• Booster postcard one month after study entry.

Counselling Incentive

Study 2 Routine prenatal advice on a range of health
issues, from midwives and obstetricians plus:

• Structured one-to-one counselling by a trained
facilitator (based on stages of change theory).

• Partners invited to be involved in the program.

• An information pack (developed in
collaboration with a focus group of women),
which included a self-help booklet.

• Invited to join a stop smoking support group.

Counselling Social support

Study 3 Midwives received two and a half days of training
on theory of transtheoretical model. Participants
received a set of six stage-based self-help manuals
‘Pro-Change programme for a healthy pregnancy’.
The midwife assessed each participant’s stage of
change and pointed the woman to the appropriate
manual. No more than 15 minutes was spent on
the intervention.

Counselling Nil

∗ The definition also specified eligible modes of delivery, intervention duration and personnel.
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comparator, and outcomes measured in a subset of studies (some details are ficti-
tious). Outcomes have been grouped by the outcome domains ‘Pain’ and ‘Function’
(column ‘Outcome measure’ Table 9.3.b). These pre-specified outcome domains are
the chosen level for the synthesis as specified in the PICO for each synthesis. Authors
will need to assess whether the measurement methods or tools used within each
study provide an appropriate assessment of the domains (Chapter 3, Section 3.2.4).
A next step is to group each measure into the pre-specified time points. In this
example, outcomes are grouped into short-term (< 6 weeks) and long-term follow-
up (≥ 6 weeks to 12 months) (column ‘Time points (time frame)’ Table 9.3.b).
Variations on the format shown in Table 9.3.b can be presented within a review

to summarize the characteristics of studies contributing to each synthesis, which is
important for interpreting findings (step 2.5).

9.3.3 Determine what data are available for synthesis (step 2.3)

Once the studies that are similar enough to be grouped together within each compar-
ison have been determined, a next step is to examine what data are available for syn-
thesis. Tabulating the measurement tools and time frames as shown in Table 9.3.b
allows assessment of the potential for multiplicity (i.e. when multiple outcomes
within a study and outcome domain are available for inclusion (Chapter 3,
Section 3.2.4.3)). In this example, multiplicity arises in two ways. First, from multiple
measurement instruments used to measure the same outcome domain within the
same time frame (e.g. ‘Short-term Pain’ is measured using the ‘Pain VAS’ and ‘Pain
on walking VAS’ scales in study 3). Second, frommultiple time points measured within
the same time frame (e.g. ‘Short-term Pain’ is measured using ‘Pain VAS’ at both
2 weeks and 1 month in study 6). Pre-specified methods to deal with the multiplicity
can then be implemented (see Table 9.3.c for examples of approaches for dealing
with multiplicity). In this review, the authors pre-specified a set of decision rules
for selecting specific outcomes within the outcome domains. For example, for the
outcome domain ‘Pain’, the selected outcome was the highest on the following list:
global pain, pain on walking, WOMAC pain subscore, composite pain scores other
than WOMAC, pain on activities other than walking, rest pain or pain during the night.
The authors further specified that if there were multiple time points at which the out-
come was measured within a time frame, they would select the longest time point.
The selected outcomes from applying these rules to studies 3 and 6 are indicated by
an asterisk in Table 9.3.b.
Table 9.3.b also illustrates an approach to tabulating the extracted data. The avail-

able statistics are tabulated in the column labelled ‘Data’, from which an assessment
can be made as to whether the study contributes the required data for a meta-
analysis (column ‘Effect & SE’) (Chapter 10). For example, of the seven studies
comparing health-directed behaviour (BEH) with usual care, six measured ‘Short-
term Pain’, four of which contribute required data for meta-analysis. Reordering
the table by comparison, outcome and time frame, will more readily show the num-
ber of studies that will contribute to a particular meta-analysis, and help determine
what other synthesis methods might be used if the data available for meta-analysis
are limited.
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Table 9.3.b Table of study characteristics illustrating similarity of PICO elements across studies

Study1 Comparator Self-management intervention components
Outcome
domain Outcome measure

Time points
(time frame)2 Data3

Effect &
SE

1 Attention
control

BEH MON CON SKL NAV Pain Pain VAS 1 mth (short),
8 mths (long)

Mean, N / group Yes4

Function HAQ disability
subscale

1 mth (short),
8 mths (long)

Median, IQR, N / group Maybe4

2 Acupuncture BEH EMO CON SKL NAV Pain Pain on walking
VAS

1 mth (short),
12 mths (long)

MD from ANCOVA model, 95%CI Yes

Function Dutch AIMS-SF 1 mth (short),
12 mths (long)

Median, range, N / group Maybe4

4 Information BEH ENG EMO MON CON SKL NAV Pain Pain VAS 1 mth (short) MD, SE Yes

Function Dutch AIMS-SF 1 mth (short) Mean, SD, N / group Yes

12 Information BEH SKL Pain WOMAC pain
subscore

12 mths (long) MD from ANCOVA model, 95%CI Yes

3 Usual care BEH EMO MON SKL NAV Pain Pain VAS*
Pain on walking
VAS

1 mth (short)
1 mth (short)

Mean, SD, N / group Yes

5 Usual care BEH ENG EMO MON CON SKL Pain Pain on walking
VAS

2 wks (short) Mean, SD, N / group Yes

6 Usual care BEH MON CON SKL NAV Pain Pain VAS 2 wks (short),
1 mth (short)*

MD, t-value and P value for MD Yes

Function WOMAC disability
subscore

2 wks (short),
1 mth (short)*

Mean, N / group Yes

7 Usual care BEH MON CON SKL NAV Pain WOMAC pain
subscore

1 mth (short) Direction of effect No

Function WOMAC disability
subscore

1 mth (short) Means, N / group; statistically
significant difference

Yes4

8 Usual care MON Pain Pain VAS 12 mths (long) MD, 95%CI Yes

(Continued)



Table 9.3.b (Continued)

Study1 Comparator Self-management intervention components
Outcome
domain Outcome measure

Time points
(time frame)2 Data3

Effect &
SE

9 Usual care BEH MON SKL Function Global disability 12 mths (long) Direction of effect, NS No

10 Usual care BEH EMO MON CON SKL NAV Pain Pain VAS 1 mth (short) No information No

Function Global disability 1 mth (short) Direction of effect No

11 Usual care BEH MON SKL Pain WOMAC pain
subscore

1 mth (short),
12 mths (long)

Mean, SD, N / group Yes

BEH = health-directed behaviour; CON = constructive attitudes and approaches; EMO = emotional well-being; ENG = positive and active engagement in life; MON = self-monitoring and insight;
NAV = health service navigation; SKL = skill and technique acquisition.
ANCOVA = Analysis of covariance; CI = confidence interval; IQR = interquartile range; MD = mean difference; SD = standard deviation; SE = standard error, NS = non-significant.
Pain and function measures: Dutch AIMS-SF = Dutch short form of the Arthritis Impact Measurement Scales; HAQ = Health Assessment Questionnaire; VAS = visual analogue scale; WOMAC =
Western Ontario and McMaster Universities Osteoarthritis Index.
1 Ordered by type of comparator; 2 Short-term (denoted ‘immediate’ in the review Kroon et al (2014)) follow-up is defined as < 6 weeks, long-term follow-up (denoted ‘intermediate’ in the
review) is ≥ 6 weeks to 12 months; 3 For simplicity, in this example the available data are assumed to be the same for all outcomes within an outcome domain within a study. In practice, this is
unlikely and the available data would likely vary by outcome; 4 Indicates that an effect estimate and its standard error may be computed through imputation of missing statistics, methods to
convert between statistics (e.g. medians to means) or contact with study authors. ∗ Indicates the selected outcome when there was multiplicity in the outcome domain and time frame.



9.3.4 Determine if modification to the planned comparisons or outcomes is
necessary, or new comparisons are needed (step 2.4)

The previous steps may reveal the need to modify the planned comparisons. Important
variations in the intervention may be identified leading to different or modified inter-
vention groups. Few studies or sparse data, or both, may lead to different groupings of
interventions, populations or outcomes. Planning contingencies for anticipated scenar-
ios is likely to lead to less post-hoc decision making (Chapters 2 and 3); however, it is
difficult to plan for all scenarios. In the latter circumstance, the rationale for any post-
hoc changes should be reported. This approach was adopted in a review examining the
effects of portion, package or tableware size for changing selection and consumption of
food, alcohol and tobacco (Hollands et al 2015). After preliminary examination of the
outcome data, the review authors changed their planned intervention groups. They
judged that intervention groups based on ‘size’ and those based on ‘shape’ of the pro-
ducts were not conceptually comparable, and therefore should form separate compar-
isons. The authors provided a rationale for the change and noted that it was a post-hoc
decision.

Table 9.3.c Examples of approaches for selecting one outcome (effect estimate) for inclusion in a
synthesis. Adapted from López-López et al (2018)

Approach Description Comment

Random
selection

Randomly select an outcome
(effect estimate) when multiple are
available for an outcome domain

Assumes that the effect estimates are
interchangeable measures of the domain and
that random selection will yield a
‘representative’ effect for the meta-analysis.

Averaging of
effect
estimates

Calculate the average of the
intervention effects when multiple
are available for a particular
outcome domain

Assumes that the effect estimates are
interchangeable measures of the domain. The
standard error of the average effect can be
calculated using a simple method of averaging
the variances of the effect estimates.

Median
effect
estimate

Rank the effect estimates of
outcomes within an outcome
domain and select the outcome
with the middle value

An alternative to averaging effect estimates.
Assumes that the effect estimates are
interchangeable measures of the domain and
that the median effect will yield a
‘representative’ effect for the meta-analysis.
This approach is often adopted in Effective
Practice and Organization of Care reviews that
include broad outcome domains.

Decision
rules

Select the most relevant outcome
from multiple that are available for
an outcome domain using a
decision rule

Assumes that while the outcomes all provide a
measure of the outcome domain, they are not
completely interchangeable, with some being
more relevant. The decision rules aim to select
the most relevant. The rules may be based on
clinical (e.g. content validity of measurement
tools) or methodological (e.g. reliability of the
measure) considerations. If multiple rules are
specified, a hierarchy will need to be
determined to specify the order in which they
are applied.
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9.3.5 Synthesize the characteristics of the studies contributing to each
comparison (step 2.5)

A final step, and one that is essential for interpreting combined effects, is to synthesize
the characteristics of studies contributing to each comparison. This description should
integrate information about key PICO characteristics across studies, and identify any
potentially important differences in characteristics that were pre-specified as possible
effect modifiers. The synthesis of study characteristics is also needed for GRADE assess-
ments, informing judgements about whether the evidence applies directly to the review
question (indirectness) and analyses conducted to examine possible explanations for
heterogeneity (inconsistency) (see Chapter 14).
Tabulatingstudycharacteristics isgenerallypreferable to lengthydescription in the text,

since the structure imposedbya table canmake it easierand faster for readers toscanand
identify patterns in the information presented. Table 9.3.b illustrates one such approach.
Tabulating characteristics of studies that contribute to each comparison can also help to
improve the transparency of decisions made around grouping of studies, while also
ensuring that studies that do not contribute to the combined effect are accounted for.

9.4 Checking data before synthesis

Before embarking on a synthesis, it is important to be confident that the findings from
the individual studies have been collated correctly. Therefore, review authors must
compare the magnitude and direction of effects reported by studies with how they
are to be presented in the review. This is a reasonably straightforward way for authors
to check a number of potential problems, including typographical errors in studies’
reports, accuracy of data collection and manipulation, and data entry into RevMan.
For example, the direction of a standardized mean difference may accidentally be
wrong in the review. A basic check is to ensure the same qualitative findings (e.g. direc-
tion of effect and statistical significance) between the data as presented in the review
and the data as available from the original study.
Results in forest plots should agree with data in the original report (point estimate

and confidence interval) if the same effect measure and statistical model is used. There
are legitimate reasons for differences, however, including: using a different measure of
intervention effect; making different choices between change-from-baseline measures,
post-intervention measures alone or post-intervention measures adjusted for baseline
values; grouping similar intervention groups; or making adjustments for unit-of-
analysis errors in the reports of the primary studies.

9.5 Types of synthesis

The focus of this chapter has been describing the steps involved in implementing the
planned comparisons between intervention groups (stage 2 of the general framework
for synthesis (Box 9.2.a)). The next step (stage 3) is often performing a statistical syn-
thesis. Meta-analysis of effect estimates, and its extensions have many advantages.
There are circumstances under which a meta-analysis is not possible, however, and
other statistical synthesis methods might be considered, so as to make best use of
the available data. Available summary and synthesis methods, along with the ques-
tions they address and examples of associated plots, are described in Table 9.5.a.
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Table 9.5.a Overview of available methods for summary and synthesis

Summary Statistical synthesis methods

Methods Text/Tabular Vote
counting

Combining P values Summary of effect
estimates

Pairwise meta-
analysis

Network meta-
analysis

Subgroup analysis/
meta-regression

Questions
addressed

Narrative summary of
evidence presented in
either text or tabular
form

Is there any
evidence of
an effect?

Is there evidence
that there is an
effect in at least one
study?

What is the range
and distribution of
observed effects?

What is the common
intervention effect?
(fixed-effect model)

What is the average
intervention effect?
(random effects
model)

Which
intervention of
multiple is most
effective?

What factors modify
the magnitude of
the intervention
effects?

Example
plots

Forest plot (plotting
individual study
effects without a
combined
effect estimate)

Harvest
plot

Effect
direction
plot

Albatross plot Box and whisker
plot

Bubble plot

Forest plot Forest plot

Network
diagram

Rankogram
plots

Forest plot

Box and whisker plot

Bubble plot
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Chapters 10 and 11 discuss meta-analysis (of effect estimate) methods, while
Chapter 12 focuses on the other statistical synthesis methods, along with approaches
to tabulating, visually displaying and providing a structured presentation of the find-
ings. An important part of planning the analysis strategy is building in contingencies to
use alternative methods when the desired method cannot be used.
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10

Analysing data and undertaking meta-analyses
Jonathan J Deeks, Julian PT Higgins, Douglas G Altman; on behalf of the Cochrane
Statistical Methods Group

KEY POINTS

• Meta-analysis is the statistical combination of results from two or more separate
studies.

• Potential advantages of meta-analyses include an improvement in precision, the abil-
ity to answer questions not posed by individual studies, and the opportunity to settle
controversies arising from conflicting claims. However, they also have the potential to
mislead seriously, particularly if specific study designs, within-study biases, variation
across studies, and reporting biases are not carefully considered.

• It is important to be familiar with the type of data (e.g. dichotomous, continuous) that
result frommeasurement of an outcome in an individual study, and to choose suitable
effect measures for comparing intervention groups.

• Most meta-analysis methods are variations on a weighted average of the effect
estimates from the different studies.

• Studies with no events contribute no information about the risk ratio or odds ratio. For
rare events, the Peto method has been observed to be less biased and more powerful
than other methods.

• Variation across studies (heterogeneity) must be considered, although most Cochrane
Reviews do not have enough studies to allow for the reliable investigation of its causes
Random-effects meta-analyses allow for heterogeneity by assuming that underlying
effects follow a normal distribution, but they must be interpreted carefully. Prediction
intervals from random-effects meta-analyses are a useful device for presenting the
extent of between-study variation.

• Many judgements are required in the process of preparing a meta-analysis. Sensitivity
analyses should be used to examine whether overall findings are robust to potentially
influential decisions.

This chapter should be cited as: Deeks JJ, Higgins JPT, Altman DG (editors). Chapter 10: Analysing data and
undertaking meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK):
John Wiley & Sons, 2019: 241–284.
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10.1 Do not start here!

It can be tempting to jump prematurely into a statistical analysis when undertaking a
systematic review. The production of a diamond at the bottom of a plot is an exciting
moment for many authors, but results of meta-analyses can be very misleading if suit-
able attention has not been given to formulating the review question; specifying eligi-
bility criteria; identifying and selecting studies; collecting appropriate data; considering
risk of bias; planning intervention comparisons; and deciding what data would be
meaningful to analyse. Review authors should consult the chapters that precede this
one before a meta-analysis is undertaken.

10.2 Introduction to meta-analysis

An important step in a systematic review is the thoughtful consideration of whether it is
appropriate to combine the numerical results of all, or perhaps some, of the studies.
Such a meta-analysis yields an overall statistic (together with its confidence interval)
that summarizes the effectiveness of an experimental intervention compared with a
comparator intervention. Potential advantages of meta-analyses include the following.

1) To improve precision. Many studies are too small to provide convincing evidence
about intervention effects in isolation. Estimation is usually improved when it is
based on more information.

2) To answer questions not posed by the individual studies. Primary studies often involve a
specific type of participant and explicitly defined interventions. A selection of studies
in which these characteristics differ can allow investigation of the consistency of effect
across a wider range of populations and interventions. It may also, if relevant, allow
reasons for differences in effect estimates to be investigated.

3) To settle controversies arising from apparently conflicting studies or to generate new
hypotheses. Statistical synthesis of findings allows the degree of conflict to be for-
mally assessed, and reasons for different results to be explored and quantified.

Of course, the use of statistical synthesis methods does not guarantee that the results
of a review are valid, any more than it does for a primary study. Moreover, like any tool,
statistical methods can be misused.
This chapter describes the principles and methods used to carry out a meta-analysis

for a comparison of two interventions for the main types of data encountered. The use of
network meta-analysis to compare more than two interventions is addressed in
Chapter 11. Formulae for most of the methods described are provided in a supplemen-
tary document ‘Statistical algorithms in Review Manager’ (available via the Handbook
web pages), and a longer discussion of many of the issues is available (Deeks et al 2001).

10.2.1 Principles of meta-analysis

The commonly used methods for meta-analysis follow the following basic principles.

1) Meta-analysis is typically a two-stage process. In the first stage, a summary statistic
is calculated for each study, to describe the observed intervention effect in the same
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way for every study. For example, the summary statistic may be a risk ratio if the
data are dichotomous, or a difference between means if the data are continuous
(see Chapter 6).

2) In the second stage, a summary (combined) intervention effect estimate is calcu-
lated as a weighted average of the intervention effects estimated in the individual
studies. A weighted average is defined as

weighted average =
sum of estimate ×weight

sum of weights
=

YiWi

Wi

where Yi is the intervention effect estimated in the ith study,Wi is the weight given to
the ith study, and the summation is across all studies. Note that if all the weights are
the same then the weighted average is equal to the mean intervention effect. The
bigger the weight given to the ith study, the more it will contribute to the weighted
average (see Section 10.3).

3) The combination of intervention effect estimates across studies may optionally
incorporate an assumption that the studies are not all estimating the same inter-
vention effect, but estimate intervention effects that follow a distribution across
studies. This is the basis of a random-effects meta-analysis (see Section 10.10.4).
Alternatively, if it is assumed that each study is estimating exactly the same quan-
tity, then a fixed-effect meta-analysis is performed.

4) The standard error of the summary intervention effect can be used to derive a con-
fidence interval, which communicates the precision (or uncertainty) of the summary
estimate; and to derive a P value, which communicates the strength of the evidence
against the null hypothesis of no intervention effect.

5) As well as yielding a summary quantification of the intervention effect, all methods
of meta-analysis can incorporate an assessment of whether the variation among the
results of the separate studies is compatible with random variation, or whether it is
large enough to indicate inconsistency of intervention effects across studies (see
Section 10.10).

6) The problem of missing data is one of the numerous practical considerations that
must be thought through when undertaking a meta-analysis. In particular, review
authors should consider the implications of missing outcome data from individual
participants (due to losses to follow-up or exclusions from analysis) (see
Section 10.12).

Meta-analyses are usually illustrated using a forest plot. An example appears in
Figure 10.2.a. A forest plot displays effect estimates and confidence intervals for both
individual studies and meta-analyses (Lewis and Clarke 2001). Each study is repre-
sented by a block at the point estimate of intervention effect with a horizontal line
extending either side of the block. The area of the block indicates the weight assigned
to that study in the meta-analysis while the horizontal line depicts the confidence inter-
val (usually with a 95% level of confidence). The area of the block and the confidence
interval convey similar information, but both make different contributions to the
graphic. The confidence interval depicts the range of intervention effects compatible
with the study’s result. The size of the block draws the eye towards the studies with
larger weight (usually those with narrower confidence intervals), which dominate
the calculation of the summary result, presented as a diamond at the bottom.
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Figure 10.2.a Example of a forest plot from a review of interventions to promote ownership of smoke alarms (DiGuiseppi and Higgins 2001). Reproduced with
permission of John Wiley & Sons
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10.3 A generic inverse-variance approach to meta-analysis

A very common and simple version of the meta-analysis procedure is commonly
referred to as the inverse-variance method. This approach is implemented in its most
basic form in RevMan, and is used behind the scenes in many meta-analyses of both
dichotomous and continuous data.
The inverse-variance method is so named because the weight given to each study is

chosen to be the inverse of the variance of the effect estimate (i.e. 1 over the square of
its standard error). Thus, larger studies, which have smaller standard errors, are given
more weight than smaller studies, which have larger standard errors. This choice of
weights minimizes the imprecision (uncertainty) of the pooled effect estimate.

10.3.1 Fixed-effect method for meta-analysis

A fixed-effect meta-analysis using the inverse-variance method calculates a weighted
average as:

generic inverse-variance weighted average =
Yi 1/ SE2i

1/ SE2i

where Yi is the intervention effect estimated in the ith study, SEi is the standard error of
that estimate, and the summation is across all studies. The basic data required for the
analysis are therefore an estimate of the intervention effect and its standard error from
each study. A fixed-effect meta-analysis is valid under an assumption that all effect
estimates are estimating the same underlying intervention effect, which is referred
to variously as a ‘fixed-effect’ assumption, a ‘common-effect’ assumption or an
‘equal-effects’ assumption. However, the result of the meta-analysis can be interpreted
without making such an assumption (Rice et al 2018).

10.3.2 Random-effects methods for meta-analysis

A variation on the inverse-variance method is to incorporate an assumption that the
different studies are estimating different, yet related, intervention effects (Higgins
et al 2009). This produces a random-effects meta-analysis, and the simplest version
is known as the DerSimonian and Laird method (DerSimonian and Laird 1986).
Random-effects meta-analysis is discussed in detail in Section 10.10.4.

10.3.3 Performing inverse-variance meta-analyses

Most meta-analysis programs perform inverse-variance meta-analyses. Usually the
user provides summary data from each intervention arm of each study, such as a
2 × 2 table when the outcome is dichotomous (see Chapter 6, Section 6.4), or means,
standard deviations and sample sizes for each group when the outcome is continuous
(see Chapter 6, Section 6.5). This avoids the need for the author to calculate effect esti-
mates, and allows the use of methods targeted specifically at different types of data
(see Sections 10.4 and 10.5).

10.3 A generic inverse-variance approach

245



When the data are conveniently available as summary statistics from each interven-
tion group, the inverse-variance method can be implemented directly. For example,
estimates and their standard errors may be entered directly into RevMan under the
‘Generic inverse variance’ outcome type. For ratio measures of intervention effect,
the datamust be entered into RevMan as natural logarithms (for example, as a log odds
ratio and the standard error of the log odds ratio). However, it is straightforward to
instruct the software to display results on the original (e.g. odds ratio) scale. It is pos-
sible to supplement or replace this with a column providing the sample sizes in the two
groups. Note that the ability to enter estimates and standard errors creates a
high degree of flexibility in meta-analysis. It facilitates the analysis of properly analysed
crossover trials, cluster-randomized trials and non-randomized trials (see Chapter 23),
as well as outcome data that are ordinal, time-to-event or rates (see Chapter 6).

10.4 Meta-analysis of dichotomous outcomes

There are four widely used methods of meta-analysis for dichotomous outcomes, three
fixed-effect methods (Mantel-Haenszel, Peto and inverse variance) and one random-
effects method (DerSimonian and Laird inverse variance). All of these methods are
available as analysis options in RevMan. The Peto method can only combine odds
ratios, whilst the other three methods can combine odds ratios, risk ratios or risk dif-
ferences. Formulae for all of the meta-analysis methods are available elsewhere (Deeks
et al 2001).
Note that having no events in one group (sometimes referred to as ‘zero cells’) causes

problems with computation of estimates and standard errors with some methods: see
Section 10.4.4.

10.4.1 Mantel-Haenszel methods

When data are sparse, either in terms of event risks being low or study size being small,
the estimates of the standard errors of the effect estimates that are used in the inverse-
variance methods may be poor. Mantel-Haenszel methods are fixed-effect meta-
analysis methods using a different weighting scheme that depends on which effect
measure (e.g. risk ratio, odds ratio, risk difference) is being used (Mantel and Haenszel
1959, Greenland and Robins 1985). They have been shown to have better statistical
properties when there are few events. As this is a common situation in Cochrane
Reviews, the Mantel-Haenszel method is generally preferable to the inverse variance
method in fixed-effect meta-analyses. In other situations the two methods give similar
estimates.

10.4.2 Peto odds ratio method

Peto’s method can only be used to combine odds ratios (Yusuf et al 1985). It uses an
inverse-variance approach, but uses an approximate method of estimating the log
odds ratio, and uses different weights. An alternative way of viewing the Peto method
is as a sum of ‘O – E’ statistics. Here, O is the observed number of events and E is an
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expected number of events in the experimental intervention group of each study under
the null hypothesis of no intervention effect.
The approximation used in the computation of the log odds ratio works well when

intervention effects are small (odds ratios are close to 1), events are not particularly
common and the studies have similar numbers in experimental and comparator
groups. In other situations it has been shown to give biased answers. As these criteria
are not always fulfilled, Peto’s method is not recommended as a default approach for
meta-analysis.
Corrections for zero cell counts are not necessary when using Peto’s method. Per-

haps for this reason, this method performs well when events are very rare
(Bradburn et al 2007); see Section 10.4.4.1. Also, Peto’s method can be used to combine
studies with dichotomous outcome data with studies using time-to-event analyses
where log-rank tests have been used (see Section 10.9).

10.4.3 Which effect measure for dichotomous outcomes?

Effect measures for dichotomous data are described in Chapter 6, Section 6.4.1. The
effect of an intervention can be expressed as either a relative or an absolute effect.
The risk ratio (relative risk) and odds ratio are relative measures, while the risk differ-
ence and number needed to treat for an additional beneficial outcome are absolute
measures. A further complication is that there are, in fact, two risk ratios. We can cal-
culate the risk ratio of an event occurring or the risk ratio of no event occurring. These
give different summary results in a meta-analysis, sometimes dramatically so.
The selection of a summary statistic for use in meta-analysis depends on balancing

three criteria (Deeks 2002). First, we desire a summary statistic that gives values that
are similar for all the studies in the meta-analysis and subdivisions of the population to
which the interventions will be applied. The more consistent the summary statistic, the
greater is the justification for expressing the intervention effect as a single summary
number. Second, the summary statistic must have the mathematical properties
required to perform a valid meta-analysis. Third, the summary statistic would ideally
be easily understood and applied by those using the review. The summary intervention
effect should be presented in a way that helps readers to interpret and apply the results
appropriately. Among effect measures for dichotomous data, no single measure is uni-
formly best, so the choice inevitably involves a compromise.

Consistency Empirical evidence suggests that relative effect measures are, on average,
more consistent than absolute measures (Engels et al 2000, Deeks 2002, Rucker et al
2009). For this reason, it is wise to avoid performing meta-analyses of risk differences,
unless there is a clear reason to suspect that risk differences will be consistent in a par-
ticular clinical situation. On average there is little difference between the odds ratio and
risk ratio in terms of consistency (Deeks 2002). When the study aims to reduce the inci-
dence of an adverse event, there is empirical evidence that risk ratios of the adverse
event are more consistent than risk ratios of the non-event (Deeks 2002). Selecting
an effect measure based on what is the most consistent in a particular situation is
not a generally recommended strategy, since it may lead to a selection that spuriously
maximizes the precision of a meta-analysis estimate.

10.4 Meta-analysis of dichotomous outcomes
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Mathematical properties The most important mathematical criterion is the availability
of a reliable variance estimate. The number needed to treat for an additional beneficial
outcome does not have a simple variance estimator and cannot easily be used directly
in meta-analysis, although it can be computed from the meta-analysis result after-
wards (see Chapter 15, Section 15.4.2). There is no consensus regarding the importance
of two other often-cited mathematical properties: the fact that the behaviour of the
odds ratio and the risk difference do not rely on which of the two outcome states is
coded as the event, and the odds ratio being the only statistic which is unbounded
(see Chapter 6, Section 6.3.1).

Ease of interpretation The odds ratio is the hardest summary statistic to understand
and to apply in practice, andmany practising clinicians report difficulties in using them.
There are many published examples where authors have misinterpreted odds ratios
from meta-analyses as risk ratios. Although odds ratios can be re-expressed for inter-
pretation (as discussed here), there must be some concern that routine presentation of
the results of systematic reviews as odds ratios will lead to frequent over-estimation of
the benefits and harms of interventions when the results are applied in clinical practice.
Absolute measures of effect are thought to bemore easily interpreted by clinicians than
relative effects (Sinclair and Bracken 1994), and allow trade-offs to be made between
likely benefits and likely harms of interventions. However, they are less likely to be
generalizable.
It is generally recommended that meta-analyses are undertaken using risk ratios

(taking care to make a sensible choice over which category of outcome is classified
as the event) or odds ratios. This is because it seems important to avoid using summary
statistics for which there is empirical evidence that they are unlikely to give consistent
estimates of intervention effects (the risk difference), and it is impossible to use statis-
tics for which meta-analysis cannot be performed (the number needed to treat for an
additional beneficial outcome). It may be wise to plan to undertake a sensitivity anal-
ysis to investigate whether choice of summary statistic (and selection of the event cat-
egory) is critical to the conclusions of the meta-analysis (see Section 10.14).
It is often sensible to use one statistic for meta-analysis and to re-express the results

using a second, more easily interpretable statistic. For example, often meta-analysis
may be best performed using relative effect measures (risk ratios or odds ratios)
and the results re-expressed using absolute effect measures (risk differences or num-
bers needed to treat for an additional beneficial outcome – see Chapter 15
(Section 15.4). This is one of the key motivations for ‘Summary of findings’ tables in
Cochrane Reviews: see Chapter 14). If odds ratios are used for meta-analysis they
can also be re-expressed as risk ratios (see Chapter 15, Section 15.4). In all cases the
same formulae can be used to convert upper and lower confidence limits. However,
all of these transformations require specification of a value of baseline risk that indi-
cates the likely risk of the outcome in the ‘control’ population to which the experimen-
tal intervention will be applied. Where the chosen value for this assumed comparator
group risk is close to the typical observed comparator group risks across the studies,
similar estimates of absolute effect will be obtained regardless of whether odds ratios
or risk ratios are used for meta-analysis. Where the assumed comparator risk differs
from the typical observed comparator group risk, the predictions of absolute benefit
will differ according to which summary statistic was used for meta-analysis.
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10.4.4 Meta-analysis of rare events

For rare outcomes, meta-analysis may be the only way to obtain reliable evidence of
the effects of healthcare interventions. Individual studies are usually under-powered to
detect differences in rare outcomes, but ameta-analysis of many studiesmay have ade-
quate power to investigate whether interventions do have an impact on the incidence
of the rare event. However, many methods of meta-analysis are based on large sample
approximations, and are unsuitable when events are rare. Thus authors must take care
when selecting a method of meta-analysis (Efthimiou 2018).
There is no single risk at which events are classified as ‘rare’. Certainly risks of 1 in

1000 constitute rare events, and many would classify risks of 1 in 100 the same way.
However, the performance of methods when risks are as high as 1 in 10 may also
be affected by the issues discussed in this section. What is typical is that a high propor-
tion of the studies in the meta-analysis observe no events in one or more study arms.

10.4.4.1 Studies with no events in one or more arms
Computational problems can occur when no events are observed in one or both groups
in an individual study. Inverse variance meta-analytical methods involve computing an
intervention effect estimate and its standard error for each study. For studies where no
events were observed in one or both arms, these computations often involve dividing
by a zero count, which yields a computational error. Most meta-analytical software rou-
tines (including those in RevMan) automatically check for problematic zero counts, and
add a fixed value (typically 0.5) to all cells of a 2 × 2 table where the problems occur. The
Mantel-Haenszel methods require zero-cell corrections only if the same cell is zero in all
the included studies, and hence need to use the correction less often. However, in many
software applications the same correction rules are applied for Mantel-Haenszel meth-
ods as for the inverse-variance methods. Odds ratio and risk ratio methods require zero
cell corrections more often than difference methods, except for the Peto odds ratio
method, which encounters computation problems only in the extreme situation of
no events occurring in all arms of all studies.
Whilst the fixed correction meets the objective of avoiding computational errors, it

usually has the undesirable effect of biasing study estimates towards no difference
and over-estimating variances of study estimates (consequently down-weighting inap-
propriately their contribution to the meta-analysis). Where the sizes of the study arms
are unequal (which occurs more commonly in non-randomized studies than rando-
mized trials), they will introduce a directional bias in the treatment effect. Alternative
non-fixed zero-cell corrections have been explored by Sweeting and colleagues, includ-
ing a correction proportional to the reciprocal of the size of the contrasting study arm,
which they found preferable to the fixed 0.5 correction when arm sizes were not bal-
anced (Sweeting et al 2004).

10.4.4.2 Studies with no events in either arm
The standard practice in meta-analysis of odds ratios and risk ratios is to exclude stud-
ies from themeta-analysis where there are no events in both arms. This is because such
studies do not provide any indication of either the direction or magnitude of the rel-
ative treatment effect. Whilst it may be clear that events are very rare on both the exper-
imental intervention and the comparator intervention, no information is provided as to
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which group is likely to have the higher risk, or on whether the risks are of the same or
different orders of magnitude (when risks are very low, they are compatible with very
large or very small ratios). Whilst one might be tempted to infer that the risk would be
lowest in the group with the larger sample size (as the upper limit of the confidence
interval would be lower), this is not justified as the sample size allocation was deter-
mined by the study investigators and is not a measure of the incidence of the event.
Risk difference methods superficially appear to have an advantage over odds ratio

methods in that the risk difference is defined (as zero) when no events occur in either
arm. Such studies are therefore included in the estimation process. Bradburn and col-
leagues undertook simulation studies which revealed that all risk difference methods
yield confidence intervals that are too wide when events are rare, and have associated
poor statistical power, which make them unsuitable for meta-analysis of rare events
(Bradburn et al 2007). This is especially relevant when outcomes that focus on treat-
ment safety are being studied, as the ability to identify correctly (or attempt to refute)
serious adverse events is a key issue in drug development.
It is likely that outcomes for which no events occur in either arm may not be

mentioned in reports of many randomized trials, precluding their inclusion in a
meta-analysis. It is unclear, though, when working with published results, whether
failure to mention a particular adverse event means there were no such events, or
simply that such events were not included as a measured endpoint. Whilst the results
of risk difference meta-analyses will be affected by non-reporting of outcomes with no
events, odds and risk ratio based methods naturally exclude these data whether or not
they are published, and are therefore unaffected.

10.4.4.3 Validity of methods of meta-analysis for rare events
Simulation studies have revealed thatmanymeta-analytical methods can givemislead-
ing results for rare events, which is unsurprising given their reliance on asymptotic sta-
tistical theory. Their performance has been judged suboptimal either through results
being biased, confidence intervals being inappropriately wide, or statistical power
being too low to detect substantial differences.
In the following we consider the choice of statistical method for meta-analyses of

odds ratios. Appropriate choices appear to depend on the comparator group risk,
the likely size of the treatment effect and consideration of balance in the numbers
of experimental and comparator participants in the constituent studies. We are not
aware of research that has evaluated risk ratio measures directly, but their perfor-
mance is likely to be very similar to corresponding odds ratio measurements. When
events are rare, estimates of odds and risks are near identical, and results of both
can be interpreted as ratios of probabilities.
Bradburn and colleagues found that many of the most commonly used meta-

analytical methods were biased when events were rare (Bradburn et al 2007). The bias
was greatest in inverse variance and DerSimonian and Laird odds ratio and risk differ-
ence methods, and the Mantel-Haenszel odds ratio method using a 0.5 zero-cell correc-
tion. As already noted, risk difference meta-analytical methods tended to show
conservative confidence interval coverage and low statistical power when risks of
events were low.
At event rates below 1% the Peto one-step odds ratio method was found to be the

least biased and most powerful method, and provided the best confidence interval
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coverage, provided there was no substantial imbalance between treatment and com-
parator group sizes within studies, and treatment effects were not exceptionally large.
This finding was consistently observed across three different meta-analytical scenarios,
and was also observed by Sweeting and colleagues (Sweeting et al 2004).
This finding was noted despite the method producing only an approximation to the

odds ratio. For very large effects (e.g. risk ratio = 0.2) when the approximation is known
to be poor, treatment effects were under-estimated, but the Peto method still had the
best performance of all themethods considered for event risks of 1 in 1000, and the bias
was never more than 6% of the comparator group risk.
In other circumstances (i.e. event risks above 1%, very large effects at event risks

around 1%, and meta-analyses where many studies were substantially imbalanced)
the best performing methods were the Mantel-Haenszel odds ratio without zero-cell
corrections, logistic regression and an exact method. None of these methods is avail-
able in RevMan.
Methods that should be avoided with rare events are the inverse-variance methods

(including the DerSimonian and Laird random-effects method) (Efthimiou 2018). These
directly incorporate the study’s variance in the estimation of its contribution to the
meta-analysis, but these are usually based on a large-sample variance approximation,
which was not intended for use with rare events. We would suggest that incorporation
of heterogeneity into an estimate of a treatment effect should be a secondary consid-
eration when attempting to produce estimates of effects from sparse data – the pri-
mary concern is to discern whether there is any signal of an effect in the data.

10.5 Meta-analysis of continuous outcomes

An important assumption underlying standard methods for meta-analysis of continu-
ous data is that the outcomes have a normal distribution in each intervention arm in
each study. This assumption may not always be met, although it is unimportant in very
large studies. It is useful to consider the possibility of skewed data (see Section 10.5.3).

10.5.1 Which effect measure for continuous outcomes?

The two summary statistics commonly used for meta-analysis of continuous data are
the mean difference (MD) and the standardized mean difference (SMD). Other options
are available, such as the ratio of means (see Chapter 6, Section 6.5.1). Selection of
summary statistics for continuous data is principally determined by whether studies
all report the outcome using the same scale (when the mean difference can be used)
or using different scales (when the standardized mean difference is usually used). The
ratio of means can be used in either situation, but is appropriate only when outcome
measurements are strictly greater than zero. Further considerations in deciding on an
effect measure that will facilitate interpretation of the findings appears in Chapter 15
(Section 15.5).
The different roles played in MD and SMD approaches by the standard deviations

(SDs) of outcomes observed in the two groups should be understood.
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For the mean difference approach, the SDs are used together with the sample sizes to
compute the weight given to each study. Studies with small SDs are given relatively
higher weight whilst studies with larger SDs are given relatively smaller weights. This
is appropriate if variation in SDs between studies reflects differences in the reliability of
outcome measurements, but is probably not appropriate if the differences in SD reflect
real differences in the variability of outcomes in the study populations.
For the standardized mean difference approach, the SDs are used to standardize the

mean differences to a single scale, as well as in the computation of study weights. Thus,
studies with small SDs lead to relatively higher estimates of SMD, whilst studies with
larger SDs lead to relatively smaller estimates of SMD. For this to be appropriate, it
must be assumed that between-study variation in SDs reflects only differences in meas-
urement scales and not differences in the reliability of outcome measures or variability
among study populations, as discussed in Chapter 6 (Section 6.5.1.2).
These assumptions of the methods should be borne in mind when unexpected var-

iation of SDs is observed across studies.

10.5.2 Meta-analysis of change scores

In some circumstances an analysis based on changes from baseline will be more effi-
cient and powerful than comparison of post-intervention values, as it removes a com-
ponent of between-person variability from the analysis. However, calculation of a
change score requires measurement of the outcome twice and in practice may be less
efficient for outcomes that are unstable or difficult to measure precisely, where the
measurement error may be larger than true between-person baseline variability.
Change-from-baseline outcomes may also be preferred if they have a less skewed dis-
tribution than post-intervention measurement outcomes. Although sometimes used as
a device to ‘correct’ for unlucky randomization, this practice is not recommended.
The preferred statistical approach to accounting for baseline measurements of the

outcome variable is to include the baseline outcome measurements as a covariate
in a regression model or analysis of covariance (ANCOVA). These analyses produce
an ‘adjusted’ estimate of the intervention effect together with its standard error. These
analyses are the least frequently encountered, but as they give the most precise and
least biased estimates of intervention effects they should be included in the analysis
when they are available. However, they can only be included in a meta-analysis using
the generic inverse-variance method, since means and SDs are not available for each
intervention group separately.
In practice an author is likely to discover that the studies included in a review include

a mixture of change-from-baseline and post-intervention value scores. However, mix-
ing of outcomes is not a problem when it comes to meta-analysis of MDs. There is no
statistical reason why studies with change-from-baseline outcomes should not be com-
bined in a meta-analysis with studies with post-intervention measurement outcomes
when using the (unstandardized) MD method. In a randomized study, MD based on
changes from baseline can usually be assumed to be addressing exactly the same
underlying intervention effects as analyses based on post-intervention measurements.
That is to say, the difference in mean post-intervention values will on average be the
same as the difference inmean change scores. If the use of change scores does increase
precision, appropriately, the studies presenting change scores will be given higher
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weights in the analysis than they would have received if post-intervention values had
been used, as they will have smaller SDs.
When combining the data on the MD scale, authors must be careful to use the appro-

priate means and SDs (either of post-intervention measurements or of changes from
baseline) for each study. Since the mean values and SDs for the two types of outcome
may differ substantially, it may be advisable to place them in separate subgroups to
avoid confusion for the reader, but the results of the subgroups can legitimately be
pooled together.
In contrast, post-intervention value and change scores should not in principle be

combined using standard meta-analysis approaches when the effect measure is an
SMD. This is because the SDs used in the standardization reflect different things.
The SD when standardizing post-intervention values reflects between-person variabil-
ity at a single point in time. The SD when standardizing change scores reflects variation
in between-person changes over time, so will depend on both within-person and
between-person variability; within-person variability in turn is likely to depend on
the length of time between measurements. Nevertheless, an empirical study of
21 meta-analyses in osteoarthritis did not find a difference between combined SMDs
based on post-intervention values and combined SMDs based on change scores (da
Costa et al 2013). One option is to standardize SMDs using post-intervention SDs rather
than change score SDs. This would lead to valid synthesis of the two approaches, but
we are not aware that an appropriate standard error for this has been derived.
A common practical problem associated with including change-from-baseline mea-

sures is that the SD of changes is not reported. Imputation of SDs is discussed in
Chapter 6 (Section 6.4.2.8).

10.5.3 Meta-analysis of skewed data

Analyses based on means are appropriate for data that are at least approximately nor-
mally distributed, and for data from very large trials. If the true distribution of out-
comes is asymmetrical, then the data are said to be skewed. Review authors should
consider the possibility and implications of skewed data when analysing continuous
outcomes (see MECIR Box 10.5.a). Skew can sometimes be diagnosed from the means
and SDs of the outcomes. A rough check is available, but it is only valid if a lowest or
highest possible value for an outcome is known to exist. Thus, the check may be used

MECIR Box 10.5.a Relevant expectations for conduct of intervention reviews

C65: Addressing skewed data (Highly desirable)

Consider the possibility and implications of
skewed data when analysing continuous
outcomes.

Skewed data are sometimes not
summarized usefully by means and
standard deviations. While statistical
methods are approximately valid for large
sample sizes, skewed outcome data can
lead to misleading results when studies
are small.
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for outcomes such as weight, volume and blood concentrations, which have lowest
possible values of 0, or for scale outcomes with minimum or maximum scores, but
it may not be appropriate for change-from-baseline measures. The check involves cal-
culating the observed mean minus the lowest possible value (or the highest possible
value minus the observed mean), and dividing this by the SD. A ratio less than 2 sug-
gests skew (Altman and Bland 1996). If the ratio is less than 1, there is strong evidence
of a skewed distribution.
Transformation of the original outcome data may reduce skew substantially. Reports

of trials may present results on a transformed scale, usually a log scale. Collection of
appropriate data summaries from the trialists, or acquisition of individual patient data,
is currently the approach of choice. Appropriate data summaries and analysis strate-
gies for the individual patient data will depend on the situation. Consultation with a
knowledgeable statistician is advised.
Where data have been analysed on a log scale, results are commonly presented as

geometric means and ratios of geometric means. A meta-analysis may be then per-
formed on the scale of the log-transformed data; an example of the calculation of
the required means and SD is given in Chapter 6 (Section 6.5.2.4). This approach
depends on being able to obtain transformed data for all studies; methods for trans-
forming from one scale to the other are available (Higgins et al 2008b). Log-transformed
and untransformed data should not be mixed in a meta-analysis.

10.6 Combining dichotomous and continuous outcomes

Occasionally authors encounter a situation where data for the same outcome are pre-
sented in some studies as dichotomous data and in other studies as continuous data.
For example, scores on depression scales can be reported asmeans, or as the percentage
ofpatientswhoweredepressedat somepoint afteran intervention (i.e.witha scoreabove
a specified cut-point). This type of information is often easier to understand, and more
helpful, when it is dichotomized. However, deciding on a cut-point may be arbitrary,
and information is lost when continuous data are transformed to dichotomous data.
There are several options for handling combinations of dichotomous and continuous

data. Generally, it is useful to summarize results from all the relevant, valid studies in a
similar way, but this is not always possible. It may be possible to collect missing data
from investigators so that this can be done. If not, it may be useful to summarize the
data in three ways: by entering the means and SDs as continuous outcomes, by enter-
ing the counts as dichotomous outcomes and by entering all of the data in text form as
‘Other data’ outcomes.
There are statistical approaches available that will re-express odds ratios as SMDs (and

vice versa), allowing dichotomous and continuous data to be combined (Anzures-Cabrera
et al 2011). A simple approach is as follows. Based on an assumption that the underlying
continuousmeasurements in each intervention group follow a logistic distribution (which
is a symmetrical distribution similar in shape to the normal distribution, but with more
data in thedistributional tails), and that the variability of the outcomes is the same inboth
experimental and comparator participants, the odds ratios can be re-expressed as a SMD
according to the following simple formula (Chinn 2000):
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SMD =
3
π

lnOR

The standard error of the log odds ratio canbe converted to the standard error of a SMD
by multiplying by the same constant (√3/π = 0.5513). Alternatively SMDs can be re-
expressedas logodds ratiosbymultiplyingbyπ/√3 = 1.814.OnceSMDs (or logodds ratios)
andtheir standarderrorshavebeencomputed forall studies in themeta-analysis, theycan
be combined using the generic inverse-variance method. Standard errors can be com-
puted for all studies by entering the data as dichotomous and continuous outcome type
data, as appropriate, and converting the confidence intervals for the resulting log odds
ratios and SMDs into standard errors (see Chapter 6, Section 6.3).

10.7 Meta-analysis of ordinal outcomes and
measurement scales

Ordinal and measurement scale outcomes are most commonly meta-analysed as
dichotomous data (if so, see Section 10.4) or continuous data (if so, see Section 10.5)
depending on the way that the study authors performed the original analyses.
Occasionally it is possible to analyse the data using proportional odds models. This is

the case when ordinal scales have a small number of categories, the numbers falling
into each category for each intervention group can be obtained, and the same ordinal
scale has been used in all studies. This approach may make more efficient use of all
available data than dichotomization, but requires access to statistical software and
results in a summary statistic for which it is challenging to find a clinical meaning.
The proportional odds model uses the proportional odds ratio as the measure of

intervention effect (Agresti 1996) (see Chapter 6, Section 6.6), and can be used for con-
ducting a meta-analysis in advanced statistical software packages (Whitehead and
Jones 1994). Estimates of log odds ratios and their standard errors from a proportional
odds model may be meta-analysed using the generic inverse-variance method (see
Section 10.3.3). If the same ordinal scale has been used in all studies, but in some
reports has been presented as a dichotomous outcome, it may still be possible to
include all studies in the meta-analysis. In the context of the three-category model, this
might mean that for some studies category 1 constitutes a success, while for others
both categories 1 and 2 constitute a success. Methods are available for dealing with
this, and for combining data from scales that are related but have different definitions
for their categories (Whitehead and Jones 1994).

10.8 Meta-analysis of counts and rates

Results may be expressed as count data when each participant may experience an
event, and may experience it more than once (see Chapter 6, Section 6.7). For example,
‘number of strokes’, or ‘number of hospital visits’ are counts. These events may not
happen at all, but if they do happen there is no theoretical maximum number of occur-
rences for an individual. Count data may be analysed using methods for dichotomous
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data if the counts are dichotomized for each individual (see Section 10.4), continuous
data (see Section 10.5) and time-to-event data (see Section 10.9), as well as being
analysed as rate data.
Rate data occur if counts are measured for each participant along with the time over

which they are observed. This is particularly appropriate when the events being
counted are rare. For example, a woman may experience two strokes during a fol-
low-up period of two years. Her rate of strokes is one per year of follow-up (or, equiv-
alently 0.083 per month of follow-up). Rates are conventionally summarized at the
group level. For example, participants in the comparator group of a clinical trial
may experience 85 strokes during a total of 2836 person-years of follow-up. An under-
lying assumption associated with the use of rates is that the risk of an event is constant
across participants and over time. This assumption should be carefully considered for
each situation. For example, in contraception studies, rates have been used (known as
Pearl indices) to describe the number of pregnancies per 100 women-years of follow-
up. This is now considered inappropriate since couples have different risks of concep-
tion, and the risk for each woman changes over time. Pregnancies are now analysed
more often using life tables or time-to-eventmethods that investigate the time elapsing
before the first pregnancy.
Analysing count data as rates is not always the most appropriate approach and is

uncommon in practice. This is because:

1) the assumption of a constant underlying risk may not be suitable; and
2) the statistical methods are not as well developed as they are for other types of data.

The results of a study may be expressed as a rate ratio, that is the ratio of the rate in
the experimental intervention group to the rate in the comparator group. The (natural)
logarithms of the rate ratios may be combined across studies using the generic inverse-
variance method (see Section 10.3.3). Alternatively, Poisson regression approaches can
be used (Spittal et al 2015).
In a randomized trial, rate ratios may often be very similar to risk ratios obtained after

dichotomizing the participants, since the average period of follow-up should be similar
in all intervention groups. Rate ratios and risk ratios will differ, however, if an interven-
tion affects the likelihood of some participants experiencing multiple events.
It is possible also to focus attention on the rate difference (see Chapter 6,

Section 6.7.1). The analysis again can be performed using the generic inverse-variance
method (Hasselblad and McCrory 1995, Guevara et al 2004).

10.9 Meta-analysis of time-to-event outcomes

Two approaches to meta-analysis of time-to-event outcomes are readily available to
Cochrane Review authors. The choice of which to use will depend on the type of data
that have been extracted from the primary studies, or obtained from re-analysis of indi-
vidual participant data.
If ‘O – E’ and ‘V’ statistics have been obtained (see Chapter 6, Section 6.8.2), either

through re-analysis of individual participant data or from aggregate statistics pre-
sented in the study reports, then these statistics may be entered directly into RevMan
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using the ‘O – E and Variance’ outcome type. There are several ways to calculate these
‘O – E’ and ‘V’ statistics. Peto’s method applied to dichotomous data (Section 10.4.2)
gives rise to an odds ratio; a log-rank approach gives rise to a hazard ratio; and a var-
iation of the Peto method for analysing time-to-event data gives rise to something in
between (Simmonds et al 2011). The appropriate effect measure should be specified.
Only fixed-effect meta-analysis methods are available in RevMan for ‘O – E and Vari-
ance’ outcomes.
Alternatively, if estimates of log hazard ratios and standard errors have been

obtained from results of Cox proportional hazards regression models, study results
can be combined using generic inverse-variance methods (see Section 10.3.3).
If a mixture of log-rank and Cox model estimates are obtained from the studies, all

results can be combined using the generic inverse-variance method, as the log-rank
estimates can be converted into log hazard ratios and standard errors using the
approaches discussed in Chapter 6 (Section 6.8).

10.10 Heterogeneity

10.10.1 What is heterogeneity?

Inevitably, studies brought together in a systematic review will differ. Any kind of var-
iability among studies in a systematic review may be termed heterogeneity. It can be
helpful to distinguish between different types of heterogeneity. Variability in the parti-
cipants, interventions and outcomes studied may be described as clinical diversity
(sometimes called clinical heterogeneity), and variability in study design, outcome
measurement tools and risk of bias may be described as methodological diversity
(sometimes called methodological heterogeneity). Variability in the intervention effects
being evaluated in the different studies is known as statistical heterogeneity, and is a
consequence of clinical or methodological diversity, or both, among the studies.
Statistical heterogeneity manifests itself in the observed intervention effects being
more different from each other than one would expect due to random error (chance)
alone. We will follow convention and refer to statistical heterogeneity simply as
heterogeneity.
Clinical variation will lead to heterogeneity if the intervention effect is affected by the

factors that vary across studies; most obviously, the specific interventions or patient
characteristics. In other words, the true intervention effect will be different in different
studies.
Differences between studies in terms of methodological factors, such as use of

blinding and concealment of allocation sequence, or if there are differences between
studies in the way the outcomes are defined and measured, may be expected to lead
to differences in the observed intervention effects. Significant statistical heterogene-
ity arising from methodological diversity or differences in outcome assessments sug-
gests that the studies are not all estimating the same quantity, but does not
necessarily suggest that the true intervention effect varies. In particular, heterogene-
ity associated solely with methodological diversity would indicate that the studies
suffer from different degrees of bias. Empirical evidence suggests that some aspects

10.10 Heterogeneity

257



of design can affect the result of clinical trials, although this is not always the case.
Further discussion appears in Chapters 7 and 8.
The scope of a review will largely determine the extent to which studies included in a

review are diverse. Sometimes a review will include studies addressing a variety of ques-
tions, for example when several different interventions for the same condition are of
interest (see also Chapter 11) or when the differential effects of an intervention in differ-
ent populations are of interest. Meta-analysis should only be considered when a group of
studies is sufficiently homogeneous in terms of participants, interventions and outcomes
to provide ameaningful summary. It is often appropriate to take a broader perspective in
a meta-analysis than in a single clinical trial. A common analogy is that systematic
reviews bring together apples and oranges, and that combining these can yield a mean-
ingless result. This is true if apples and oranges are of intrinsic interest on their own, but
may not be if they are used to contribute to a wider question about fruit. For example, a
meta-analysis may reasonably evaluate the average effect of a class of drugs by combin-
ing results from trials where each evaluates the effect of a different drug from the class.
There may be specific interest in a review in investigating how clinical and method-

ological aspects of studies relate to their results. Where possible these investigations
should be specified a priori (i.e. in the protocol for the systematic review). It is legiti-
mate for a systematic review to focus on examining the relationship between some clin-
ical characteristic(s) of the studies and the size of intervention effect, rather than on
obtaining a summary effect estimate across a series of studies (see Section 10.11).
Meta-regression may best be used for this purpose, although it is not implemented
in RevMan (see Section 10.11.4).

10.10.2 Identifying and measuring heterogeneity

It is essential to consider the extent to which the results of studies are consistent with
each other (see MECIR Box 10.10.a). If confidence intervals for the results of individual
studies (generally depicted graphically using horizontal lines) have poor overlap, this
generally indicates the presence of statistical heterogeneity. More formally, a statistical

MECIR Box 10.10.a Relevant expectations for conduct of intervention reviews

C63: Assessing statistical heterogeneity (Mandatory)

Assess the presence and extent of between-
study variation when undertaking a meta-
analysis.

The presence of heterogeneity affects the
extent to which generalizable conclusions
can be formed. It is important to identify
heterogeneity in case there is sufficient
information to explain it and offer new
insights. Authors should recognize that
there is much uncertainty in measures
such as I2 and Tau2 when there are few
studies. Thus, use of simple thresholds to
diagnose heterogeneity should be
avoided.
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test for heterogeneity is available. This Chi2 (χ2, or chi-squared) test is included in the
forest plots in Cochrane Reviews. It assesses whether observed differences in results
are compatible with chance alone. A low P value (or a large Chi2 statistic relative to
its degree of freedom) provides evidence of heterogeneity of intervention effects (var-
iation in effect estimates beyond chance).
Care must be taken in the interpretation of the Chi2 test, since it has low power in the

(common) situation of a meta-analysis when studies have small sample size or are few
in number. This means that while a statistically significant result may indicate a prob-
lem with heterogeneity, a non-significant result must not be taken as evidence of no
heterogeneity. This is also why a P value of 0.10, rather than the conventional level
of 0.05, is sometimes used to determine statistical significance. A further problem with
the test, which seldom occurs in Cochrane Reviews, is that when there aremany studies
in a meta-analysis, the test has high power to detect a small amount of heterogeneity
that may be clinically unimportant.
Some argue that, since clinical and methodological diversity always occur in a meta-

analysis, statistical heterogeneity is inevitable (Higgins et al 2003). Thus, the test for
heterogeneity is irrelevant to the choice of analysis; heterogeneity will always exist
whether or not we happen to be able to detect it using a statistical test. Methods have
been developed for quantifying inconsistency across studies that move the focus
away from testing whether heterogeneity is present to assessing its impact on the
meta-analysis. A useful statistic for quantifying inconsistency is:

I2 =
Q−df
Q

× 100

In this equation, Q is the Chi2 statistic and df is its degrees of freedom (Higgins and
Thompson 2002, Higgins et al 2003). I2 describes the percentage of the variability in
effect estimates that is due to heterogeneity rather than sampling error (chance).
Thresholds for the interpretation of the I2 statistic can bemisleading, since the impor-

tance of inconsistency depends on several factors. A rough guide to interpretation in
the context of meta-analyses of randomized trials is as follows:

• 0% to 40%: might not be important;

• 30% to 60%: may represent moderate heterogeneity∗;

• 50% to 90%: may represent substantial heterogeneity∗;

• 75% to 100%: considerable heterogeneity∗.

∗The importance of the observed value of I2 depends on (1) magnitude and direction of
effects, and (2) strength of evidence for heterogeneity (e.g. P value from the Chi2 test, or
a confidence interval for I2: uncertainty in the value of I2 is substantial when the number
of studies is small).

10.10.3 Strategies for addressing heterogeneity

Review authors must take into account any statistical heterogeneity when interpreting
results, particularly when there is variation in the direction of effect (see MECIR
Box 10.10.b). A number of options are available if heterogeneity is identified among
a group of studies that would otherwise be considered suitable for a meta-analysis.
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1) Check again that the data are correct. Severe apparent heterogeneity can indicate
that data have been incorrectly extracted or entered into meta-analysis software.
For example, if standard errors have mistakenly been entered as SDs for continuous
outcomes, this could manifest itself in overly narrow confidence intervals with poor
overlap and hence substantial heterogeneity. Unit-of-analysis errors may also be
causes of heterogeneity (see Chapter 6, Section 6.2).

2) Do not do a meta-analysis. A systematic review need not contain any meta-analyses.
If there is considerable variation in results, and particularly if there is inconsistency
in the direction of effect, it may be misleading to quote an average value for the
intervention effect.

3) Explore heterogeneity. It is clearly of interest to determine the causes of heteroge-
neity among results of studies. This process is problematic since there are often
many characteristics that vary across studies from which one may choose. Hetero-
geneity may be explored by conducting subgroup analyses (see Section 10.11.3) or
meta-regression (see Section 10.11.4). Reliable conclusions can only be drawn from
analyses that are truly pre-specified before inspecting the studies’ results, and even
these conclusions should be interpreted with caution. Explorations of heterogeneity
that are devised after heterogeneity is identified can at best lead to the generation
of hypotheses. They should be interpreted with even more caution and should gen-
erally not be listed among the conclusions of a review. Also, investigations of het-
erogeneity when there are very few studies are of questionable value.

4) Ignore heterogeneity. Fixed-effect meta-analyses ignore heterogeneity. The summary
effect estimate from a fixed-effect meta-analysis is normally interpreted as being the
best estimate of the intervention effect. However, the existence of heterogeneity sug-
gests that there may not be a single intervention effect but a variety of intervention
effects. Thus, the summary fixed-effect estimate may be an intervention effect that
does not actually exist in any population, and therefore have a confidence interval
that is meaningless as well as being too narrow (see Section 10.10.4).

MECIR Box 10.10.b Relevant expectations for conduct of intervention reviews

C69: Considering statistical heterogeneity when interpreting the results (Mandatory)

Take into account any statistical
heterogeneity when interpreting the
results, particularly when there is variation
in the direction of effect.

The presence of heterogeneity affects the
extent to which generalizable
conclusions can be formed. If a fixed-
effect analysis is used, the confidence
intervals ignore the extent of
heterogeneity. If a random-effects
analysis is used, the result pertains to the
mean effect across studies. In both cases,
the implications of notable heterogeneity
should be addressed. It may be possible
to understand the reasons for the
heterogeneity if there are sufficient
studies.
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5) Perform a random-effects meta-analysis. A random-effects meta-analysis may be
used to incorporate heterogeneity among studies. This is not a substitute for a thor-
ough investigation of heterogeneity. It is intended primarily for heterogeneity that
cannot be explained. An extended discussion of this option appears in Section 10.10.4.

6) Reconsider the effect measure. Heterogeneity may be an artificial consequence of an
inappropriate choice of effect measure. For example, when studies collect contin-
uous outcome data using different scales or different units, extreme heterogeneity
may be apparent when using the mean difference but not when the more appropri-
ate standardized mean difference is used. Furthermore, choice of effect measure for
dichotomous outcomes (odds ratio, risk ratio, or risk difference) may affect the
degree of heterogeneity among results. In particular, when comparator group risks
vary, homogeneous odds ratios or risk ratios will necessarily lead to heterogeneous
risk differences, and vice versa. However, it remains unclear whether homogeneity
of intervention effect in a particular meta-analysis is a suitable criterion for choosing
between these measures (see also Section 10.4.3).

7) Exclude studies. Heterogeneity may be due to the presence of one or two outlying
studies with results that conflict with the rest of the studies. In general it is unwise to
exclude studies from a meta-analysis on the basis of their results as this may intro-
duce bias. However, if an obvious reason for the outlying result is apparent, the
study might be removed with more confidence. Since usually at least one charac-
teristic can be found for any study in any meta-analysis which makes it different
from the others, this criterion is unreliable because it is all too easy to fulfil. It is
advisable to perform analyses bothwith andwithout outlying studies as part of a sen-
sitivity analysis (see Section 10.14). Whenever possible, potential sources of clinical
diversity that might lead to such situations should be specified in the protocol.

10.10.4 Incorporating heterogeneity into random-effects models

The random-effects meta-analysis approach incorporates an assumption that the differ-
ent studies are estimating different, yet related, intervention effects (DerSimonian and
Laird 1986, Borenstein et al 2010). The approach allows us to address heterogeneity that
cannot readily be explained by other factors. A random-effects meta-analysis model
involves an assumption that the effects being estimated in the different studies follow
some distribution. Themodel represents our lack of knowledge aboutwhy real, or appar-
ent, intervention effects differ, by considering the differences as if they were random. The
centre of the assumed distribution describes the average of the effects, while its width
describes the degree of heterogeneity. The conventional choice of distribution is a nor-
mal distribution. It is difficult to establish the validity of any particular distributional
assumption, and this is a common criticism of random-effectsmeta-analyses. The impor-
tance of the assumed shape for this distribution has not been widely studied.
To undertake a random-effects meta-analysis, the standard errors of the study-

specific estimates (SEi in Section 10.3.1) are adjusted to incorporate a measure of
the extent of variation, or heterogeneity, among the intervention effects observed in
different studies (this variation is often referred to as Tau-squared, τ2, or Tau2). The
amount of variation, and hence the adjustment, can be estimated from the intervention
effects and standard errors of the studies included in the meta-analysis.
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In a heterogeneous set of studies, a random-effects meta-analysis will award rela-
tively more weight to smaller studies than such studies would receive in a fixed-effect
meta-analysis. This is because small studies are more informative for learning about
the distribution of effects across studies than for learning about an assumed common
intervention effect.
Note that a random-effectsmodel does not ‘take account’ of the heterogeneity, in the

sense that it is no longer an issue. It is always preferable to explore possible causes of
heterogeneity, although there may be too few studies to do this adequately (see
Section 10.11).

10.10.4.1 Fixed or random effects?
A fixed-effect meta-analysis provides a result that may be viewed as a ‘typical interven-
tion effect’ from the studies included in the analysis. In order to calculate a confidence
interval for a fixed-effect meta-analysis the assumption is usually made that the true
effect of intervention (in bothmagnitude and direction) is the same value in every study
(i.e. fixed across studies). This assumption implies that the observed differences among
study results are due solely to the play of chance (i.e. that there is no statistical
heterogeneity).
A random-effects model provides a result that may be viewed as an ‘average inter-

vention effect’, where this average is explicitly defined according to an assumed distri-
bution of effects across studies. Instead of assuming that the intervention effects are
the same, we assume that they follow (usually) a normal distribution. The assumption
implies that the observed differences among study results are due to a combination of
the play of chance and some genuine variation in the intervention effects.
The random-effects method and the fixed-effect method will give identical results

when there is no heterogeneity among the studies.
When heterogeneity is present, a confidence interval around the random-effects

summary estimate is wider than a confidence interval around a fixed-effect summary
estimate. This will happen whenever the I2 statistic is greater than zero, even if the het-
erogeneity is not detected by the Chi2 test for heterogeneity (see Section 10.10.2).
Sometimes the central estimate of the intervention effect is different between fixed-

effect and random-effects analyses. In particular, if results of smaller studies are sys-
tematically different from results of larger ones, which can happen as a result of pub-
lication bias or within-study bias in smaller studies (Egger et al 1997, Poole and
Greenland 1999, Kjaergard et al 2001), then a random-effects meta-analysis will exac-
erbate the effects of the bias (see also Chapter 13, Section 13.3.5.5). A fixed-effect anal-
ysis will be affected less, although strictly it will also be inappropriate.
The decision between fixed- and random-effects meta-analyses has been the subject

of much debate, and we do not provide a universal recommendation. Some considera-
tions in making this choice are as follows.

1) Many have argued that the decision should be based on an expectation of whether
the intervention effects are truly identical, preferring the fixed-effect model if this is
likely and a random-effects model if this is unlikely (Borenstein et al 2010). Since it is
generally considered to be implausible that intervention effects across studies are
identical (unless the intervention has no effect at all), this leads many to advocate
use of the random-effects model.
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2) Others have argued that a fixed-effect analysis can be interpreted in the presence of
heterogeneity, and that it makes fewer assumptions than a random-effects meta-
analysis. They then refer to it as a ‘fixed-effects’meta-analysis (Peto et al 1995, Rice
et al 2018).

3) Under any interpretation, a fixed-effect meta-analysis ignores heterogeneity. If the
method is used, it is therefore important to supplement it with a statistical inves-
tigation of the extent of heterogeneity (see Section 10.10.2).

4) In the presence of heterogeneity, a random-effects analysis gives relatively more
weight to smaller studies and relatively less weight to larger studies. If there is addi-
tionally some funnel plot asymmetry (i.e. a relationship between intervention effect
magnitude and study size), then this will push the results of the random-effects anal-
ysis towards the findings in the smaller studies. In the context of randomized trials,
this is generally regarded as an unfortunate consequence of the model.

5) A pragmatic approach is to plan to undertake both a fixed-effect and a random-effects
meta-analysis, with an intention to present the random-effects result if there is no
indication of funnel plot asymmetry. If there is an indication of funnel plot asymmetry,
then bothmethods are problematic. It may be reasonable to present both analyses or
neither, or to perform a sensitivity analysis in which small studies are excluded or
addressed directly using meta-regression (see Chapter 13, Section 13.3.5.6).

6) The choice between a fixed-effect and a random-effects meta-analysis should never
be made on the basis of a statistical test for heterogeneity.

10.10.4.2 Interpretation of random-effects meta-analyses
The summary estimate and confidence interval from a random-effects meta-analysis
refer to the centre of the distribution of intervention effects, but do not describe the
width of the distribution. Often the summary estimate and its confidence interval
are quoted in isolation and portrayed as a sufficient summary of themeta-analysis. This
is inappropriate. The confidence interval from a random-effects meta-analysis
describes uncertainty in the location of the mean of systematically different effects
in the different studies. It does not describe the degree of heterogeneity among studies,
as may be commonly believed. For example, when there are many studies in a meta-
analysis, wemay obtain a very tight confidence interval around the random-effects esti-
mate of the mean effect even when there is a large amount of heterogeneity. A solution
to this problem is to consider a prediction interval (see Section 10.10.4.3).
Methodological diversity creates heterogeneity through biases variably affecting the

results of different studies. The random-effects summary estimate will only correctly
estimate the average intervention effect if the biases are symmetrically distributed,
leading to a mixture of over-estimates and under-estimates of effect, which is unlikely
to be the case. In practice it can be very difficult to distinguish whether heterogeneity
results from clinical or methodological diversity, and in most cases it is likely to be due
to both, so these distinctions are hard to draw in the interpretation.
When there is little information, either because there are few studies or if the studies are

smallwith fewevents, a random-effectsanalysiswillprovidepoorestimatesof theamount
of heterogeneity (i.e. of the width of the distribution of intervention effects). Fixed-effect
methods such as the Mantel-Haenszel method will provide more robust estimates of the
average intervention effect, but at the cost of ignoring any heterogeneity.
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10.10.4.3 Prediction intervals from a random-effects meta-analysis
An estimate of the between-study variance in a random-effects meta-analysis is typi-
cally presented as part of its results. The square root of this number (i.e. Tau) is the
estimated standard deviation of underlying effects across studies. Prediction intervals
are a way of expressing this value in an interpretable way.
To motivate the idea of a prediction interval, note that for absolute measures of

effect (e.g. risk difference, mean difference, standardized mean difference), an approx-
imate 95% range of normally distributed underlying effects can be obtained by creating
an interval from 1.96 × Tau below the random-effects mean, to 1.96 × Tau above it. (For
relative measures such as the odds ratio and risk ratio, an equivalent interval needs to
be based on the natural logarithm of the summary estimate.) In reality, both the sum-
mary estimate and the value of Tau are associated with uncertainty. A prediction inter-
val seeks to present the range of effects in a way that acknowledges this uncertainty
(Higgins et al 2009). A simple 95% prediction interval can be calculated as:

M ± tk−2 × Tau2 + SE M
2

where M is the summary mean from the random-effects meta-analysis, tk−2 is the 95%
percentile of a t-distribution with k – 2 degrees of freedom, k is the number of studies,
Tau2 is the estimated amount of heterogeneity and SE(M) is the standard error of the
summary mean.
The term ‘prediction interval’ relates to the use of this interval to predict the possible

underlying effect in a new study that is similar to the studies in the meta-analysis.
A more useful interpretation of the interval is as a summary of the spread of underlying
effects in the studies included in the random-effects meta-analysis.
Prediction intervals have proved a popular way of expressing the amount of hetero-

geneity in a meta-analysis (Riley et al 2011). They are, however, strongly based on the
assumption of a normal distribution for the effects across studies, and can be very
problematic when the number of studies is small, in which case they can appear spu-
riously wide or spuriously narrow. Nevertheless, we encourage their use when the num-
ber of studies is reasonable (e.g. more than ten) and there is no clear funnel plot
asymmetry.

10.10.4.4 Implementing random-effects meta-analyses
As introduced in Section 10.3.2, the random-effects model can be implemented using
an inverse-variance approach, incorporating a measure of the extent of heterogeneity
into the study weights. RevMan implements a version of random-effects meta-analysis
that is described by DerSimonian and Laird, making use of a ‘moment-based’ estimate
of the between-study variance (DerSimonian and Laird 1986). The attraction of this
method is that the calculations are straightforward, but it has a theoretical disadvan-
tage in that the confidence intervals are slightly too narrow to encompass full uncer-
tainty resulting from having estimated the degree of heterogeneity.
For many years, RevMan has implemented two random-effects methods for dichot-

omous data: a Mantel-Haenszel method and an inverse-variance method. Both use the
moment-based approach to estimating the amount of between-studies variation. The
difference between the two is subtle: the former estimates the between-study variation
by comparing each study’s result with a Mantel-Haenszel fixed-effect meta-analysis
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result, whereas the latter estimates it by comparing each study’s result with an inverse-
variance fixed-effect meta-analysis result. In practice, the difference is likely to be
trivial.
There are alternative methods for performing random-effects meta-analyses that

have better technical properties than the DerSimonian and Laird approach with a
moment-based estimate (Veroniki et al 2016). Most notable among these is an adjust-
ment to the confidence interval proposed by Hartung and Knapp and by Sidik and
Jonkman (Hartung and Knapp 2001, Sidik and Jonkman 2002). This adjustment widens
the confidence interval to reflect uncertainty in the estimation of between-study het-
erogeneity, and it should be used if available to review authors. An alternative option to
encompass full uncertainty in the degree of heterogeneity is to take a Bayesian
approach (see Section 10.13).
An empirical comparison of different ways to estimate between-study variation in

Cochranemeta-analyses has shown that they can lead to substantial differences in esti-
mates of heterogeneity, but seldom have major implications for estimating summary
effects (Langan et al 2015). Several simulation studies have concluded that an
approach proposed by Paule and Mandel should be recommended (Langan et al
2017); whereas a comprehensive recent simulation study recommended a restricted
maximum likelihood approach, although noted that no single approach is universally
preferable (Langan et al 2019). Review authors are encouraged to select one of these
options if it is available to them.

10.11 Investigating heterogeneity

10.11.1 Interaction and effect modification

Does the intervention effect vary with different populations or intervention character-
istics (such as dose or duration)? Such variation is known as interaction by statisticians
and as effect modification by epidemiologists. Methods to search for such interactions
include subgroup analyses and meta-regression. All methods have considerable
pitfalls.

10.11.2 What are subgroup analyses?

Subgroup analyses involve splitting all the participant data into subgroups, often in
order to make comparisons between them. Subgroup analyses may be done for sub-
sets of participants (such as males and females), or for subsets of studies (such as dif-
ferent geographical locations). Subgroup analyses may be done as a means of
investigating heterogeneous results, or to answer specific questions about particular
patient groups, types of intervention or types of study.
Subgroup analyses of subsets of participants within studies are uncommon in sys-

tematic reviews based on published literature because sufficient details to extract data
about separate participant types are seldom published in reports. By contrast, such
subsets of participants are easily analysed when individual participant data have been
collected (see Chapter 26). The methods we describe in the remainder of this chapter
are for subgroups of studies.
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Findings frommultiple subgroup analyses may bemisleading. Subgroup analyses are
observational by nature and are not based on randomized comparisons. False negative
and false positive significance tests increase in likelihood rapidly as more subgroup
analyses are performed. If their findings are presented as definitive conclusions there
is clearly a risk of people being denied an effective intervention or treated with an inef-
fective (or even harmful) intervention. Subgroup analyses can also generate misleading
recommendations about directions for future research that, if followed, would waste
scarce resources.
It is useful to distinguish between the notions of ‘qualitative interaction’ and ‘quan-

titative interaction’ (Yusuf et al 1991). Qualitative interaction exists if the direction of
effect is reversed, that is if an intervention is beneficial in one subgroup but is harmful
in another. Qualitative interaction is rare. This may be used as an argument that the
most appropriate result of a meta-analysis is the overall effect across all subgroups.
Quantitative interaction exists when the size of the effect varies but not the direction,
that is if an intervention is beneficial to different degrees in different subgroups.

10.11.3 Undertaking subgroup analyses

Meta-analyses can be undertaken in RevMan both within subgroups of studies as well
as across all studies irrespective of their subgroup membership. It is tempting to com-
pare effect estimates in different subgroups by considering the meta-analysis results
from each subgroup separately. This should only be done informally by comparing
the magnitudes of effect. Noting that either the effect or the test for heterogeneity
in one subgroup is statistically significant whilst that in the other subgroup is not sta-
tistically significant does not indicate that the subgroup factor explains heterogeneity.
Since different subgroups are likely to contain different amounts of information and
thus have different abilities to detect effects, it is extremely misleading simply to com-
pare the statistical significance of the results.

10.11.3.1 Is the effect different in different subgroups?
Valid investigations of whether an intervention works differently in different subgroups
involve comparing the subgroups with each other. It is a mistake to compare within-
subgroup inferences such as P values. If one subgroup analysis is statistically significant
and another is not, then the latter may simply reflect a lack of information rather than a
smaller (or absent) effect. When there are only two subgroups, non-overlap of the con-
fidence intervals indicates statistical significance, but note that the confidence intervals
can overlap to a small degree and the difference still be statistically significant.
A formal statistical approach should be used to examine differences among sub-

groups (see MECIR Box 10.11.a). A simple significance test to investigate differences
between two or more subgroups can be performed (Borenstein and Higgins 2013). This
procedure consists of undertaking a standard test for heterogeneity across subgroup
results rather than across individual study results. When themeta-analysis uses a fixed-
effect inverse-variance weighted average approach, the method is exactly equivalent to
the test described by Deeks and colleagues (Deeks et al 2001). An I2 statistic is also com-
puted for subgroup differences. This describes the percentage of the variability in effect
estimates from the different subgroups that is due to genuine subgroup differences
rather than sampling error (chance). Note that these methods for examining subgroup
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differences should be used only when the data in the subgroups are independent (i.e.
they should not be used if the same study participants contribute to more than one of
the subgroups in the forest plot).
If fixed-effect models are used for the analysis within each subgroup, then these sta-

tistics relate to differences in typical effects across different subgroups. If random-
effects models are used for the analysis within each subgroup, then the statistics relate
to variation in the mean effects in the different subgroups.
An alternative method for testing for differences between subgroups is to use meta-

regression techniques, in which case a random-effects model is generally preferred (see
Section 10.11.4). Tests for subgroup differences based on random-effects models may
be regarded as preferable to those based on fixed-effect models, due to the high risk of
false-positive results when a fixed-effect model is used to compare subgroups (Higgins
and Thompson 2004).

10.11.4 Meta-regression

If studies are divided into subgroups (see Section 10.11.2), this may be viewed as an
investigationofhowacategorical studycharacteristic is associatedwith the intervention
effects in themeta-analysis. For example, studies in which allocation sequence conceal-
ment was adequate may yield different results from those in which it was inadequate.
Here, allocation sequence concealment, being either adequate or inadequate, is a cat-
egorical characteristic at the study level. Meta-regression is an extension to subgroup
analyses that allows the effect of continuous, as well as categorical, characteristics to
be investigated, and in principle allows the effects of multiple factors to be investigated
simultaneously (although this is rarely possible due to inadequate numbers of studies)
(Thompson and Higgins 2002). Meta-regression should generally not be considered
when there are fewer than ten studies in a meta-analysis.
Meta-regressions are similar in essence to simple regressions, in which an outcome

variable is predicted according to the values of one or more explanatory variables. In
meta-regression, the outcome variable is the effect estimate (for example, a mean dif-
ference, a risk difference, a log odds ratio or a log risk ratio). The explanatory variables
are characteristics of studies that might influence the size of intervention effect. These
are often called ‘potential effect modifiers’ or covariates. Meta-regressions usually dif-
fer from simple regressions in two ways. First, larger studies have more influence on the
relationship than smaller studies, since studies are weighted by the precision of their
respective effect estimate. Second, it is wise to allow for the residual heterogeneity

MECIR Box 10.11.a Relevant expectations for conduct of intervention reviews

C67: Comparing subgroups (Mandatory)

If subgroup analyses are to be compared,
and there are judged to be sufficient studies
to do this meaningfully, use a formal
statistical test to compare them.

Concluding that there is a difference in
effect in different subgroups on the basis
of differences in the level of statistical
significance within subgroups can be
very misleading.

10.11 Investigating heterogeneity

267



among intervention effects not modelled by the explanatory variables. This gives rise to
the term ‘random-effects meta-regression’, since the extra variability is incorporated in
the same way as in a random-effects meta-analysis (Thompson and Sharp 1999).
The regression coefficient obtained from a meta-regression analysis will describe

how the outcome variable (the intervention effect) changes with a unit increase in
the explanatory variable (the potential effect modifier). The statistical significance of
the regression coefficient is a test of whether there is a linear relationship between
intervention effect and the explanatory variable. If the intervention effect is a ratio
measure, the log-transformed value of the intervention effect should always be used
in the regression model (see Chapter 6, Section 6.1.2.1), and the exponential of the
regression coefficient will give an estimate of the relative change in intervention effect
with a unit increase in the explanatory variable.
Meta-regression can also be used to investigate differences for categorical explana-

tory variables as done in subgroup analyses. If there are J subgroups, membership of
particular subgroups is indicated by using J minus 1 dummy variables (which can only
take values of zero or one) in the meta-regression model (as in standard linear regres-
sion modelling). The regression coefficients will estimate how the intervention effect in
each subgroup differs from a nominated reference subgroup. The P value of each
regression coefficient will indicate the strength of evidence against the null hypothesis
that the characteristic is not associated with the intervention effect.
Meta-regression may be performed using the ‘metareg’macro available for the Stata

statistical package, or using the ‘metafor’ package for R, as well as other packages.

10.11.5 Selection of study characteristics for subgroup analyses and
meta-regression

Authors need to be cautious about undertaking subgroup analyses, and interpreting
any that they do. Some considerations are outlined here for selecting characteristics
(also called explanatory variables, potential effect modifiers or covariates) that will
be investigated for their possible influence on the size of the intervention effect. These
considerations apply similarly to subgroup analyses and to meta-regressions. Further
details may be obtained elsewhere (Oxman and Guyatt 1992, Berlin and Antman 1994).

10.11.5.1 Ensure that there are adequate studies to justify subgroup analyses
and meta-regressions
It is very unlikely that an investigation of heterogeneity will produce useful findings
unless there is a substantial number of studies. Typical advice for undertaking simple
regression analyses: that at least ten observations (i.e. ten studies in a meta-analysis)
should be available for each characteristic modelled. However, even this will be too few
when the covariates are unevenly distributed across studies.

10.11.5.2 Specify characteristics in advance
Authors should, whenever possible, pre-specify characteristics in the protocol that later
will be subject to subgroup analyses or meta-regression. The plan specified in the pro-
tocol should then be followed (data permitting), without undue emphasis on any par-
ticular findings (see MECIR Box 10.11.b). Pre-specifying characteristics reduces the
likelihood of spurious findings, first by limiting the number of subgroups investigated,
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and second by preventing knowledge of the studies’ results influencing which sub-
groups are analysed. True pre-specification is difficult in systematic reviews, because
the results of some of the relevant studies are often known when the protocol is
drafted. If a characteristic was overlooked in the protocol, but is clearly of major impor-
tance and justified by external evidence, then authors should not be reluctant to
explore it. However, such post-hoc analyses should be identified as such.

10.11.5.3 Select a small number of characteristics
The likelihood of a false-positive result among subgroup analyses and meta-regression
increases with the number of characteristics investigated. It is difficult to suggest a
maximum number of characteristics to look at, especially since the number of available
studies is unknown in advance. If more than one or two characteristics are investigated
it may be sensible to adjust the level of significance to account for making multiple
comparisons.

10.11.5.4 Ensure there is scientific rationale for investigating each
characteristic
Selection of characteristics should be motivated by biological and clinical hypotheses,
ideally supported by evidence from sources other than the included studies. Subgroup
analyses using characteristics that are implausible or clinically irrelevant are not likely
to be useful and should be avoided. For example, a relationship between intervention
effect and year of publication is seldom in itself clinically informative, and if identified
runs the risk of initiating a post-hoc data dredge of factors that may have changed
over time.
Prognostic factors are those that predict the outcome of a disease or condition,

whereas effect modifiers are factors that influence how well an intervention works
in affecting the outcome. Confusion between prognostic factors and effect modifiers
is common in planning subgroup analyses, especially at the protocol stage. Prognostic
factors are not good candidates for subgroup analyses unless they are also believed to
modify the effect of intervention. For example, being a smoker may be a strong predic-
tor of mortality within the next ten years, but there may not be reason for it to influence
the effect of a drug therapy on mortality (Deeks 1998). Potential effect modifiers may
include participant characteristics (age, setting), the precise interventions (dose of

MECIR Box 10.11.b Relevant expectations for conduct of intervention reviews

C68: Interpreting subgroup analyses (Mandatory)

If subgroup analyses are conducted, follow
the subgroup analysis plan specified in the
protocol without undue emphasis on
particular findings.

Selective reporting, or over-
interpretation, of particular subgroups
or particular subgroup analyses should
be avoided. This is a problem especially
when multiple subgroup analyses are
performed. This does not preclude the
use of sensible and honest post hoc
subgroup analyses.
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active intervention, choice of comparison intervention), how the study was done
(length of follow-up) or methodology (design and quality).

10.11.5.5 Be aware that the effect of a characteristic may not always be
identified
Many characteristics that might have important effects on how well an intervention
works cannot be investigated using subgroup analysis or meta-regression. These are
characteristics of participants that might vary substantially within studies, but that
can only be summarized at the level of the study. An example is age. Consider a col-
lection of clinical trials involving adults ranging from 18 to 60 years old. There may
be a strong relationship between age and intervention effect that is apparent within
each study. However, if the mean ages for the trials are similar, then no relationship
will be apparent by looking at trial mean ages and trial-level effect estimates. The prob-
lem is one of aggregating individuals’ results and is variously known as aggregation
bias, ecological bias or the ecological fallacy (Morgenstern 1982, Greenland 1987, Berlin
et al 2002). It is even possible for the direction of the relationship across studies be the
opposite of the direction of the relationship observed within each study.

10.11.5.6 Think about whether the characteristic is closely related to another
characteristic (confounded)
The problem of ‘confounding’ complicates interpretation of subgroup analyses and
meta-regressions and can lead to incorrect conclusions. Two characteristics are con-
founded if their influences on the intervention effect cannot be disentangled. For exam-
ple, if those studies implementing an intensive version of a therapy happened to be the
studies that involved patients with more severe disease, then one cannot tell which
aspect is the cause of any difference in effect estimates between these studies and
others. In meta-regression, co-linearity between potential effect modifiers leads to sim-
ilar difficulties (Berlin and Antman 1994). Computing correlations between study char-
acteristics will give some information about which study characteristics may be
confounded with each other.

10.11.6 Interpretation of subgroup analyses and meta-regressions

Appropriate interpretation of subgroup analyses and meta-regressions requires cau-
tion (Oxman and Guyatt 1992).

1) Subgroup comparisons are observational. It must be remembered that subgroup
analyses andmeta-regressions are entirely observational in their nature. These ana-
lyses investigate differences between studies. Even if individuals are randomized to
one group or other within a clinical trial, they are not randomized to go in one trial or
another. Hence, subgroup analyses suffer the limitations of any observational inves-
tigation, including possible bias through confounding by other study-level charac-
teristics. Furthermore, even a genuine difference between subgroups is not
necessarily due to the classification of the subgroups. As an example, a subgroup
analysis of bone marrow transplantation for treating leukaemia might show a
strong association between the age of a sibling donor and the success of the trans-
plant. However, this probably does not mean that the age of donor is important.
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In fact, the age of the recipient is probably a key factor and the subgroup finding
would simply be due to the strong association between the age of the recipient
and the age of their sibling.

2) Was the analysis pre-specified or post hoc? Authors should state whether subgroup
analyses were pre-specified or undertaken after the results of the studies had been
compiled (post hoc). More reliance may be placed on a subgroup analysis if it was
one of a small number of pre-specified analyses. Performing numerous post-hoc
subgroup analyses to explain heterogeneity is a form of data dredging. Data dred-
ging is condemned because it is usually possible to find an apparent, but false,
explanation for heterogeneity by considering lots of different characteristics.

3) Is there indirect evidence in support of the findings? Differences between subgroups
should be clinically plausible and supported by other external or indirect evidence, if
they are to be convincing.

4) Is the magnitude of the difference practically important? If the magnitude of a differ-
ence between subgroups will not result in different recommendations for different
subgroups, then it may be better to present only the overall analysis results.

5) Is there a statistically significant difference between subgroups? To establish whether
there is a different effect of an intervention in different situations, the magnitudes of
effects in different subgroups should be compared directly with each other. In par-
ticular, statistical significance of the results within separate subgroup analyses
should not be compared (see Section 10.11.3.1).

6) Are analyses looking at within-study or between-study relationships? For patient and
intervention characteristics, differences in subgroups that are observed within
studies are more reliable than analyses of subsets of studies. If such within-study
relationships are replicated across studies then this adds confidence to the
findings.

10.11.7 Investigating the effect of underlying risk

One potentially important source of heterogeneity among a series of studies is when
the underlying average risk of the outcome event varies between the studies. The
underlying risk of a particular event may be viewed as an aggregate measure of
case-mix factors such as age or disease severity. It is generally measured as the
observed risk of the event in the comparator group of each study (the comparator
group risk, or CGR). The notion is controversial in its relevance to clinical practice since
underlying risk represents a summary of both known and unknown risk factors. Pro-
blems also arise because comparator group risk will depend on the length of follow-
up, which often varies across studies. However, underlying risk has received particular
attention in meta-analysis because the information is readily available once dichoto-
mous data have been prepared for use in meta-analyses. Sharp provides a full discus-
sion of the topic (Sharp 2001).
Intuition would suggest that participants are more or less likely to benefit from an

effective intervention according to their risk status. However, the relationship between
underlying risk and intervention effect is a complicated issue. For example, suppose an
intervention is equally beneficial in the sense that for all patients it reduces the risk of
an event, say a stroke, to 80% of the underlying risk. Then it is not equally beneficial in
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terms of absolute differences in risk in the sense that it reduces a 50% stroke rate by
10 percentage points to 40% (number needed to treat = 10), but a 20% stroke rate by 4
percentage points to 16% (number needed to treat = 25).
Use of different summary statistics (risk ratio, odds ratio and risk difference) will dem-

onstrate different relationships with underlying risk. Summary statistics that show
close to no relationship with underlying risk are generally preferred for use in meta-
analysis (see Section 10.4.3).
Investigating any relationship between effect estimates and the comparator group

risk is also complicated by a technical phenomenon known as regression to the mean.
This arises because the comparator group risk forms an integral part of the effect esti-
mate. A high risk in a comparator group, observed entirely by chance, will on average
give rise to a higher than expected effect estimate, and vice versa. This phenomenon
results in a false correlation between effect estimates and comparator group risks.
There are methods, which require sophisticated software, that correct for regression
to the mean (McIntosh 1996, Thompson et al 1997). These should be used for such ana-
lyses, and statistical expertise is recommended.

10.11.8 Dose-response analyses

The principles of meta-regression can be applied to the relationships between interven-
tion effect and dose (commonly termed dose-response), treatment intensity or treat-
ment duration (Greenland and Longnecker 1992, Berlin et al 1993). Conclusions about
differences in effect due to differences in dose (or similar factors) are on stronger
ground if participants are randomized to one dose or another within a study and a con-
sistent relationship is found across similar studies. While authors should consider these
effects, particularly as a possible explanation for heterogeneity, they should be
cautious about drawing conclusions based on between-study differences. Authors
should be particularly cautious about claiming that a dose-response relationship does
not exist, given the low power of many meta-regression analyses to detect genuine
relationships.

10.12 Missing data

10.12.1 Types of missing data

There are many potential sources of missing data in a systematic review or meta-
analysis (see Table 10.12.a). For example, a whole study may be missing from the
review, an outcome may be missing from a study, summary data may be missing
for an outcome, and individual participants may be missing from the summary data.
Here we discuss a variety of potential sources of missing data, highlighting where more
detailed discussions are available elsewhere in the Handbook.
Whole studies may be missing from a review because they are never published, are

published in obscure places, are rarely cited, or are inappropriately indexed in data-
bases. Thus, review authors should always be aware of the possibility that they have
failed to identify relevant studies. There is a strong possibility that such studies are
missing because of their ‘uninteresting’ or ‘unwelcome’ findings (that is, in the presence
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of publication bias). This problem is discussed at length in Chapter 13. Details of com-
prehensive search methods are provided in Chapter 4.
Some studies might not report any information on outcomes of interest to the

review. For example, there may be no information on quality of life, or on serious
adverse effects. It is often difficult to determine whether this is because the outcome
was not measured or because the outcome was not reported. Furthermore, failure to
report that outcomes were measured may be dependent on the unreported results
(selective outcome reporting bias; see Chapter 7, Section 7.2.3.3). Similarly, summary
data for an outcome, in a form that can be included in ameta-analysis, may bemissing.
A common example is missing standard deviations (SDs) for continuous outcomes. This
is often a problem when change-from-baseline outcomes are sought. We discuss impu-
tation of missing SDs in Chapter 6 (Section 6.5.2.8). Other examples of missing summary
data are missing sample sizes (particularly those for each intervention group sepa-
rately), numbers of events, standard errors, follow-up times for calculating rates,
and sufficient details of time-to-event outcomes. Inappropriate analyses of studies,
for example of cluster-randomized and crossover trials, can lead to missing summary
data. It is sometimes possible to approximate the correct analyses of such studies, for
example by imputing correlation coefficients or SDs, as discussed in Chapter 23
(Section 23.1) for cluster-randomized studies and Chapter 23 (Section 23.2) for cross-
over trials. As a general rule, most methodologists believe that missing summary data
(e.g. ‘no usable data’) should not be used as a reason to exclude a study from a sys-
tematic review. It is more appropriate to include the study in the review, and to discuss
the potential implications of its absence from a meta-analysis.
It is likely that in some, if not all, included studies, there will be individuals missing

from the reported results. Review authors are encouraged to consider this problem

Table 10.12.a Types of missing data in a meta-analysis

Type of missing data
Some possible reasons
for missing data

Missing studies Publication bias

Search not sufficiently
comprehensive

Missing outcomes Outcome not measured

Selective reporting bias

Missing summary data Selective reporting bias

Incomplete reporting

Missing individuals Lack of intention-to-treat
analysis

Attrition from the study

Selective reporting bias

Missing study-level characteristics (for subgroup analysis or
meta-regression)

Characteristic not measured

Incomplete reporting
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carefully (see MECIR Box 10.12.a). We provide further discussion of this problem in
Section 10.12.3; see also Chapter 8 (Section 8.5).
Missing data can also affect subgroup analyses. If subgroup analyses or meta-

regressions are planned (see Section 10.11), they require details of the study-level
characteristics that distinguish studies from one another. If these are not available for
all studies, review authors should consider asking the study authors for more information.

10.12.2 General principles for dealing with missing data

There is a large literature of statistical methods for dealing with missing data. Here we
briefly review some key concepts and make some general recommendations for
Cochrane Review authors. It is important to think why data may be missing. Statisti-
cians often use the terms ‘missing at random’ and ‘not missing at random’ to represent
different scenarios.
Data are said to be ‘missing at random’ if the fact that they aremissing is unrelated to

actual values of the missing data. For instance, if some quality-of-life questionnaires
were lost in the postal system, this would be unlikely to be related to the quality of life
of the trial participants who completed the forms. In some circumstances, statisticians
distinguish between data ‘missing at random’ and data ‘missing completely at ran-
dom’, although in the context of a systematic review the distinction is unlikely to be
important. Data that are missing at random may not be important. Analyses based
on the available data will often be unbiased, although based on a smaller sample size
than the original data set.
Data are said to be ‘not missing at random’ if the fact that they are missing is related

to the actual missing data. For instance, in a depression trial, participants who had a
relapse of depression might be less likely to attend the final follow-up interview, and

MECIR Box 10.12.a Relevant expectations for conduct of intervention reviews

C64: Addressing missing outcome data (Highly desirable)

Consider the implications of missing
outcome data from individual participants
(due to losses to follow-up or exclusions
from analysis).

Incomplete outcome data can introduce
bias. In most circumstances, authors
should follow the principles of intention-
to-treat analyses as far as possible (this
may not be appropriate for adverse
effects or if trying to demonstrate
equivalence). Risk of bias due to
incomplete outcome data is addressed in
the Cochrane risk-of-bias tool. However,
statistical analyses and careful
interpretation of results are additional
ways in which the issue can be addressed
by review authors. Imputation methods
can be considered (accompanied by, or in
the form of, sensitivity analyses).
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more likely to have missing outcome data. Such data are ‘non-ignorable’ in the sense
that an analysis of the available data alone will typically be biased. Publication bias and
selective reporting bias lead by definition to data that are ‘not missing at random’, and
attrition and exclusions of individuals within studies often do as well.
The principal options for dealing with missing data are:

1) analysing only the available data (i.e. ignoring the missing data);
2) imputing the missing data with replacement values, and treating these as if they

were observed (e.g. last observation carried forward, imputing an assumed outcome
such as assuming all were poor outcomes, imputing the mean, imputing based on
predicted values from a regression analysis);

3) imputing the missing data and accounting for the fact that these were imputed with
uncertainty (e.g. multiple imputation, simple imputation methods (as point 2) with
adjustment to the standard error); and

4) using statistical models to allow for missing data, making assumptions about their
relationships with the available data.

Option 2 is practical in most circumstances and very commonly used in systematic
reviews. However, it fails to acknowledge uncertainty in the imputed values and results,
typically, in confidence intervals that are too narrow. Options 3 and 4 would require
involvement of a knowledgeable statistician.
Five general recommendations for dealing withmissing data in Cochrane Reviews are

as follows.

• Whenever possible, contact the original investigators to request missing data.

• Make explicit the assumptions of any methods used to address missing data: for
example, that the data are assumed missing at random, or that missing values were
assumed to have a particular value such as a poor outcome.

• Follow the guidance in Chapter 8 to assess risk of bias due tomissing outcome data in
randomized trials.

• Perform sensitivity analyses to assess how sensitive results are to reasonable
changes in the assumptions that are made (see Section 10.14).

• Address the potential impact of missing data on the findings of the review in the
Discussion section.

10.12.3 Dealing with missing outcome data from individual participants

Review authors may undertake sensitivity analyses to assess the potential impact of
missing outcome data, based on assumptions about the relationship between missing-
ness in the outcome and its true value. Several methods are available (Akl et al 2015).
For dichotomous outcomes, Higgins and colleagues propose a strategy involving dif-
ferent assumptions about how the risk of the event among the missing participants
differs from the risk of the event among the observed participants, taking account
of uncertainty introduced by the assumptions (Higgins et al 2008a). Akl and colleagues
propose a suite of simple imputation methods, including a similar approach to that of
Higgins and colleagues based on relative risks of the event in missing versus observed
participants. Similar ideas can be applied to continuous outcome data (Ebrahim et al
2013, Ebrahim et al 2014). Particular care is required to avoid double counting events,
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since it can be unclear whether reported numbers of events in trial reports apply to the
full randomized sample or only to those who did not drop out (Akl et al 2016).
Although there is a tradition of implementing ‘worst case’ and ‘best case’ analyses

clarifying the extreme boundaries of what is theoretically possible, such analyses
may not be informative for the most plausible scenarios (Higgins et al 2008a).

10.13 Bayesian approaches to meta-analysis

Bayesian statistics is an approach to statistics based on a different philosophy from
that which underlies significance tests and confidence intervals. It is essentially about
updating of evidence. In a Bayesian analysis, initial uncertainty is expressed through a
prior distribution about the quantities of interest. Current data and assumptions con-
cerning how they were generated are summarized in the likelihood. The posterior
distribution for the quantities of interest can then be obtained by combining the prior
distribution and the likelihood. The likelihood summarizes both the data from studies
included in the meta-analysis (for example, 2 × 2 tables from randomized trials) and the
meta-analysis model (for example, assuming a fixed effect or random effects). The
result of the analysis is usually presented as a point estimate and 95% credible interval
from theposterior distribution for eachquantity of interest, which lookmuch like classical
estimates and confidence intervals. Potential advantages of Bayesian analyses are
summarized inBox 10.13.a. Bayesian analysismaybeperformedusingWinBUGS software
(Smith et al 1995, Lunn et al 2000),withinR (Röver 2017), or– for someapplications –using
standard meta-regression software with a simple trick (Rhodes et al 2016).
A difference between Bayesian analysis and classical meta-analysis is that the inter-

pretation is directly in terms of belief: a 95% credible interval for an odds ratio is that
region in which we believe the odds ratio to lie with probability 95%. This is how many

Box 10.13.a Some potential advantages of Bayesian meta-analysis

Some potential advantages of Bayesian approaches over classical methods for meta-
analyses are that they:

• incorporate external evidence, such as on the effects of interventions or the likely
extent of among-study variation;

• extend a meta-analysis to decision-making contexts, by incorporating the notion of
the utility of various clinical outcome states;

• allow naturally for the imprecision in the estimated between-study variance estimate
(see Section 10.10.4);

• investigate the relationship between underlying risk and treatment benefit (see
Section 10.11.7);

• perform complex analyses (e.g. network meta-analysis: see Chapter 11); and

• examine the extent to which data would change people’s beliefs (Higgins and
Thompson 2002).
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practitioners actually interpret a classical confidence interval, but strictly in the clas-
sical framework the 95% refers to the long-term frequency with which 95% intervals
contain the true value. The Bayesian framework also allows a review author to calcu-
late the probability that the odds ratio has a particular range of values, which cannot be
done in the classical framework. For example, we can determine the probability that
the odds ratio is less than 1 (which might indicate a beneficial effect of an experimental
intervention), or that it is no larger than 0.8 (which might indicate a clinically important
effect). It should be noted that these probabilities are specific to the choice of the prior
distribution. Different meta-analysts may analyse the same data using different prior
distributions and obtain different results. It is therefore important to carry out sensi-
tivity analyses to investigate how the results depend on any assumptions made.
In the context of a meta-analysis, prior distributions are needed for the particular

intervention effect being analysed (such as the odds ratio or the mean difference)
and – in the context of a random-effects meta-analysis – on the amount of heteroge-
neity among intervention effects across studies. Prior distributions may represent sub-
jective belief about the size of the effect, or may be derived from sources of evidence
not included in the meta-analysis, such as information from non-randomized studies of
the same intervention or from randomized trials of other interventions. The width of
the prior distribution reflects the degree of uncertainty about the quantity. When there
is little or no information, a ‘non-informative’ prior can be used, in which all values
across the possible range are equally likely.
Most Bayesian meta-analyses use non-informative (or very weakly informative) prior

distributions to represent beliefs about intervention effects, since many regard it as
controversial to combine objective trial data with subjective opinion. However, prior
distributions are increasingly used for the extent of among-study variation in a
random-effects analysis. This is particularly advantageous when the number of studies
in the meta-analysis is small, say fewer than five or ten. Libraries of data-based prior
distributions are available that have been derived from re-analyses of many thousands
of meta-analyses in the Cochrane Database of Systematic Reviews (Turner et al 2012).
Statistical expertise is strongly recommended for review authors who wish to carry

out Bayesian analyses. There are several good texts (Sutton et al 2000, Sutton and
Abrams 2001, Spiegelhalter et al 2004).

10.14 Sensitivity analyses

The process of undertaking a systematic review involves a sequence of decisions. Whilst
many of these decisions are clearly objective and non-contentious, some will be some-
what arbitrary or unclear. For instance, if eligibility criteria involve a numerical value,
the choice of value is usually arbitrary: for example, defining groups of older people
may reasonably have lower limits of 60, 65, 70 or 75 years, or any value in between.
Other decisions may be unclear because a study report fails to include the required
information. Some decisions are unclear because the included studies themselves
never obtained the information required: for example, the outcomes of those who were
lost to follow-up. Further decisions are unclear because there is no consensus on the
best statistical method to use for a particular problem.
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It is highly desirable to prove that the findings from a systematic review are not
dependent on such arbitrary or unclear decisions by using sensitivity analysis (see
MECIR Box 10.14.a). A sensitivity analysis is a repeat of the primary analysis or
meta-analysis in which alternative decisions or ranges of values are substituted for
decisions that were arbitrary or unclear. For example, if the eligibility of some studies
in themeta-analysis is dubious because they do not contain full details, sensitivity anal-
ysis may involve undertaking themeta-analysis twice: the first time including all studies
and, second, including only those that are definitely known to be eligible. A sensitivity
analysis asks the question, ‘Are the findings robust to the decisions made in the process
of obtaining them?’
There are many decision nodes within the systematic review process that can gen-

erate a need for a sensitivity analysis. Examples include:

Searching for studies:

1) Should abstracts whose results cannot be confirmed in subsequent publications be
included in the review?

Eligibility criteria:

1) Characteristics of participants: where a majority but not all people in a study meet
an age range, should the study be included?

2) Characteristics of the intervention: what range of doses should be included in the
meta-analysis?

3) Characteristics of the comparator: what criteria are required to define usual care to
be used as a comparator group?

4) Characteristics of the outcome: what time point or range of time points are eligible
for inclusion?

5) Study design: should blinded and unblinded outcome assessment be included, or
should study inclusion be restricted by other aspects of methodological criteria?

What data should be analysed?

1) Time-to-event data: what assumptions of the distribution of censored data should
be made?

2) Continuous data: where standard deviations are missing, when and how should
they be imputed? Should analyses be based on change scores or on post-
intervention values?

MECIR Box 10.14.a Relevant expectations for conduct of intervention reviews

C71: Sensitivity analysis (Highly desirable)

Use sensitivity analyses to assess the
robustness of results, such as the impact of
notable assumptions, imputed data,
borderline decisions and studies at high risk
of bias.

It is important to be aware when results
are robust, since the strength of the
conclusion may be strengthened or
weakened.
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3) Ordinal scales: what cut-point should be used to dichotomize short ordinal scales
into two groups?

4) Cluster-randomized trials: what values of the intraclass correlation coefficient
should be used when trial analyses have not been adjusted for clustering?

5) Crossover trials: what values of the within-subject correlation coefficient should be
used when this is not available in primary reports?

6) All analyses: what assumptions should be made about missing outcomes? Should
adjusted or unadjusted estimates of intervention effects be used?

Analysis methods:

1) Should fixed-effect or random-effects methods be used for the analysis?
2) For dichotomous outcomes, should odds ratios, risk ratios or risk differences be used?
3) For continuous outcomes, where several scales have assessed the same dimension,

should results be analysed as a standardized mean difference across all scales or as
mean differences individually for each scale?

Some sensitivity analyses can be pre-specified in the study protocol, but many issues
suitable for sensitivityanalysis areonly identifiedduring the reviewprocesswhere the indi-
vidual peculiarities of the studies under investigation are identified. When sensitivity ana-
lyses show that the overall result and conclusions are not affected by the different
decisions that could be made during the review process, the results of the review can
beregardedwithahigherdegreeofcertainty.Where sensitivityanalyses identifyparticular
decisions or missing information that greatly influence the findings of the review, greater
resources can be deployed to try and resolve uncertainties and obtain extra information,
possibly through contacting trial authors and obtaining individual participant data. If this
cannotbeachieved, the resultsmustbe interpretedwithanappropriatedegreeofcaution.
Such findings may generate proposals for further investigations and future research.
Reporting of sensitivity analyses in a systematic review may best be done by produ-

cing a summary table. Rarely is it informative to produce individual forest plots for each
sensitivity analysis undertaken.
Sensitivity analyses are sometimes confused with subgroup analysis. Although some

sensitivity analyses involve restricting the analysis to a subset of the totality of studies,
the two methods differ in two ways. First, sensitivity analyses do not attempt to esti-
mate the effect of the intervention in the group of studies removed from the analysis,
whereas in subgroup analyses, estimates are produced for each subgroup. Second, in
sensitivity analyses, informal comparisons are made between different ways of esti-
mating the same thing, whereas in subgroup analyses, formal statistical comparisons
are made across the subgroups.
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11

Undertaking network meta-analyses
Anna Chaimani, Deborah M Caldwell, Tianjing Li, Julian PT Higgins, Georgia Salanti

KEY POINTS

• Network meta-analysis is a technique for comparing three or more interventions
simultaneously in a single analysis by combining both direct and indirect evidence
across a network of studies.

• Network meta-analysis produces estimates of the relative effects between any pair of
interventions in the network, and usually yields more precise estimates than a single
direct or indirect estimate. It also allows estimation of the ranking and hierarchy of
interventions.

• A valid network meta-analysis relies on the assumption that the different sets of stud-
ies included in the analysis are similar, on average, in all important factors that may
affect the relative effects.

• Incoherence (also called inconsistency) occurs when different sources of information
(e.g. direct and indirect) about a particular intervention comparison disagree.

• Grading confidence in evidence from a network meta-analysis begins by evaluating
confidence in each direct comparison. Domain-specific assessments are combined
to determine the overall confidence in the evidence.

11.1 What is network meta-analysis?

Most Cochrane Reviews present comparisons between pairs of interventions (an
experimental intervention and a comparator intervention) for a specific condition
and in a specific population or setting. However, it is usually the case that several,
perhaps even numerous, competing interventions are available for any given condi-
tion. People who need to decide between alternative interventions would benefit

This chapter should be cited as: Chaimani A, Caldwell DM, Li T, Higgins JPT, Salanti G. Chapter 11:
Undertaking network meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ,
Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK):
John Wiley & Sons, 2019: 285–320.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

285



from a single review that includes all relevant interventions, and presents their com-
parative effectiveness and potential for harm. Network meta-analysis provides an
analysis option for such a review.
Any set of studies that links three or more interventions via direct comparisons forms

a network of interventions. In a network of interventions there can be multiple ways
to make indirect comparisons between the interventions. These are comparisons that
have not been made directly within studies, and they can be estimated using mathe-
matical combinations of the direct intervention effect estimates available. Network
meta-analysis combines direct and indirect estimates across a network of interven-
tions in a single analysis. Synonymous terms, less often used, are mixed treatment
comparisons and multiple treatments meta-analysis.

11.1.1 Network diagrams

A network diagram is a graphical depiction of the structure of a network of interven-
tions (Chaimani et al 2013). It consists of nodes representing the interventions in the
network and lines showing the available direct comparisons between pairs of interven-
tions. An example of a network diagramwith four interventions is given in Figure 11.1.a.
In this example, distinct lines forming a closed triangular loop have been added to illus-
trate the presence of a three-arm study. Note that for large and complex networks, such
presentation of multi-arm studies may give complicated and unhelpful network dia-
grams; in this case it might be preferable to showmulti-arm studies in a tabular format.
Further discussion of displaying networks is available in Section 11.6.1.

Two-arm studies

comparing A and D

Two-arm studies

comparing A and B

BD

A

C

Two-arm studies
comparing C and D

Two-arm studies
comparing B and C

Three-arm studies

comparing A, B, D

Figure 11.1.a Example of network diagram with four competing interventions and information on the
presence of multi-arm randomized trials
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11.1.2 Advantages of network meta-analysis

A network meta-analysis exploits all available direct and indirect evidence. Empirical
studies have suggested it yields more precise estimates of the intervention effects in
comparison with a single direct or indirect estimate (Cooper et al 2011, Caldwell
et al 2015). In addition, network meta-analysis can provide information for compari-
sons between pairs of interventions that have never been evaluated within individual
randomized trials. The simultaneous comparison of all interventions of interest in the
same analysis enables the estimation of their relative ranking for a given outcome (see
Section 11.4.3.3 for more discussion of ranking).

11.1.3 Outline of this chapter

This chapter provides an overview of the concepts, assumptions and methods that
relate to networkmeta-analyses and to the indirect intervention comparisons on which
they are built. Section 11.2 first describes what an indirect comparison is and how it can
be made in a simple trio of interventions. It then introduces the notion of transitivity
(and its statistical analogue, coherence) as the core assumption underlying the validity
of an indirect comparison. Examples are provided where this assumption is likely to
hold or be violated.
Section 11.3 provides guidance on the design of a Cochrane Review with multiple

interventions and the appropriate definition of the research question with respect to
selecting studies, outcomes and interventions. Section 11.4 briefly describes the avail-
able statistical methods for synthesizing the data, estimating the relative ranking and
assessing coherence in a network of interventions. Finally, Sections 11.5 and 11.6 pro-
vide approaches for evaluating confidence in the evidence and presenting the evidence
base and the results from a network meta-analysis. Note that the chapter only intro-
duces the statistical aspects of network meta-analysis; authors will need a knowledge-
able statistician to plan and execute these methods.

11.2 Important concepts

At the heart of network meta-analysis methodology is the concept of an indirect com-
parison. Indirect comparisons are necessary to estimate the relative effect of two inter-
ventions when no studies have compared them directly.

11.2.1 Indirect comparisons

Indirect comparisons allow us to estimate the relative effects of two interventions that
have not been compared directly within a trial. For example, suppose there are rando-
mized trials directly comparing provision of dietary advice by a dietitian (which we refer
to as intervention A) with advice given by a doctor (intervention B). Suppose there are
also randomized trials comparing dietary advice given by a dietitian (intervention A)
with advice given by a nurse (intervention C). Suppose further that these randomized
trials have been combined in standard, pair-wise meta-analyses separately to derive
direct estimates of intervention effects for A versus B (sometimes depicted ‘AB’)
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and A versus C (‘AC’), measured as mean difference (MD) in weight reduction (see
Chapter 6, Section 6.5.1.1). The situation is illustrated in Figure 11.2.a, where the solid
straight lines depict available evidence. We wish to learn about the relative effect of
advice by a doctor versus a nurse (B versus C); the dashed line depicts this comparison,
for which there is no direct evidence.
One way to understand an indirect comparison is to think of the BC comparison (of B

versus C) as representing the benefit of B over C. All else being equal, the benefit of
B over C is equivalent to the benefit of B over A plus the benefit of A over C. Thus,
for example, the indirect comparison describing benefit of ‘doctor’ over ‘nurse’ may
be thought of as the benefit of ‘doctor’ over ‘dietitian’ plus the benefit of ‘dietitian’ over
‘nurse’ (these ‘benefits’may be positive or negative; we do not intend to imply any par-
ticular superiority among these three types of people offering dietary advice). This is
represented graphically in Figure 11.2.b.
Mathematically, the sum can be written:

indirectMD BvsC = directMD BvsA + directMD AvsC

We usually write this in the form of subtraction:

indirectMD BvsC = directMD AvsC −directMD AvsB

Direct estimate ‘doctor’
versus ‘dietitian’ (BA)

Indirect estimate ‘doctor’
versus ‘nurse’ (BC)

‘Doctor’

Direct estimate ‘dietitian’
versus ‘nurse’ (AC)

‘Nurse’

‘Dietitian’

A

CB

Figure 11.2.a Illustration of an indirect estimate that compares the effectiveness of ‘doctor’ (B) and
‘nurse’ (C) in providing dietary advice through a common comparator ‘dietitian’ (A)

Direct estimate ‘doctor’

versus ‘dietitian’ (BA)

Indirect estimate ‘doctor’

versus ‘nurse’ (BC)

‘Doctor’

Direct estimate ‘dietitian’

versus ‘nurse’ (AC)

‘Nurse’

‘Dietitian’

A CB

Figure 11.2.b Graphical representation of the indirect comparison ‘doctor’ (B) versus ‘nurse’ (C) via
‘dietitian’ (A)
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such that the difference between the summary statistics of the intervention effect in the
direct A versus C and A versus B meta-analyses provides an indirect estimate of the B
versus C intervention effect.
For this simple case where we have two direct comparisons (three interventions) the

analysis can be conducted by performing subgroup analyses using standard meta-
analysis routines (including RevMan): studies addressing the two direct comparisons
(i.e. A versus B and A versus C) can be treated as two subgroups in the meta-analysis.
The difference between the summary effects from the two subgroups gives an estimate
for the indirect comparison.
Most software will provide a P value for the statistical significance of the difference

between the subgroups based on the estimated variance of the indirect effect estimate
(Bucher et al 1997):

Variance indirectMD BvsC = Variance directMD AvsC + Variance directMD AvsB

where variance[direct MD(AvsC)] and variance[direct MD(AvsB)] are the variances of the
respective direct estimates (from the two subgroup analyses).
A 95% confidence interval for the indirect summary effect is constructed by the

formula:

indirectMD BvsC ± 1 96 × Variance indirectMD BvsC

This method uses the intervention effects from each group of randomized trials and
therefore preserves within-trial randomization. If we had instead pooled single arms
across the studies (e.g. all B arms and all C arms, ignoring the A arms) and then per-
formed a direct comparison between the pooled B and C arms (i.e. treating the data as
if they came from a single large randomized trial), then our analysis would discard the
benefits of within-trial randomization (Li and Dickersin 2013). This approach should not
be used.
When four or more competing interventions are available, indirect estimates can be

derived via multiple routes. The only requirement is that two interventions are ‘con-
nected’ and not necessarily via a single common comparator. An example of this sit-
uation is provided in Figure 11.2.c. Here ‘doctor’ (B) and ‘pharmacist’ (D) do not have a
common comparator, but we can compare them indirectly via the route ‘doctor’ (B) –
‘dietitian’ (A) – ‘nurse’ (C) – ‘pharmacist (D) by an extension of the arguments set out
earlier.

11.2.2 Transitivity

11.2.2.1 Validity of an indirect comparison
The underlying assumption of indirect comparisons is that we can learn about the true
relative effect of B versus C via treatment A by combining the true relative effects
A versus B and A versus C. This relationship can be written mathematically as

effect of B versus C = effect of A versus C – effect of A versus B

In words, this means that we can compare interventions B and C via intervention A
(Figure 11.2.a).
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Indirect comparisons provide observational evidence across randomized trials and
may suffer the biases of observational studies, such as confounding (see Chapter 10,
Sections 10.11.5 and 10.11.6). The validity of an indirect comparison requires that
the different sets of randomized trials are similar, on average, in all important factors
other than the intervention comparison being made (Song et al 2003, Glenny et al 2005,
Donegan et al 2010, Salanti 2012). We use the term transitivity to refer to this require-
ment. It is closely related to the statistical notion of coherence (see Section 11.2.3.2);
the distinction is a little like that between diversity and (statistical) heterogeneity in
pair-wise meta-analysis (see Chapter 10, Section 10.10.1).
Studies that compare different interventions may differ in a wide range of character-

istics. Sometimes these characteristics are associated with the effect of an intervention.
We refer to such characteristics as effect modifiers; they are the aspects of diversity that
induce heterogeneity in pairwise meta-analyses. If the A versus B and A versus C rando-
mized trials differ with respect to their effect modifiers, then it would not be appropri-
ate to make an indirect comparison.
Transitivity requires that intervention A is similar when it appears in A versus B studies

and A versus C studies with respect to characteristics (effect modifiers) that may affect
the two relative effects (Salanti et al 2009). For example, in the dietary advice network
the common comparator ‘dietitian’might differ with respect to the frequency of advice
sessions between trials that compare dietitian with doctor (A versus B) and trials that
compare dietitian with nurse (A versus C). If the participants visit the dietitian once a
week in AB studies and once a month in AC studies, transitivity may be violated. Sim-
ilarly, any other effect modifiers should not differ between AB and AC studies.
Transitivity requires all competing interventions of a systematic review to be jointly

randomizable. That is, we can imagine all interventions being compared simultaneously
in a single multi-arm randomized trial. Another way of viewing this is that, in any

Direct estimate ‘doctor’
versus ‘dietitian’ (BA)

‘Doctor’

Direct estimate ‘dietitian’
versus ‘nurse’ (AC)

Indirect estimate ‘doctor’

versus ‘pharmacist’ (BD)

Direct estimate ‘nurse’

versus ‘pharmacist’ (CD)

‘Nurse’

‘Dietitian’

‘pharmacist’

A

D

CB

Figure 11.2.c Example of deriving indirect estimate that compares the effectiveness of ‘doctor’ (B) and
‘pharmacist’ (D) in providing dietary advice through a connected loop
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particular trial, the ‘missing’ interventions (those not included in trial) may be considered
to be missing for reasons unrelated to their effects (Caldwell et al 2005, Salanti 2012).

11.2.2.2 Assessing transitivity
Clinical and methodological differences are inevitable between studies in a systematic
review. Researchers undertaking indirect comparisons should assess whether such dif-
ferences are sufficiently large to induce intransitivity. In principle, transitivity can be
evaluated by comparing the distribution of effect modifiers across the different com-
parisons (Salanti 2012, Cipriani et al 2013, Jansen and Naci 2013). Imbalanced distribu-
tions would threaten the plausibility of the transitivity assumption and thus the validity
of indirect comparison. In practice, however, this requires that the effect modifiers are
known and have been measured. There are also some statistical options for assessing
whether the transitive relationship holds in some circumstances, which we discuss in
Section 11.4.4.
Extended guidance on considerations of potential effect modifiers is provided in dis-

cussions of heterogeneity in Chapter 10 (Section 10.11). For example, we may believe
that age is a potential effect modifier so that the effect of an intervention differs
between younger and older populations. If the average age in A versus B randomized
trials is substantially older or younger than in A versus C randomized trials, transitivity
may be implausible, and an indirect comparison B versus C may be invalid.
Figure 11.2.d shows hypothetical examples of valid and invalid indirect comparisons

for the dietary advice example. Suppose a single effect modifier is severity of disease
(e.g. obesity measured by the BMI score). The top row depicts a situation in which all
patients in all trials have moderate severity. There are AB studies and AC studies in this
population. Estimation of BC is valid here because there is no difference in the effect
modifier. The second row depicts a similar situation in a second population of patients
who all have severe disease. A valid indirect estimate of B versus C for this population
can also be made. In the third row we depict a situation in which all AB trials are con-
ducted only in moderately obese populations and all AC trials are conducted only in
severely obese populations. In this situation, the distribution of effect modifiers is dif-
ferent in the two direct comparisons, so the indirect effect based on this row is invalid
(due to intransitivity).
In practice, differences in effect modifiers are usually less extreme than this hypothet-

ical scenario; for example, AB randomized trials may have 80% moderately obese pop-
ulation and 20% severely obese, and AC randomized trials may have 20% moderately
obese and 80% severely obese population. Intransitivity would probably still invalidate
the indirect estimate B versus C if severity is an important effect modifier.

11.2.3 Indirect comparisons and the validity of network meta-analysis

11.2.3.1 Combining direct and indirect evidence
Often there is direct evidence for a specific comparison of interventions as well as a
possibility of making an indirect comparison of the interventions via one or more com-
mon comparators. If the key assumption of transitivity is considered reasonable, direct
and indirect estimates should be considered jointly. When both direct and indirect
intervention effects are available for a particular comparison, these can be synthesized
into a single effect estimate. This summary effect is sometimes called a combined or
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Direct
intervention

effect

A versus C

A B A C

A versus B

B versus C

Indirect
intervention

effect

Population with moderate disease

VALID

Direct
intervention

effect

A versus C

A B A C

A versus B

B versus C

Indirect
intervention

effect

INVALID

Direct
intervention

effect

A versus C

A B A C

A versus B B versus C

Indirect
intervention

effect

Population with severe disease

Population with moderate obesity for A versus B
Population with severe obesity for A versus C

VALID

Figure 11.2.d Example of valid and invalid indirect comparisons when the severity of disease acts as
effect modifier and its distribution differs between the two direct comparisons. The shaded boxes
represent the treatment effect estimates from each source of evidence (striped box for A versus B and
checked box for A versus C). In the first row, randomized trials of A versus B and of A versus C are all
conducted in moderately obese populations; in the second row randomized trials are all conducted in
severely obese populations. In both of these the indirect comparisons of the treatment effect estimates
would be valid. In the last row, the A versus B and A versus C randomized trials are conducted in
different populations. As severity is an effect modifier, the indirect comparison based on these would
not be valid (Jansen et al 2014). Reproduced with permission of Elsevier
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mixed estimate of the intervention effect. We will use the former term in this chapter.
A combined estimate can be computed as an inverse variance weighted average (see
Chapter 10, Section 10.3) of the direct and indirect summary estimates.
Since combined estimates incorporate indirect comparisons, they rely on the transi-

tivity assumption. Violation of transitivity threatens the validity of both indirect and
combined estimates. Of course, biased direct intervention effects for any of the com-
parisons also challenge the validity of a combined effect (Madan et al 2011).

11.2.3.2 Coherence (or consistency)
The key assumption of transitivity relates to potential clinical and methodological var-
iation across the different comparisons. These differences may be reflected in the data
in the form of disagreement in estimates between different sources of evidence. The
statistical manifestation of transitivity and is typically called either coherence or
consistency. We will use the former to distinguish the notion from inconsistency (or
heterogeneity) within standard meta-analyses (e.g. as is measured using the I2 statistic;
see Chapter 10, Section 10.10.2). Coherence implies that the different sources of evi-
dence (direct and indirect) agree with each other.
The coherence assumption is expressed mathematically by the coherence equa-

tions, which state that the true direct and indirect intervention effects for a specific
comparison are identical:

‘true’MD BvsC = ‘true’MD AvsC − ‘true’MD AvsB

Some methods for testing this assumption are presented in Section 11.4.4.

11.2.3.3 Validity of network meta-analysis
The validity of networkmeta-analysis relies on the fulfilment of underlying assumptions.
Transitivity should hold for every possible indirect comparison, and coherence should
hold in every loop of evidence within the network (see Section 11.4.4). Considerations
about heterogeneity within each direct comparison in the network should follow the
existing recommendations for standard pair-wise meta-analysis (see Chapter 10,
Section 10.10).

11.3 Planning a Cochrane Review to compare
multiple interventions

11.3.1 Expertise required in the review team

Because of the complexity of networkmeta-analysis, it is important to establish amul-
tidisciplinary review team that includes a statistician skilled in network meta-analysis
methodology early and throughout. Close collaboration between the statistician
and the content area expert is essential to ensure that the studies selected for a net-
work meta-analysis are similar except for the interventions being compared (see
Section 11.2.2). Because basic meta-analysis software such as RevMan does not sup-
port network meta-analysis, the statistician will have to rely on statistical software
packages such as Stata, R, WinBUGS or OpenBUGS for analysis.
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11.3.2 The importance of a well-defined research question

Defining the research question of a systematic review that intends to compare mul-
tiple interventions should follow the general guidelines described in Chapter 2 and
should be stated in the objectives of the review. In this section, we summarize and
highlight key issues that are pertinent to systematic review with a network meta-
analysis.
Because network meta-analysis could be used to estimate the relative ranking of the

included interventions (Salanti et al 2011, Chaimani et al 2013), reviews that aim to rank
the competing interventions should specify this in their objectives (Chaimani et al
2017). Review authors should consider obtaining an estimate of relative ranking as a
secondary objective to supplement the relative effects. An extended discussion on
the relative ranking of interventions is provided in Section 11.4.3.3.

11.3.2.1 Defining the population and choosing the interventions
Populations and interventions often need to be considered together given the poten-
tial for intransitivity (see Section 11.2.2). A driving principle is that any eligible par-
ticipant should be eligible for randomization to any included intervention (Salanti
2012, Jansen and Naci 2013). Review authors should select their target population
with this consideration in mind. Particular care is needed in the definition of the eli-
gible interventions, as discussed in Chaimani and colleagues (Chaimani et al 2017).
For example, suppose a systematic review aims to compare four chemotherapy regi-
mens for a specific cancer. Regimen (D) is appropriate for stage II patients exclusively
and regimen (A) is appropriate for both stage I and stage II patients. The remaining
two regimens (B) and (C) are appropriate for stage I patients exclusively. Now sup-
pose A and D were compared in stage II patients, and A, B and C were compared
in stage I patients (see Figure 11.3.a). The four interventions forming the network
are unlikely to satisfy the transitivity assumption because regimen D is not given
to the same patient population as regimens B and C. Thus, a four-arm randomized
trial comparing all interventions (A, B, C and D) simultaneously is not a reasonable
study to conduct.

B

D

A

C

Stage I

patients

Stage I

patients

Stage I

patients

Stage II

patients

Figure 11.3.a Example of a network comparing
four chemotherapy regimens, where transitivity is
violated due to incomparability between the
interventions
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11.3.2.2 Decision sets and supplementary sets of interventions
Usually there is a specific set of interventions of direct interest when planning a net-
work meta-analysis, and these are sometimes referred to as the decision set. These
are the options among which patients and health professionals would be choosing
in practice with respect to the outcomes under investigation. In selecting which com-
peting interventions to include in the decision set, review authors should ensure that
the transitivity assumption is likely to hold (see also Section 11.2.2) (Salanti 2012).
The ability of network meta-analysis to incorporate indirect evidence means that

inclusion of interventions that are not of direct interest to the review authors might
provide additional information in the network. For example, placebo is often included
in network meta-analysis even though it is not a reasonable treatment option, because
many studies have compared active interventions against placebo. In such cases,
excluding placebo would result in ignoring a considerable amount of indirect evidence.
Similar considerations apply to historical or legacy interventions.
We use the term supplementary set to refer to interventions, such as placebo, that

are included in the network meta-analysis for the purpose of improving inference
among interventions in the decision set. The full set of interventions, the decision
set plus the supplementary set, has been called in the literature the synthesis compar-
ator set (Ades et al 2013, Caldwell et al 2015).
When review authors decide to include a supplementary set of interventions in a net-

work, they need to be cautious regarding the plausibility of the transitivity assumption.
In general, broadening the network challenges the transitivity assumption. Thus, sup-
plementary interventions should be added when their value outweighs the risk of vio-
lating the transitivity assumption. The addition of supplementary interventions in the
analysis might be considered more valuable for sparse networks that include only a few
trials per comparison. In these networks the benefit of improving the precision of esti-
mates by incorporating supplementary indirect evidence may be quite important.
There is limited empirical evidence to inform the decision of how far one should go
in constructing the network evidence base (König et al 2013, Caldwell et al 2015). Inev-
itably it will require some judgement, and the robustness of decisions can be evaluated
in sensitivity analyses and discussed in the review.

11.3.2.3 Grouping variants of an intervention (defining nodes
in the network diagram)
The definition of nodes needs careful consideration in situations where variants of
one or more interventions are expected to appear in the eligible trials (James et al
2018). The appropriateness of merging, for example, different doses of the same drug
or different drugs within a class depends to a large extent on the research question.
Lumping and splitting the variants of the competing interventions might be interest-
ing to both review authors and evidence users; in such a case this should be stated
clearly in the objectives of the review and the potential for intransitivity should be
evaluated in every network. A decision on how the nodes of an expanded network
could be merged is not always straightforward and researchers should act based
on predefined criteria where possible. These criteria should be formed in such a
way that maximizes similarity of the interventions within a node and minimizes sim-
ilarity across nodes.
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The following example refers to a network that used two criteria to classify electronic
interventions for smoking cessation into five categories: “To be able to draw general-
izable conclusions on the different types of electronic interventions, we developed a
categorization system that brought similar interventions together in a limited number
of categories. We sought advice from experts in smoking cessation on the key dimen-
sions that would influence the effectiveness of smoking cessation programmes.
Through this process, two dimensions for evaluating interventions were identified.
The first dimension was related to whether the intervention offered generic advice
or tailored its feedback to information provided by the user in some way. The second
dimension related to whether the intervention used a single channel or multiple chan-
nels. From these dimensions, we developed a system with five categories…, ranging
from interventions that provide generic information through a single channel, e.g. a
static Web site or mass e-mail (category e1) to complex interventions with multiple
channels delivering tailored information, e.g. an interactive Web site plus an interactive
forum (category e5)” (Madan et al 2014).
Empirical evidence is currently lacking on whether more or less expanded networks

aremore prone to important intransitivity or incoherence. Extended discussions of how
different dosages can be modelled in network meta-analysis are available (Giovane
et al 2013, Owen et al 2015, Mawdsley et al 2016).

11.3.2.4 Defining eligible comparisons of interventions (defining lines in the
network diagram)
Once the nodes of the network have been specified, every study that meets the eligi-
bility criteria and compares any pair of the eligible interventions should be included in
the review. The exclusion of specific direct comparisons without a rationale may intro-
duce bias in the analysis and should be avoided.

11.3.3 Selecting outcomes to examine

In the context of a network meta-analysis, outcomes should be specified a priori
regardless of the number of interventions the review intends to compare or the number
of studies the review is able to include. Review authors should be aware that some
characteristics may be effect modifiers for some outcomes but not for other outcomes.
This implies that sometimes the potential for intransitivity should be examined sepa-
rately for each outcome before undertaking the analyses.

11.3.4 Study designs to include

Randomized designs are generally preferable to non-randomized designs to ensure an
increased level of validity of the summary estimates (see Chapter 3, Section 3.3). Some-
times observational data from non-randomized studies may form a useful source of
evidence (see Chapter 24). In general, combining randomized with observational stud-
ies in a network meta-analysis is not recommended. In the case of sparse networks (i.e.
networks with a few studies but many interventions), observational data might be used
to supplement the analysis; for example, to form prior knowledge or provide informa-
tion on baseline characteristics (Schmitz et al 2013, Soares et al 2014).
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11.4 Synthesis of results

11.4.1 What does a network meta-analysis estimate?

In a connected network, the coherence equations provide mathematical links
between the intervention effects, so that some effects can be computed from others
using transitivity assumptions. This means that not all pair-wise comparisons are
independently estimated. In fact, the number of comparisons that need to be esti-
mated in a network meta-analysis equals the number of interventions minus one.
In practice, we select a particular set of comparisons of this size, and we often label
these the basic comparisons for the analysis (Lu and Ades 2006). For example, in the
network of four interventions for heavy menstrual bleeding illustrated in Figure 11.4.a
we might choose the following three basic comparisons: ‘Hysterectomy versus
first generation hysteroscopic techniques’, ‘Mirena versus first generation hystero-
scopic techniques’ and ‘second generation non-hysteroscopic techniques versus first
generation hysteroscopic techniques’. All other comparisons in the network (e.g.
‘Mirena versus hysterectomy’, ‘Mirena versus second generation non-hysteroscopic
techniques’, etc.) can be computed from the three basic comparisons.
The main result of a network meta-analysis is a set of network estimates of the

intervention effects for all basic comparisons. We obtain estimates for the other com-
parisons after the analysis using the coherence equations (see Section 11.2.3.2). It does
not matter which set of comparisons we select as the basic comparisons. Often we
would identify one intervention as a reference, and define the basic comparisons as
the effect of each of the other interventions against this reference.

Hysterectomy

Mirena

Second generation
non-hysteroscopic
techniques

First generation
hysteroscopic

techniques

Figure 11.4.a Network graph of four interventions for heavymenstrual bleeding (Middleton et al 2010).
The size of the nodes is proportional to the number of participants assigned to the intervention
and the thickness of the lines is proportional to the number of randomized trials that studied the
respective direct comparison. Reproduced with permission of BMJ Publishing Group
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11.4.2 Synthesizing direct and indirect evidence using meta-regression

Network meta-analysis can be performed using several approaches (Salanti et al 2008).
The main technical requirement for all approaches is that all interventions included in
the analysis form a ‘connected’ network. A straightforward approach that be used for
many networks is to use meta-regression (see Chapter 10, Section 10.11.4). This
approach works as long as there are no multi-arm trials in the network (otherwise,
other methods are more appropriate).
We introduced indirect comparisons in Section 11.2.1 in the context of subgroup

analysis, where the subgroups are defined by the comparisons. Differences between
subgroups of studies can also be investigated via meta-regression. When standard
meta-regression is used to conduct a single indirect comparison, a single dummy var-
iable is used to specify whether the result of each study relates to one direct compar-
ison or the other (a dummy variable is coded as 1 or 0 to indicate which comparison is
made in the study). For example, in the dietary advice network containing only three
intervention nodes (see Section 11.2.1, Figure 11.2.a) the dummy variable might be
used to indicate the comparison ‘dietitian versus nurse’. This variable takes the value
1 for a study that involves that corresponding comparison and 0 if it involves the com-
parison ‘dietitian versus doctor’, and is included as a single covariate in the meta-
regression. In this way, the meta-regression model would have an intercept and a
regression coefficient (slope). The estimated intercept gives the meta-analytic direct
summary estimate for the comparison ‘dietitian versus doctor’ while the sum of the
estimated regression coefficient and intercept gives the direct summary estimate for
‘dietitian versus nurse’. Consequently, the estimated coefficient is the indirect sum-
mary estimate for the comparison ‘doctor versus nurse’.
An alternative way to perform the same analysis of an indirect comparison is to re-

parameterize the meta-regression model by using two dummy variables and no inter-
cept, instead of one dummy variable and an intercept. The first dummy variable would
indicate the comparison ‘dietitian versus doctor’, and the second the comparison ‘die-
titian versus nurse’. The estimated regression coefficients then give the summary esti-
mates for these two comparisons, and it is convenient to consider these as the two
basic comparisons for this analysis. The difference between the two regression coeffi-
cients is the summary estimate for the indirect comparison ‘doctor versus nurse’.
The coding of each basic comparison using a dummy variable, and the omission of

the intercept, proves to be a useful approach for implementing network meta-analysis
using meta-regression, and helps explain the role of the coherence equations. Specif-
ically, suppose now that in the dietary advice example, studies that directly compare
‘doctor versus nurse’ are also available. Because we are already estimating all of the
basic comparisons required for three interventions, we do not require a third dummy
variable (under coherence, the comparison ‘doctor versus nurse’ can be expressed as
the difference between the other two comparisons: see Section 11.2.3.2). This means
that studies comparing ‘doctor versus nurse’ inform us about the difference between
the two comparisons already in the analysis. Consequently, we need to assign values −1
and 1 to the dummies ‘dietitian versus doctor’ and ‘dietitian versus nurse’, respectively.
The meta-regression is again fitted including both dummy variables without an inter-
cept. The interpretations of the estimated regression coefficients are the same as for
the indirect comparison.
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11.4.3 Performing network meta-analysis

We now consider approaches designed specifically for network meta-analysis that can
be used when we have multi-arm trials. An overview of methodological developments
can be found in Efthimiou and colleagues (Efthimiou et al 2016).
A popular approach to conducting network meta-analysis is using hierarchical mod-

els, commonly implemented within a Bayesian framework (Sobieraj et al 2013,
Petropoulou et al 2016). Detailed descriptions of hierarchical models for network
meta-analysis can be found elsewhere (Lu and Ades 2004, Salanti et al 2008, Dias
et al 2018). Software options for a Bayesian approach include WinBUGS and OpenBUGS.
Multivariate meta-analysis methods, initially developed to synthesize multiple

outcomes jointly (Jackson et al 2011, Mavridis and Salanti 2013), offer an alternative
approach to conducting network meta-analysis. A multivariate meta-analysis approach
focuses the analysis on the set of basic comparisons (e.g. each intervention against a
common reference intervention) and treats these as analogous to different outcomes.
A study can report on one or more of the basic comparisons; for example, there are two
comparisons in a three-arm randomized trial. For studies that do not target any of the
basic comparisons (e.g. a study that does not include the common reference interven-
tion), a technique known as data augmentation can be used to allow the appropriate
parameterization (White et al 2012). The method is implemented in the networkmacro
available for Stata (White 2015). A detailed description of the concepts and the imple-
mentation of this approach is available (White et al 2012).
Methodology from electrical networks and graphic theory also can be used to fit net-

work meta-analysis and is outlined in by Rücker (Rücker 2012). This approach has been
implemented in the R package netmeta (Rücker and Schwarzer 2013).

11.4.3.1 Illustrating example
To illustrate the advantages of networkmeta-analysis, Figure 11.4.a presents a network
of four interventions for heavy menstrual bleeding (Middleton et al 2010). Data are
available for four out of six possible direct comparisons. Table 11.4.a presents the
results from direct (pair-wise) meta-analyses and a network meta-analysis using the
meta-regression approach. Network meta-analysis provides evidence about the com-
parisons ‘Hysterectomy versus second generation non-hysteroscopic techniques’ and
‘Hysterectomy versus Mirena’, which no individual randomized trial has assessed. Also,
the network meta-analysis results are more precise (narrower confidence intervals)
than the pair-wise meta-analysis results for two comparisons (‘Mirena versus first gen-
eration hysteroscopic techniques’ and ‘Second generation non-hysteroscopic techni-
ques versus Mirena’). Note that precision is not gained for all comparisons; this is
because for some comparisons (e.g. ‘Hysterectomy versus first generation hystero-
scopic techniques’), the heterogeneity among studies in the network as a whole is lar-
ger than the heterogeneity within the direct comparison, and therefore some
uncertainty is added in the network estimates (see Section 11.4.3.2).

11.4.3.2 Assumptions about heterogeneity
Heterogeneity reflects the underlying differences between the randomized trials that
directly compare the same pair of interventions (see Chapter 10, Section 10.10). In a
pair-wise meta-analysis, the presence of important heterogeneity can make the

11.4 Synthesis of results

299



interpretation of the summary effect challenging. Network meta-analysis estimates are
a combination of the available direct estimates via both direct and indirect compari-
sons, so heterogeneity among studies for one comparison can impact on findings for
many other comparisons.
It is important to specify assumptions about heterogeneity in the network meta-

analysis model. Heterogeneity can be specific to each comparison, or assumed to
the same for every pair-wise comparison. The idea is similar to a subgroup analysis:
the different subgroups could have a common heterogeneity or different heterogene-
ities. The latter can be estimated accurately only if enough studies are available in each
subgroup.
It is common to assume that the amount of heterogeneity is the same for every compar-

ison in the network (Higgins and Whitehead 1996). This has three advantages compared
with assuming comparison-specific heterogeneities. First, it shares information across
comparisons, so that comparisons with only one or two trials can borrow information
about heterogeneity from comparisons with several trials. Second, heterogeneity is esti-
mated more precisely because more data contribute to the estimate, resulting usually in
more precise estimates of intervention effects. Third, assuming common heterogeneity
makesmodel estimation computationally easier than assuming comparison-specific het-
erogeneity (Lu and Ades 2009).
The choice of heterogeneity assumption should be based on clinical and methodo-

logical understanding of the data, and assessment of the plausibility of the assumption,
in addition to statistical properties.

11.4.3.3 Ranking interventions
One hallmark feature of network meta-analysis is that it can estimate relative rankings
of the competing interventions for a particular outcome. Ranking probability, the

Table 11.4.a Intervention effects, measured as odds ratios of patient dissatisfaction at 12 months of
four interventions for heavy menstrual bleeding with 95% confidence intervals. Odds ratios lower than
1 favour the column-defining intervention for the network meta-analysis results (lower triangle) and
the row-defining intervention for the pair-wise meta-analysis results (upper triangle)

Pair-wise meta-analysis

Hysterectomy – – 0.38
(0.22 to 0.65)

0.45
(0.24 to 0.82)

Second generation
non-hysteroscopic

techniques

1.35
(0.45 to 4.08)

0.82
(0.60 to 1.12)

0.43
(0.18 to 1.06)

0.96
(0.48 to 1.91)

Mirena 2.84
(0.51 to 15.87)

0.38
(0.23 to 0.65)

0.85
(0.63 to 1.15)

0.88
(0.43 to 1.84)

First generation
hysteroscopic
techniques

Network meta-analysis
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probability that an intervention is at a specific rank (first, second, etc.) when compared
with the other interventions in the network, is frequently used. Ranking probabilities
may vary for different outcomes. As for any estimated quantity, ranking probabilities
are estimated with some variability. Therefore, inference based solely on the probabil-
ity of being ranked as the best, without accounting for the variability, is misleading and
should be avoided.
Rankingmeasures such as themean ranks,median ranks and the cumulative rank-

ing probabilities summarize the estimated probabilities for all possible ranks and
account for uncertainty in relative ranking. Further discussion of ranking measures
is available elsewhere (Salanti et al 2011, Chaimani et al 2013, Tan et al 2014, Rücker
and Schwarzer 2015).
The estimated ranking probabilities for the heavy menstrual bleeding network (see

Section 11.4.3.2) are presented in Table 11.4.b. ‘Hysterectomy’ is the most effective
intervention according to mean rank.

11.4.4 Disagreement between evidence sources (incoherence)

11.4.4.1 What is incoherence?
Incoherence refers to the violation of the coherence assumption in a network of inter-
ventions (see Section 11.2.3.2). Incoherence occurs when different sources of informa-
tion for a particular relative effect are in disagreement (Song et al 2003, Lu and Ades
2006, Salanti 2012). In much of the literature on network meta-analysis, the term incon-
sistency has been used, rather than incoherence.
The amount of incoherence in a closed loop of evidence in a network graph can be

measured as the absolute difference between the direct and indirect summary esti-
mates for any of the pair-wise comparisons in the loop (Bucher et al 1997, Song
et al 2011, Veroniki et al 2013). We refer to this method of detecting incoherence as
the ‘loop-specific approach’. The obtained statistic is usually called an incoherence
factor or inconsistency factor (IF). For example, in the dietary advice network the inco-
herence factor would be estimated as:

IF = directMD BvsC − indirectMD BvsC

Table 11.4.b Ranking probabilities and mean ranks for intervention effectiveness in heavy menstrual
bleeding. Lower mean rank values indicate that the interventions are associated with less mortality

Rank Hysterectomy
Second generation non-
hysteroscopic techniques Mirena

First generation
hysteroscopic techniques

P
ro
ba

bi
lit
ie
s 1 96% 1% 4% 0%

2 4% 46% 40% 9%

3 0% 46% 19% 35%

4 0% 7% 37% 56%

Mean rank 1 3 3 4
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IF measures the level of disagreement between the direct and indirect effect estimates.
The standard error of the incoherence factor is obtained from

Variance IF = Variance directMD BvsC + Variance indirectMD BvsC

and can be used to construct a 95% confidence interval for the IF:

IF ± 1 96 × SE IF

Several approaches have been suggested for evaluating incoherence in a network of
interventions with many loops (Donegan et al 2013, Veroniki et al 2013), broadly cate-
gorized as local and global approaches. Local approaches evaluate regions of network
separately to detect possible ‘incoherence spots’, whereas global approaches evaluate
coherence in the entire network.

11.4.4.2 Approaches to evaluating local incoherence
A recommended local approach for investigating incoherence is SIDE (Separating Indi-
rect from Direct Evidence). This evaluates the IF for every pair-wise comparison in a
network by contrasting a direct estimate (when available) with an indirect estimate;
the latter being estimated from the entire network once the direct evidence has been
removed. The method was first introduced by Dias and colleagues (Dias et al 2010)
under the name ‘node-splitting’. The SIDE approach has been implemented in the net-
work macro for Stata (White 2015) and the netmeta command in R (Schwarzer et al
2015). For example, Table 11.4.c presents the incoherence results of a network that
compares the effectiveness of four active interventions and placebo in preventing seri-
ous vascular events after transient ischaemic attack or stroke (Thijs et al 2008). Data are
available for seven out of ten possible direct comparisons and none of them was found
to be statistically significant in terms of incoherence.
In the special case where direct and several independent indirect estimates are avail-

able, the ‘composite Chi2 statistic’ can be used instead (Caldwell et al 2010).

Table 11.4.c Results based on the SIDE approach to evaluating local incoherence. P values less than
0.05 suggest statistically significant incoherence

Direct Indirect Incoherence factor

Comparison Estimate
Standard
error Estimate

Standard
error Estimate

Standard
error P value

A versus C –0.15 0.05 –0.21 0.10 0.07 0.12 0.56

A versus D –0.45 0.07 –0.32 0.11 –0.14 0.13 0.28

A versus E –0.26 0.14 –0.23 0.07 –0.03 0.16 0.85

B versus C 0.18 0.11 0.13 0.08 0.05 0.14 0.70

B versus E 0.07 0.07 0.12 0.12 –0.05 0.14 0.70

C versus D –0.23 0.06 –0.35 0.12 0.12 0.13 0.38

C versus E –0.06 0.05 –0.11 0.10 0.05 0.11 0.66
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The loop-specific approach described in Section 11.4.4.1 can be extended to net-
works with many interventions by evaluating incoherence separately in each closed
loop of evidence. The approach can be performed using the ifplot macro available
for Stata (Chaimani and Salanti 2015). However, unlike the SIDE approach, this method
does not incorporate the information from the entire network when estimating the
indirect evidence.
Tests for incoherence have low power and therefore may fail to detect incoherence as

statistically significant even when it is present (Song et al 2012, Veroniki et al 2014). This
means that the absence of statistically significant incoherence is not evidence for the
absence of incoherence. Review authors should consider the confidence intervals for
incoherence factors and decide whether they include values that are sufficiently large
to suggest clinically important discrepancies between direct and indirect evidence.

11.4.4.3 Approaches to evaluating global incoherence
Global incoherence in a network can be evaluated anddetected via incoherencemodels.
These models differ from the coherencemodels described in Section 11.4.3.1 by relaxing
the coherence equations (see Section 11.2.3.2) and allowing intervention effects to vary
when estimated directly and indirectly (Lu and Ades 2006). The models add additional
terms, equivalent to the incoherence factors (IFs) defined in Section 11.4.4.1, to the coher-
ence equations. For example, in the dietary advice network the coherence equation given
in Section 11.2.3.2 would be modified to:

‘true’indirectMD BvsC = ‘true’directMD AvsC − ‘true’directMD AvsB + IFABC

The quantity IFABC measures incoherence in the evidence loop ‘dietitian-doctor-nurse’.
Obviously, complex networks will have several IFs. For a network to be coherent, all IF
need to be close to zero. This can be formally tested via a Chi2 statistic test which is
available in Stata in the network macro (White 2015). An extension of this model
has been suggested where incoherence measures the disagreement when an effect size
is measured in studies that involve different sets of interventions (termed ‘design inco-
herence’) (Higgins et al 2012).
Measures like the Q-test and the I2 statistic, which are commonly used for the eval-

uation of heterogeneity in a pair-wise meta-analysis (see Chapter 10, Section 10.10.2),
have been developed for the assessment of heterogeneity and incoherence in network
meta-analysis (Krahn et al 2013, Rücker and Schwarzer 2013, Jackson et al 2014). These
have been implemented in the package netmeta in R (Schwarzer et al 2015).

11.4.4.4 Forming conclusions about incoherence
We suggest review authors use both local and global approaches and consider their
results jointly tomake inferences about incoherence. The approaches presented in Sec-
tions 11.4.4.2 and 11.4.4.3 for evaluating incoherence have limitations. As for tests for
statistical heterogeneity in a standard pair-wise meta-analysis, tests for detecting inco-
herence often lack power to detect incoherence when it is present, as shown in simula-
tions and empirical studies (Song et al 2012, Veroniki et al 2014). Also, different
assumptions and different methods in the estimation of heterogeneity may have an
impact on the findings about incoherence (Veroniki et al 2013, Veroniki et al 2014).
Empirical evidence suggests that review authors sometimes assess the presence of
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incoherence, if at all, using inappropriate methods (Veroniki et al 2013, Nikolakopoulou
et al 2014, Petropoulou et al 2016).
Conclusions should bedrawnnot just fromconsideration of statistical significance but

by interpreting the range of values included in confidence intervals of the incoherence
factors. Researchers should remember that the absence of statistically significant inco-
herence does not ensure transitivity in the network, which should always be assessed by
examining effect modifiers before undertaking the analysis (see Section 11.2.2.2).
Once incoherence is detected, possible explanations should be sought. Errors in data

collection, broad eligibility criteria and imbalanced distributions of effect modifiers
may have introduced incoherence. Possible analytical strategies in the presence of
incoherence are available (Salanti 2012, Jansen and Naci 2013).

11.5 Evaluating confidence in the results of a network
meta-analysis

TheGRADEapproach is recommended foruse inCochraneReviews toassess theconfidence
of the evidence for each pair-wise comparison of interventions (see Chapter 14). The
approach starts by assuming high confidence in the evidence for randomized trials of a spe-
cificpair-wisecomparisonandthenratesdowntheevidenceforconsiderationsof five issues:
study limitations, indirectness, inconsistency, imprecision and publication bias.
Rating the confidence in the evidence from a network of interventions is more chal-

lenging than pair-wise meta-analysis (Dumville et al 2012). To date, two frameworks
have been suggested in the literature to extend the GRADE system to indirect compar-
isons and network meta-analyses: Salanti and colleagues (Salanti et al 2014) and
Puhan and colleagues (Puhan et al 2014). Section 11.5.1 describes the principles of each
approach, noting similarities and differences.

11.5.1 Available approaches for evaluating confidence in the evidence

The two available approaches to evaluating confidence in evidence from a network
meta-analysis acknowledge that the confidence in each combined comparison depends
on the confidence in the direct and indirect comparisons that contribute to it, and that
the confidence in each indirect comparison in turn depends on the confidence in the
pieces of direct evidence that contribute to it. Therefore, all GRADEassessments arebuilt
to someextent onapplyingGRADE ideas fordirect evidence. The twoapproachesdiverge
in the way they combine the considerations when thinking about an indirect or com-
bined comparison, as illustrated in Table 11.5.a using the dietary advice example.
The framework by Salanti and colleagues is driven by the ability to express each esti-

mated intervention effect from a network meta-analysis as a weighted sum of all the
available direct comparisons (see Section 11.4) (Lu et al 2011, König et al 2013, Krahn
et al 2013). The weight is determined, under some assumptions, by the contribution
matrix, which has been implemented in the netweight macro (Chaimani and Salanti
2015) available for the Stata statistical package and programmed in an online tool –
CINeMA – which assesses ‘Confidence in Network Meta-Analysis’ (http://cinema.ispm.
ch/). The matrix contains the percentage of information attributable to each direct
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Table 11.5.a Steps to obtain the overall confidence ratings (across all GRADE domains) for every combined comparison of the dietary advice example. A✓ or x
indicates whether a particular step is needed in order to proceed to the next step

Direct comparisons GRADE domains

Step 1 Step 2 Step 3

Domain-specific ratings
for direct comparisons

Overall rating across
domains for direct

comparisons
Domain-specific ratings

for combined comparisons

Overall rating across
domains for combined

comparisons

Salanti
et al

Puhan
et al

Salanti
et al

Puhan
et al

Salanti
et al

Puhan
et al

Salanti
et al

Puhan
et al

Dietitian versus
nurse

Study
limitations

✓ ✓ x ✓ ✓ x ✓ ✓

Indirectness ✓ ✓ ✓ x

Inconsistency ✓ ✓ ✓ x

Imprecision - - ✓ x

Publication bias ✓ ✓ ✓ x

Dietitian versus
doctor

Study
limitations

✓ ✓ x ✓ ✓ x ✓ ✓

Indirectness ✓ ✓ ✓ x

Inconsistency ✓ ✓ ✓ x

Imprecision - - ✓ x

Publication bias ✓ ✓ ✓ x

Nurse versus doctor Study
limitations

✓ ✓ x ✓ ✓ x ✓ ✓

Indirectness ✓ ✓ ✓ x

Inconsistency ✓ ✓ ✓ x

Imprecision - - ✓ x

Publication bias ✓ ✓ ✓ x
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comparison estimate and can be interpreted as the contributions of the direct com-
parison estimates. Then, the confidence in an indirect or combined comparison is esti-
mated by combining the confidence assessment for the available direct comparison
estimates with their contribution to the combined (or network) comparison. This
approach is similar to the process of evaluating the likely impact of a high risk-of-bias
study by looking at its weight in a pair-wise meta-analysis to decide whether to down-
grade or not in a standard GRADE assessment.
As an example, in the dietary advice network (Figure 11.2.a) suppose that most of the

evidence involved in the indirect comparison (i.e. the trials including dietitians) is at low
risk of bias, and that there are studies of ‘doctor versus nurse’ that aremostly at high risk
of bias. If the direct evidence on ‘doctor versus nurse’has a very large contribution to the
network meta-analysis estimate of the same comparison, then we would judge this
result tobeathigh riskofbias. If thedirect evidencehasavery lowcontribution,wemight
judge the result to be at moderate, or possibly low, risk of bias. This approach might be
preferablewhen there are indirect ormixed comparisons informedbymany loopswithin
anetwork, and for a specific comparison these loops lead todifferent risk-of-bias assess-
ments. The contributions of the direct comparisons and the risk-of-bias assessments
may be presented jointly in a bar graph, with bars proportional to the contributions
of direct comparisons and different colours representing the different judgements.
The bar graph for the heavy menstrual bleeding example is available in Figure 11.5.a,

0 20 40 60

Percentage contribution of direct comparisons

R
o

B
 o

f 
n

e
tw

o
rk

 e
s
ti
m

a
te

s

RoB of direct estimates

CvsD

BvsD

BvsC

CvsD

AvsD

AvsC

AvsB

80 100

AvsC AvsB AvsD

Figure 11.5.a Bar graph illustrating the percentage of information for every comparison that comes
from low (dark grey), moderate (light grey) or high (blue) risk-of-bias (RoB) studies with respect to both
randomization and compliance to treatment for the heavy menstrual bleeding network (Middleton
et al 2010). The risk of bias of the direct comparisons was defined based on Appendix 3 of the original
paper. The intervention labels are: A, first generation hysteroscopic techniques; B, hysterectomy; C,
second generation non-hysteroscopic techniques; D, Mirena. Reproduced with permission of BMJ
Publishing Group
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which suggests that there are two comparisons (‘First generation hysteroscopic techni-
ques versus Mirena’ and ‘Second generation non-hysteroscopic techniques versus Mir-
ena’) for which a substantial amount of information comes from studies at high risk
of bias.
Regardless of whether a review contains a network meta-analysis or a simple indirect

comparison, Puhan and colleagues propose to focus on so-called ‘most influential’
loops only. These are the connections between a pair of interventions of interest that
involve exactly one common comparator. This implies that the assessment for the
indirect comparison is dependent only on confidence in the two other direct compar-
isons in this loop. To illustrate, consider the dietary advice network described in
Section 11.2 (Figure 11.2.a), where we are interested in confidence in the evidence
for the indirect comparison ‘doctor versus nurse’. According to Puhan and colleagues,
the lower confidence rating between the two direct comparisons ‘dietitian versus doc-
tor’ and ‘dietitian versus nurse’would be chosen to inform the confidence rating for the
indirect comparison. If there are also studies directly comparing doctor versus nurse,
the confidence in the combined comparison would be the higher rated source between
the direct evidence and the indirect evidence. The main rationale for this is that, in gen-
eral, the higher rated comparison is expected to be the more precise (and thus the
dominating) body of evidence. Also, in the absence of important incoherence, the lower
rated evidence is only supportive of the higher rated evidence; thus it is not very likely
to reduce the confidence in the estimated intervention effects. One disadvantage of this
approach is that investigators need to identify the most influential loop; this loopmight
be relatively uninfluential when there are many loops in a network, which is often the
case when there are many interventions. In large networks, many loops with compa-
rable influence may exist and it is not clear howmany of those equally influential loops
should be considered under this approach.
At the time of writing, no formal comparison has been performed to evaluate the

degree of agreement between these two methods. Thus, at this point we do not pre-
scribe using one approach or the other. However, when indirect comparisons are built
on existing pair-wise meta-analyses, which have already been rated with respect to
their confidence, it may be reasonable to follow the approach of Puhan and colleagues.
On the other hand, when the body of evidence is built from scratch, or when a large
number of interventions are involved, it may be preferable to consider the approach
of Salanti and colleagues whose application is facilitated via the online tool CINeMA.
Since network meta-analysis produces estimates for several intervention effects, the

confidence in the evidence should be assessed for each intervention effect that is
reported in the results. In addition, network meta-analysis may also provide informa-
tion on the relative ranking of interventions, and review authors should consider also
assessing confidence in results for relative ranking when these are reported. Salanti
and colleagues address confidence in the ranking based on the contributions of the
direct comparisons to the entire network as well as on the use of measures and graphs
that aim to assess the different GRADE domains in the network as a whole (e.g. mea-
sures of global incoherence) (see Section 11.4.4).
The two approaches modify the standard GRADE domains to fit network meta-

analysis to varying degrees. These modifications are briefly described in Box 11.5.a;
more details and examples are available in the original articles (Puhan et al 2014,
Salanti et al 2014).
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Box 11.5.a Modifications to the five domains of the standard GRADE system to fit
network meta-analysis.

Study limitations (i.e. classical risk-of-bias items) Salanti and colleagues suggest a bar
graph with bars proportional to the contributions of direct comparisons and different
colours representing the different confidence ratings (e.g. green, yellow, red for low,
moderate or high risk of bias) with respect to study limitations (Figure 11.5.a). The deci-
sion about downgrading or not is then formed by interpreting this graph. Such a graph
can be used to rate the confidence of evidence for each combined comparison and for
the relative ranking.

Indirectness The assessment of indirectness in the context of network meta-analysis
should consider two components: the similarity of the studies in the analysis to the tar-
get question (PICO); and the similarity of the studies in the analysis to each other. The
first addresses the extent to which the evidence at hand relates to the population,
intervention(s), comparators and outcomes of interest, and the second relates to the
evaluation of the transitivity assumption. A common view of the two approaches is that
they do not support the idea of downgrading indirect evidence by default. They suggest
that indirectness should be considered in conjunction with the risk of intransitivity.

Inconsistency Salanti and colleagues propose to create a common domain to consider
jointly both typesof inconsistency thatmayoccur: heterogeneitywithindirect comparisons
and incoherence. More specifically, they evaluate separately the presence of the two types
of variation and then consider them jointly to infer whether downgrading for inconsistency
is appropriate or not. It is usual in network meta-analysis to assume a common heteroge-
neity variance. They propose the use of prediction intervals to facilitate the assessment of
heterogeneity for each combined comparison. Prediction intervals are the intervals
expected to include the true intervention effects in future studies (Higgins et al 2009, Riley
et al 2011) and they incorporate the extent of between-study variation; in the presence of
important heterogeneity theyarewideenough to include interventioneffectswithdifferent
implications for practice. The potential for incoherence for a particular comparison can be
assessed using existing approaches for evaluating local and global incoherence (see
Section11.5).Wemaydowngrade for oneor two levelsdue to thepresenceofheterogeneity
or incoherence,orboth.The judgement for the relativeranking isbasedonthemagnitudeof
the commonheterogeneity aswell as the use of global incoherence tests (see Section 11.4).

Imprecision Both approaches suggest that imprecision of the combined comparisons
can be judged based on their 95% confidence intervals. Imprecision for relative treat-
ment ranking is the variability in the relative order of the interventions. This is reflected
by the overlap in the distributions of the ranking probabilities; i.e. when all or some of
the interventions have similar probabilities of being at a particular rank.

Publication bias The potential for publication bias in a network meta-analysis can be
difficult to judge. If a natural common comparator exists, a ‘comparison-adjusted funnel
plot’ can be employed to identify possible small-study effects in a network meta-analysis
(Chaimani and Salanti 2012, Chaimani et al 2013). This is amodified funnel plot that allows
putting together all the studies of the network irrespective of the interventions they com-
pare. However, the primary considerations for both the combined comparisons and rel-
ative ranking should be non-statistical. Review authors should consider whether there
might be unpublished studies for every possible pair-wise comparison in the network.
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11.6 Presenting network meta-analyses

The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating
Network Meta-analyses of Health Care Interventions should be considered when
reporting the results from network meta-analysis (Hutton et al 2015). Key graphical
and numerical summaries include the network plot (e.g. Figure 11.4.a), a league table
of the relative effects between all treatments with associated uncertainty (e.g.
Table 11.4.a) and measures of heterogeneity and incoherence.

11.6.1 Presenting the evidence base of a network meta-analysis

Network diagrams provide a convenient way to describe the structure of the network
(see Section 11.1.1). They may bemodified to incorporate information on study-level or
comparison-level characteristics. For instance, the thickness of the lines might reflect
the number of studies or patients included in each direct comparison (e.g. Figure 11.4.a),
or the comparison-specific average of a potential effect modifier. Using the latter device,
network diagrams can be considered as a first step for the evaluation of transitivity in a
network. In the example of Figure 11.6.a the age of the participants has been considered
as a potential effectmodifier. The thickness of the line implies that the average agewithin
comparisons A versus D and C versus D seems quite different to the other three direct
comparisons.
The inclusion of studies with design limitations in a network (e.g. lack of blinding,

inadequate allocation sequence concealment) often threatens the validity of findings.
The use of coloured lines in a network of interventions can reveal the presence of such
studies in specific direct comparisons. Further discussion on issues related to confi-
dence in the evidence is available in Section 11.5.

11.6.2 Tabular presentation of the network structure

For networks including many competing interventions and multiple different study
designs, network diagrams might not be the most appropriate tool for presenting
the data. An alternative way to present the structure of the network is to use a table,
in which the columns represent the competing interventions and the rows represent
the different study designs in terms of interventions being compared (Table 11.6.a)

BD

A

C

Figure 11.6.a Example of network diagram with lines weighted
according to the average age within each pair-wise comparison.
Thicker lines correspond to greater average age within the respective
comparison
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Table 11.6.a Example of table presenting a network that compares seven interventions and placebo for controlling exacerbation of episodes in chronic
obstructive pulmonary disease (Baker et al 2009). Reproduced with permission of John Wiley & Sons

Number of studies Placebo Fluticasone Budesonide Salmeterol Formoterol Tiotropium Fluticasone + salmeterol Budesonide + formoterol

4 x x x x

4 x x

2 x x x x

2 x x x

2 x x x

8 x x

2 x x

10 x x

1 x x

1 x x

1 x x

1 x x

1 x x
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(Lu and Ades 2006). Additional information, such as the number of participants in each
arm, may be presented in the non-empty cells.

11.6.3 Presenting the flow of evidence in a network

Another way tomap the evidence in a network of interventions is to consider howmuch
each of the included direct comparisons contributes to the final combined effect
estimates. The percentage information that direct evidence contributes to each relative
effect estimated in a network meta-analysis can be presented in the contribution
matrix (see Section 11.4), and could help investigators understand the flow of informa-
tion in the network (Chaimani et al 2013, Chaimani and Salanti 2015).
Figure 11.6.b presents the contributionmatrix for the example of the network of inter-

ventions for heavy menstrual bleeding (obtained from the netweight macro in Stata).
The indirect treatment effect for second generation non-hysteroscopic techniques
versus hysterectomy (B versus C) can be estimated using information from the four
direct relative treatment effects; these contribute information in different proportions
depending on the precision of the direct treatment effects and the structure of the
network. Evidence from the direct comparison of first generation hysteroscopic

Direct comparisons in the network
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Included studies

Indirect estimates

Mixed estimates
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Figure 11.6.b Contribution matrix for the network on interventions for heavy menstrual bleeding
presented in Figure 11.4.a. Four direct comparisons in the network are presented in the columns, and
their contributions to the combined treatment effect are presented in the rows. The entries of the
matrix are the percentage weights attributed to each direct comparison. The intervention labels are: A,
first generation hysteroscopic techniques; B, hysterectomy; C, second generation non-hysteroscopic
techniques; D, Mirena
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techniques versus hysterectomy (A versus B) has the largest contribution to the indirect
comparisons hysterectomy versus second generation non-hysteroscopic techniques
(B versus C) (49.6%) and hysterectomy versus Mirena (B versus D) (38.5%), for both
of which no direct evidence exists.

11.6.4 Presentation of results

Unlike pair-wise meta-analysis, the results from network meta-analysis cannot be eas-
ily summarized in a single figure such as a standard forest plot. Especially for networks
with many competing interventions that involve many comparisons, presentation of
findings in a concise and comprehensible way is challenging.
Summary statistics of the intervention effects for all pairs of interventions are the

most important output from network meta-analysis. Results from a subset of compar-
isons are sometimes presented due to space limitations and the choice of the findings
to be reported is based on the research question and the target audience (Tan et al
2013). In such cases, the use of additional figures and tables to present all results in
detail is necessary. Additionally, review authors might wish to report the relative rank-
ing of interventions (see Section 11.4.3.3) as a supplementary output, which provides a
concise summary of the findings andmight facilitate decision making. For this purpose,
joint presentation of both relative effects and relative ranking is recommended (see
Figure 11.6.c or Table 11.4.a of Section 11.4.3.1).

Comparison

FGHTvsHysterectomy

SGNHTvsFGHT

vsSGNHT

Heterogeneity variance = 0 0.2 0.5

Favours first intervention Favours second intervention

2.5 5.51

SGNHT

Mirena

Mirena

Mirena

0.38 (0.23 to 0.65)

1.17 (0.87 to 1.59)

0.45 (0.25 to 0.82)

0.43 (0.18 to 1.06)

1.13 (0.54 to 2.35)

0.96 (0.48 to 1.91)

OR (95%Cl)

Figure 11.6.c Forestplot for effectiveness inheavymenstrual bleedingbetween four interventions. FGHT,
first generation hysteroscopic techniques; SGNHT, second generation non-hysteroscopic techniques
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In the presence of many competing interventions, the results across different out-
comes (e.g. efficacy and acceptability) might conflict with respect to which interven-
tions work best. To avoid drawing misleading conclusions, review authors may
consider the simultaneous presentation of results for outcomes in these two
categories.
Interpretation of the findings from network meta-analysis should always be consid-

ered with the evidence characteristics: risk of bias in included studies, heterogeneity,
incoherence and selection bias. Reporting results with respect to the evaluation of inco-
herence and heterogeneity (such as I2 statistic for incoherence) is important for draw-
ing meaningful conclusions.

11.6.4.1 Presentation of intervention effects and ranking
A table presenting direct, indirect and network summary relative effects along with
their confidence ratings is a helpful format (Puhan et al 2014). In addition, various
graphical tools have been suggested for the presentation of results from network
meta-analyses (Salanti et al 2011, Chaimani et al 2013, Tan et al 2014). Summary rel-
ative effects for pair-wise comparisons with their confidence intervals can be presented
in a forest plot. For example, Figure 11.6.c shows the summary relative effects for each
intervention versus a common reference intervention for the ‘heavy menstrual bleed-
ing’ network.
Ranking probabilities for all possible ranks may be presented by drawing probability

lines, which are known as rankograms, and show the distribution of ranking probabil-
ities for each intervention (Salanti et al 2011). The rankograms for the heavy menstrual
bleeding network example are shown in Figure 11.6.d. The graph suggests that ‘Hyster-
ectomy’ has the highest probability of being the best intervention, ‘First generation hys-
teroscopic techniques’ have the highest probability of being worst followed by ‘Mirena’
and ‘Second generation non-hysteroscopic techniques’ have equal chances of being
second or third.
The relative ranking for two (competing) outcomes can be presented jointly in a two-

dimensional scatterplot (Chaimani et al 2013). An extended discussion on different
ways to present jointly relative effects and relative ranking from network meta-analysis
is available in Tan and colleagues (Tan et al 2013).

11.6.4.2 Presentation of heterogeneity and incoherence
The level of heterogeneity in a network of interventions can be expressed via the mag-
nitude of the between-study variance Tau2, typically assumed to be common in all
comparisons in the network. A judgement on whether the estimated Tau2 suggests
the presence of important heterogeneity depends on the clinical outcome and the type
of interventions being compared. More extended discussion on the expected values of
Tau2 specific to a certain clinical setting is available (Turner et al 2012, Nikolakopoulou
et al 2014).
Forest plots that present all the estimated incoherence factors in the network and

their uncertainty may be employed for the presentation of local incoherence
(Salanti et al 2009, Chaimani et al 2013). The results from evaluating global incoherence
can be summarized in the P value of the Chi2 statistic incoherence test and the I2 sta-
tistic for incoherence (see Chapter 10, Section 10.10.2).
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Figure 11.6.d Ranking probabilities (rankograms) for the effectiveness of interventions in heavy menstrual bleeding. The horizontal axis shows the possible
ranks and the vertical axis the ranking probabilities. Each line connects the estimated probabilities of being at a particular rank for every intervention

11 Undertaking network meta-analyses

314



11.6.4.3 ‘Summary of findings’ tables
The purpose of ‘Summary of findings’ tables in Cochrane Reviews is to provide con-
cisely the key information in terms of available data, confidence in the evidence and
intervention effects (see Chapter 14). Providing such a table is more challenging in
reviews that compare multiple interventions simultaneously, which very often involve
a large number of comparisons between pairs of interventions. A general principle is
that the comparison of multiple interventions is the main feature of a network
meta-analysis, so is likely to drive the structure of the ‘Summary of findings’ table. This
is in contrast to the ‘Summary of findings’ table for a pair-wise comparison, whosemain
strength is to facilitate comparison of effects on different outcomes. Nevertheless, it
remains important to be able to compare network meta-analysis results across differ-
ent outcomes. This provides presentational challenges that are almost impossible to
resolve in two dimensions. One potential solution is an interactive electronic display
such that the user can choose whether to emphasize the comparisons across interven-
tions or the comparisons across outcomes.
For small networks of interventions (perhaps including up to five competing interven-

tions) a separate ‘Summary of findings’ table might be produced for each main out-
come. However, in the presence of many (more than five) competing interventions,
researchers would typically need to select and report a reduced number of pair-wise
comparisons. Review authors should provide a clear rationale for the choice of the
comparisons they report in the ‘Summary of findings’ tables. For example, they may
consider including only pair-wise comparisons that correspond to the decision set of
interventions; that is, the group of interventions of direct interest for drawing conclu-
sions (see Section 11.3.2.1). The distinction between the decision set and the wider syn-
thesis comparator set (all interventions included in the analysis) should be made in the
protocol of the review. If the decision set is still too large, researchers may be able to
select the comparisons for the ‘Summary of findings’ table based on the most impor-
tant information for clinical practice. For example, reporting the comparisons between
the three or four most effective interventions with the most commonly used interven-
tion as a comparator.

11.7 Concluding remarks

Network meta-analysis is a method that can inform comparative effectiveness of multi-
ple interventions, but care needs to be taken using this method because it is more sta-
tistically complex than a standard meta-analysis. In addition, as network meta-analyses
generally ask broader research questions, they usually involve more studies at each step
of systematic review, from screening to analysis, than standardmeta-analysis. It is there-
fore important to anticipate the expertise, time and resource required before embarking
on one.
A valid indirect comparison and network meta-analysis requires a coherent evidence

base. When formulating the research question and deciding the eligibility criteria,
populations and interventions in relation to the assumption of transitivity need to
be considered. Network meta-analysis is only valid when studies comparing different
sets of interventions are similar enough to be combined. When conducted properly, it
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provides more precise estimates of relative effect than a single direct or indirect esti-
mate. Network meta-analysis can yield estimates between any pairs of interventions,
including those that have never been compared directly against each other. Network
meta-analysis also allows the estimation of the ranking and hierarchy of interventions.
Much care should be taken when interpreting the results and drawing conclusions from
network meta-analysis, especially in the presence of incoherence or other potential
biases.
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12

Synthesizing and presenting findings using
other methods
Joanne E McKenzie, Sue E Brennan

KEY POINTS

• Meta-analysis of effect estimates has many advantages, but other synthesis methods
may need to be considered in the circumstance where there is incompletely reported
data in the primary studies.

• Alternative synthesis methods differ in the completeness of the data they require, the
hypotheses they address, and the conclusions and recommendations that can be
drawn from their findings.

• These methods provide more limited information for healthcare decision making than
meta-analysis, but may be superior to a narrative description where some results are
privileged above others without appropriate justification.

• Tabulation and visual display of the results should always be presented alongside any
synthesis, and are especially important for transparent reporting in reviews without
meta-analysis.

• Alternative synthesis and visual display methods should be planned and specified in the
protocol. Whenwriting the review, details of the synthesismethods should be described.

• Synthesis methods that involve vote counting based on statistical significance have
serious limitations and are unacceptable.

12.1 Why a meta-analysis of effect estimates may
not be possible

Meta-analysis of effect estimates has many potential advantages (see Chapters 10
and 11). However, there are circumstances where it may not be possible to undertake
a meta-analysis and other statistical synthesis methods may be considered (McKenzie
and Brennan 2014).
Some common reasons why it may not be possible to undertake a meta-analysis are

outlined in Table 12.1.a. Legitimate reasons include limited evidence; incompletely

This chapter should be cited as: McKenzie JE, Brennan SE. Chapter 12: Synthesizing and presenting findings
using other methods. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors).
Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): JohnWiley & Sons,
2019: 321–348.
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Table 12.1.a Scenarios that may preclude meta-analysis, with possible solutions

Scenario Description Examples of possible solutions*

Limited evidence for
a pre-specified
comparison

Meta-analysis is not possible with no studies, or only one study. This
circumstance may reflect the infancy of research in a particular
area, or that the specified PICO for the synthesis aims to address a
narrow question.

Build contingencies into the analysis plan to group one or
more of the PICO elements at a broader level (Chapter 2,
Section 2.5.3).

Incompletely
reported outcome or
effect estimate

Within a study, the intervention effects may be incompletely
reported (e.g. effect estimate with no measure of precision;
direction of effect with P value or statement of statistical
significance; only the direction of effect).

Calculate the effect estimate and measure of precision from
the available statistics if possible (Chapter 6).

Impute missing statistics (e.g. standard deviations) where
possible (Chapter 6, Section 6.4.2).

Use other synthesis method(s) (Section 12.2), along with
methods to display and present available effects visually
(Section 12.3).

Different effect
measures

Across studies, the same outcome could be treated differently (e.g.
a time-to-event outcome has been dichotomized in some studies)
or analysed using different methods. Both scenarios could lead to
different effect measures (e.g. hazard ratios and odds ratios).

Calculate the effect estimate andmeasure of precision for the
same effect measure from the available statistics if possible
(Chapter 6).

Transform effect measures (e.g. convert standardized mean
difference to an odds ratio) where possible (Chapter 10,
Section 10.6).

Use other synthesis method(s) (Section 12.2), along with
methods to display and present available effects visually
(Section 12.3).

Bias in the evidence Concerns about missing studies, missing outcomes within the
studies (Chapter 13), or bias in the studies (Chapters 8 and 25), are
legitimate reasons for not undertaking a meta-analysis. These
concerns similarly apply to other synthesis methods (Section 12.2).

When there are major concerns about bias in the evidence, use
structured reporting of the available effects using tables and
visual displays (Section 12.3).

Incompletely reported outcomes/effects may bias meta-analyses,
but not necessarily other synthesis methods.

For incompletely reported outcomes/effects, also consider
other synthesis methods in addition to meta-analysis (Section
12.2).

12 Synthesizing and presenting findings using other methods

322



Clinical and
methodological
diversity

Concerns about diversity in the populations, interventions,
outcomes, study designs, are often cited reasons for not using
meta-analysis (Ioannidis et al 2008). Arguments against using meta-
analysis because of too much diversity equally apply to the other
synthesis methods (Valentine et al 2010).

Modify planned comparisons, providing rationale for
post-hoc changes (Chapter 9).

Statistical
heterogeneity

Statistical heterogeneity is an often cited reason for not reporting
the meta-analysis result (Ioannidis et al 2008). Presentation of an
average combined effect in this circumstance can be misleading,
particularly if the estimated effects across the studies are both
harmful and beneficial.

Attempt to reduce heterogeneity (e.g. checking the data,
correcting an inappropriate choice of effect measure)
(Chapter 10, Section 10.10).

Attempt to explain heterogeneity (e.g. using subgroup
analysis) (Chapter 10, Section 10.11).

Consider (if possible) presenting a prediction interval, which
provides a predicted range for the true intervention effect in an
individual study (Riley et al 2011), thus clearly demonstrating
the uncertainty in the intervention effects.

∗ Italicized text indicates possible solutions discussed in this chapter.
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reported outcome/effect estimates, or different effect measures used across studies;
and bias in the evidence. Other commonly cited reasons for not using meta-analysis
are because of too much clinical or methodological diversity, or statistical heterogeneity
(Achana et al 2014). However, meta-analysis methods should be considered in these
circumstances, as they may provide important insights if undertaken and interpreted
appropriately.

12.2 Statistical synthesis when meta-analysis of effect
estimates is not possible

A range of statistical synthesis methods are available, and these may be divided into
three categories based on their preferability (Table 12.2.a). Preferable methods are
the meta-analysis methods outlined in Chapters 10 and 11, and are not discussed
in detail here. This chapter focuses on methods that might be considered when a
meta-analysis of effect estimates is not possible due to incompletely reported data
in the primary studies. These methods divide into those that are ‘acceptable’ and
‘unacceptable’. The ‘acceptable’ methods differ in the data they require, the hypoth-
eses they address, limitations around their use, and the conclusions and recommen-
dations that can be drawn (see Section 12.2.1). The ‘unacceptable’ methods in
common use are described (see Section 12.2.2), along with the reasons for why they
are problematic.
Compared with meta-analysis methods, the ‘acceptable’ synthesis methods provide

more limited information for healthcare decision making. However, these ‘acceptable’
methods may be superior to a narrative that describes results study by study, which
comes with the risk that some studies or findings are privileged above others without
appropriate justification. Further, in reviews with little or no synthesis, readers are left
to make sense of the research themselves, which may result in the use of seemingly
simple yet problematic synthesis methods such as vote counting based on statistical
significance (see Section 12.2.2.1).
All methods first involve calculation of a ‘standardized metric’, followed by applica-

tion of a synthesis method. In applying any of the following synthesis methods, it is
important that only one outcome per study (or other independent unit, for example
one comparison from a trial with multiple intervention groups) contributes to the syn-
thesis. Chapter 9 outlines approaches for selecting an outcome when multiple have
been measured. Similar to meta-analysis, sensitivity analyses can be undertaken to
examine if the findings of the synthesis are robust to potentially influential decisions
(see Chapter 10, Section 10.14 and Section 12.4 for examples).
Authors should report the specific methods used in lieu of meta-analysis (including

approaches used for presentation and visual display), rather than stating that they
have conducted a ‘narrative synthesis’ or ‘narrative summary’ without elaboration.
The limitations of the chosen methods must be described, and conclusions worded
with appropriate caution. The aim of reporting this detail is to make the synthesis proc-
ess more transparent and reproducible, and help ensure use of appropriate methods
and interpretation.
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Table 12.2.a Summary of preferable and acceptable synthesis methods

Minimum data
required

Synthesis method
Question
answered E

st
im
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o
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e
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ct
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e
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e
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e
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P
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Purpose Limitations

Preferable

Meta-analysis of
effect estimates
and extensions
(Chapters 10
and 11)

What is the
common
intervention
effect?

What is the
average
intervention
effect?

Which
intervention, of
multiple, is most
effective?

What factors
modify the
magnitude of the
intervention
effects?

✓ ✓ Can be used to synthesize results when
effect estimates and their variances are
reported (or can be calculated).

Provides a combined estimate of average
intervention effect (random effects), and
precision of this estimate (95% CI).

Can be used to synthesize evidence from
multiple interventions, with the ability to
rank them (network meta-analysis).

Can be used to detect, quantify and
investigate heterogeneity (meta-regression/
subgroup analysis).

Associated plots: forest plot, funnel plot,
network diagram, rankogram plot

Requires effect estimates and their
variances.

Extensions (network meta-analysis, meta-
regression/subgroup analysis) require a
reasonably large number of studies.

Meta-regression/subgroup analysis involves
observational comparisons and requires
careful interpretation. High risk of false
positive conclusions for sources of
heterogeneity.

Network meta-analysis is more complicated
to undertake and requires careful
assessment of the assumptions.

Acceptable

Summarizing
effect estimates

What is the range
and distribution
of observed
effects?

✓ Can be used to synthesize results when it is
difficult to undertake a meta-analysis (e.g.
missing variances of effects, unit of analysis
errors).

Does not account for differences in the
relative sizes of the studies.

Performance of these statistics applied in
the context of summarizing effect estimates
has not been evaluated.

(Continued)
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Table 12.2.a (Continued)

Minimum data
required

Synthesis method
Question
answered E

st
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fe
ct

P
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P
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Purpose Limitations

Provides information on the magnitude and
range of effects (median, interquartile range,
range).

Associated plots: box-and-whisker plot,
bubble plot

Combining
P values

Is there evidence
that there is an
effect in at least
one study?

✓ ✓ Can be used to synthesize results when
studies report:

• no, or minimal, information beyond
P values and direction of effect;

• results of non-parametric analyses;

• results of different types of outcomes
and statistical tests;

• outcomes are different across studies
(e.g. different serious side effects).

Associated plot: albatross plot

Provides no information on the magnitude
of effects.

Does not distinguish between evidence from
large studies with small effects and small
studies with large effects.

Difficult to interpret the test results when
statistically significant, since the null
hypothesis can be rejected on the basis of an
effect in only one study (Jones 1995).

When combining P values from few, small
studies, failure to reject the null hypotheses
should not be interpreted as evidence of no
effect in all studies.

Vote counting
based on direction
of effect

Is there any
evidence of an
effect?

✓ Can be used to synthesize results when only
direction of effect is reported, or there is
inconsistency in the effect measures or data
reported across studies.

Associated plots: harvest plot, effect
direction plot

Provides no information on the magnitude
of effects (Borenstein et al 2009).

Does not account for differences in the
relative sizes of the studies (Borenstein et al
2009).

Less powerful than methods used to
combine P values.
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12.2.1 Acceptable synthesis methods

12.2.1.1 Summarizing effect estimates
Description ofmethod Summarizing effect estimatesmight be considered in the circum-
stance where estimates of intervention effect are available (or can be calculated), but
the variances of the effects are not reported or are incorrect (and cannot be calculated
from other statistics, or reasonably imputed) (Grimshaw et al 2003). Incorrect calcula-
tion of variances arises more commonly in non-standard study designs that involve
clustering or matching (Chapter 23). While missing variances may limit the possibility
of meta-analysis, the (standardized) effects can be summarized using descriptive sta-
tistics such as the median, interquartile range, and the range. Calculating these statis-
tics addresses the question ‘What is the range and distribution of observed effects?’

Reporting ofmethods and results The statistics that will be used to summarize the effects
(e.g. median, interquartile range) should be reported. Box-and-whisker or bubble plots
will complement reporting of the summary statistics by providing a visual display of the
distribution of observed effects (Section 12.3.3). Tabulation of the available effect esti-
mates will provide transparency for readers by linking the effects to the studies
(Section 12.3.1). Limitations of the method should be acknowledged (Table 12.2.a).

12.2.1.2 Combining P values
Description of method Combining P values can be considered in the circumstance
where there is no, or minimal, information reported beyond P values and the direction
of effect; the types of outcomes and statistical tests differ across the studies; or results
from non-parametric tests are reported (Borenstein et al 2009). Combining P values
addresses the question ‘Is there evidence that there is an effect in at least one study?’
There are several methods available (Loughin 2004), with the method proposed by
Fisher outlined here (Becker 1994).
Fisher’s method combines the P values from statistical tests across k studies using

the formula:

Chi2 = −2
k

i = 1

ln Pi

One-sided P values are used, since these contain information about the direction of
effect. However, these P values must reflect the same directional hypothesis (e.g. all test-
ing if intervention A is more effective than intervention B). This is analogous to standar-
dizing the direction of effects before undertaking a meta-analysis. Two-sided P values,
which do not contain information about the direction, must first be converted to one-
sided P values. If the effect is consistent with the directional hypothesis (e.g. intervention
A is beneficial compared with B), then the one-sided P value is calculated as

P1-sided =
P2-sided

2
;

otherwise,

P1-sided = 1−
P2-sided

2
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In studies that do not report an exact P value but report a conventional level of signif-
icance (e.g. P < 0.05), a conservative option is to use the threshold (e.g. 0.05). The
P values must have been computed from statistical tests that appropriately account
for the features of the design, such as clustering or matching, otherwise they will likely
be incorrect.
The Chi2 statistic will follow a chi-squared distribution with 2k degrees of freedom if

there is no effect in every study. A large Chi2 statistic compared to the degrees of free-
dom (with a corresponding low P value) provides evidence of an effect in at least one
study (see Section 12.4.2.2 for guidance on implementing Fisher’s method for combin-
ing P values).

Reporting of methods and results There are several methods for combining P values
(Loughin 2004), so the chosen method should be reported, along with details of sen-
sitivity analyses that examine if the results are sensitive to the choice of method. The
results from the test should be reported alongside any available effect estimates (either
individual results or meta-analysis results of a subset of studies) using text, tabulation
and appropriate visual displays (Section 12.3). The albatross plot is likely to comple-
ment the analysis (Section 12.3.4). Limitations of the method should be acknowledged
(Table 12.2.a).

12.2.1.3 Vote counting based on the direction of effect
Description of method Vote counting based on the direction of effect might be consid-
ered in the circumstance where the direction of effect is reported (with no further infor-
mation), or there is no consistent effect measure or data reported across studies. The
essence of vote counting is to compare the number of effects showing benefit to the
number of effects showing harm for a particular outcome. However, there is wide var-
iation in the implementation of the method due to differences in how ‘benefit’ and
‘harm’ are defined. Rules based on subjective decisions or statistical significance are
problematic and should be avoided (see Section 12.2.2).
To undertake vote counting properly, each effect estimate is first categorized as

showing benefit or harm based on the observed direction of effect alone, thereby creat-
ing a standardized binary metric. A count of the number of effects showing benefit is
then compared with the number showing harm. Neither statistical significance nor the
size of the effect are considered in the categorization. A sign test can be used to answer
the question ‘is there any evidence of an effect?’ If there is no effect, the study effects
will be distributed evenly around the null hypothesis of no difference. This is equivalent
to testing if the true proportion of effects favouring the intervention (or comparator) is
equal to 0.5 (Bushman and Wang 2009) (see Section 12.4.2.3 for guidance on imple-
menting the sign test). An estimate of the proportion of effects favouring the interven-
tion can be calculated (p = u/n, where u = number of effects favouring the intervention,
and n = number of studies) along with a confidence interval (e.g. using the Wilson or
Jeffreys interval methods (Brown et al 2001)). Unless there are many studies contribut-
ing effects to the analysis, there will be large uncertainty in this estimated proportion.

Reporting of methods and results The vote counting method should be reported in the
‘Data synthesis’ section of the review. Failure to recognize vote counting as a synthesis
method has led to it being applied informally (and perhaps unintentionally) to
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summarize results (e.g. through the use of wording such as ‘3 of 10 studies showed
improvement in the outcome with intervention compared to control’; ‘most studies
found’; ‘the majority of studies’; ‘few studies’ etc). In such instances, the method is
rarely reported, and it may not be possible to determine whether an unacceptable
(invalid) rule has been used to define benefit and harm (Section 12.2.2). The results
from vote counting should be reported alongside any available effect estimates (either
individual results or meta-analysis results of a subset of studies) using text, tabulation
and appropriate visual displays (Section 12.3). The number of studies contributing to a
synthesis based on vote counting may be larger than a meta-analysis, because
only minimal statistical information (i.e. direction of effect) is required from each
study to vote count. Vote counting results are used to derive the harvest and effect
direction plots, although often using unacceptable methods of vote counting (see
Section 12.3.5). Limitations of the method should be acknowledged (Table 12.2.a).

12.2.2 Unacceptable synthesis methods

12.2.2.1 Vote counting based on statistical significance
Conventional forms of vote counting use rules based on statistical significance and
direction to categorize effects. For example, effects may be categorized into three
groups: those that favour the intervention and are statistically significant (based on
some predefined P value), those that favour the comparator and are statistically sig-
nificant, and those that are statistically non-significant (Hedges and Vevea 1998). In
a simpler formulation, effects may be categorized into two groups: those that favour
the intervention and are statistically significant, and all others (Friedman 2001).
Regardless of the specific formulation, when based on statistical significance, all have
serious limitations and can lead to the wrong conclusion.
The conventional vote counting method fails because underpowered studies that do

not rule out clinically important effects are counted as not showing benefit. Suppose,
for example, the effect sizes estimated in two studies were identical. However, only one
of the studies was adequately powered, and the effect in this study was statistically
significant. Only this one effect (of the two identical effects) would be counted as show-
ing ‘benefit’. Paradoxically, Hedges and Vevea showed that as the number of studies
increases, the power of conventional vote counting tends to zero, except with large
studies and at least moderate intervention effects (Hedges and Vevea 1998). Further,
conventional vote counting suffers the same disadvantages as vote counting based
on direction of effect, namely, that it does not provide information on the magnitude
of effects and does not account for differences in the relative sizes of the studies.

12.2.2.2 Vote counting based on subjective rules
Subjective rules, involving a combination of direction, statistical significance and mag-
nitude of effect, are sometimes used to categorize effects. For example, in a review
examining the effectiveness of interventions for teaching quality improvement to clin-
icians, the authors categorized results as ‘beneficial effects’, ‘no effects’ or ‘detrimental
effects’ (Boonyasai et al 2007). Categorization was based on direction of effect and sta-
tistical significance (using a predefined P value of 0.05) when available. If statistical sig-
nificance was not reported, effects greater than 10% were categorized as ‘beneficial’ or
‘detrimental’, depending on their direction. These subjective rules often vary in the
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elements, cut-offs and algorithms used to categorize effects, and while detailed
descriptions of the rules may provide a veneer of legitimacy, such rules have poor per-
formance validity (Ioannidis et al 2008).
A further problem occurs when the rules are not described in sufficient detail for the

results to be reproduced (e.g. ter Wee et al 2012, Thornicroft et al 2016). This lack of
transparency does not allow determination of whether an acceptable or unacceptable
vote counting method has been used (Valentine et al 2010).

12.3 Visual display and presentation of the data

Visual display and presentation of data is especially important for transparent report-
ing in reviews without meta-analysis, and should be considered irrespective of whether
synthesis is undertaken (see Table 12.2.a for a summary of plots associated with each
synthesis method). Tables and plots structure information to show patterns in the data
and convey detailed information more efficiently than text. This aids interpretation and
helps readers assess the veracity of the review findings.

12.3.1 Structured tabulation of results across studies

Ordering studies alphabetically by study ID is the simplest approach to tabulation;
however, more information can be conveyed when studies are grouped in subpanels
or ordered by a characteristic important for interpreting findings. The grouping of stud-
ies in tables should generally follow the structure of the synthesis presented in the text,
which should closely reflect the review questions. This grouping should help readers
identify the data on which findings are based and verify the review authors’
interpretation.
If the purpose of the table is comparative, grouping studies by any of following char-

acteristics might be informative:

• comparisons considered in the review, or outcome domains (according to the struc-
ture of the synthesis);

• study characteristics that may reveal patterns in the data, for example potential effect
modifiers including population subgroups, settings or intervention components.

If the purpose of the table is complete and transparent reporting of data, then order-
ing the studies to increase the prominence of the most relevant and trustworthy evi-
dence should be considered. Possibilities include:

• certainty of the evidence (synthesized result or individual studies if no synthesis);

• risk of bias, study size or study design characteristics; and

• characteristics that determine how directly a study addresses the review question,
for example relevance and validity of the outcome measures.

One disadvantage of grouping by study characteristics is that it can be harder to
locate specific studies than when tables are ordered by study ID alone, for example
when cross-referencing between the text and tables. Ordering by study ID within cate-
gories may partly address this.
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The value of standardizing intervention and outcome labels is discussed in Chapter 3
(Sections 3.2.2 and 3.4), while the importance and methods for standardizing effect
estimates is described in Chapter 6. These practices can aid readers’ interpretation
of tabulated data, especially when the purpose of a table is comparative.

12.3.2 Forest plots

Forest plots and methods for preparing them are described elsewhere (Chapter 10,
Section 10.2). Some mention is warranted here of their importance for displaying study
results when meta-analysis is not undertaken (i.e. without the summary diamond). For-
est plots can aid interpretation of individual study results and convey overall patterns
in the data, especially when studies are ordered by a characteristic important for inter-
preting results (e.g. dose and effect size, sample size). Similarly, grouping studies in
subpanels based on characteristics thought to modify effects, such as population sub-
groups, variants of an intervention, or risk of bias, may help explore and explain differ-
ences across studies (Schriger et al 2010). These approaches to ordering provide
important techniques for informally exploring heterogeneity in reviews without
meta-analysis, and should be considered in preference to alphabetical ordering by
study ID alone (Schriger et al 2010).

12.3.3 Box-and-whisker plots and bubble plots

Box-and-whisker plots (see Figure 12.4.a, Panel A) provide a visual display of the dis-
tribution of effect estimates (Section 12.2.1.1). The plot conventionally depicts five
values. The upper and lower limits (or ‘hinges’) of the box, represent the 75th and
25th percentiles, respectively. The line within the box represents the 50th percentile
(median), and the whiskers represent the extreme values (McGill et al 1978). Multiple
box plots can be juxtaposed, providing a visual comparison of the distributions of effect
estimates (Schriger et al 2006). For example, in a review examining the effects of audit
and feedback on professional practice, the format of the feedback (verbal, written,
both verbal and written) was hypothesized to be an effect modifier (Ivers et al
2012). Box-and-whisker plots of the risk differences were presented separately by
the format of feedback, to allow visual comparison of the impact of format on the dis-
tribution of effects. When presenting multiple box-and-whisker plots, the width of the
box can be varied to indicate the number of studies contributing to each. The plot’s
common usage facilitates rapid and correct interpretation by readers (Schriger et al
2010). The individual studies contributing to the plot are not identified (as in a forest
plot), however, and the plot is not appropriate when there are few studies (Schriger
et al 2006).
A bubble plot (see Figure 12.4.a, Panel B) can also be used to provide a visual display

of the distribution of effects, and is more suited than the box-and-whisker plot when
there are few studies (Schriger et al 2006). The plot is a scatter plot that can display
multiple dimensions through the location, size and colour of the bubbles. In a review
examining the effects of educational outreach visits on professional practice, a bubble
plot was used to examine visually whether the distribution of effects was modified by
the targeted behaviour (O’Brien et al 2007). Each bubble represented the effect size
(y-axis) and whether the study targeted a prescribing or other behaviour (x-axis).
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The size of the bubbles reflected the number of study participants. However, different
formulations of the bubble plot can display other characteristics of the data (e.g. pre-
cision, risk-of-bias assessments).

12.3.4 Albatross plot

The albatross plot (see Figure 12.4.a, Panel C) allows approximate examination of the
underlying intervention effect sizes where there is minimal reporting of results within
studies (Harrison et al 2017). The plot only requires a two-sided P value, sample size
and direction of effect (or equivalently, a one-sided P value and a sample size) for each
result. The plot is a scatter plot of the study sample sizes against two-sided P values,
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Figure 12.4.a Possible graphical displays of different types of data. (A) Box-and-whisker plots of odds
ratios for all outcomes and separatelybyoverall riskof bias. (B) Bubbleplotof odds ratios for all outcomes
andseparatelybythemodelofcare.Thecoloursof thebubbles represent theoverall riskofbias judgement
(dark grey = low risk of bias; light grey = some concerns; blue = high risk of bias). (C) Albatross plot of the
study sample size against P values (for the five continuous outcomes in Table 12.4.c, column 6). The effect
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judgement (tall = lowriskofbias;medium=someconcerns;short=high riskofbias), shadingdepictsmodel
of care (light grey = caseload; dark grey = team), alphabet characters represent the studies)
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where the results are separated by the direction of effect. Superimposed on the plot are
‘effect size contours’ (inspiring the plot’s name). These contours are specific to the type
of data (e.g. continuous, binary) and statistical methods used to calculate the P values.
The contours allow interpretation of the approximate effect sizes of the studies, which
would otherwise not be possible due to the limited reporting of the results. Character-
istics of studies (e.g. type of study design) can be identified using different colours or
symbols, allowing informal comparison of subgroups.
The plot is likely to be more inclusive of the available studies than meta-analysis,

because of its minimal data requirements. However, the plot should complement
the results from a statistical synthesis, ideally a meta-analysis of available effects.

12.3.5 Harvest and effect direction plots

Harvest plots (see Figure 12.4.a, Panel D) provide a visual extension of vote counting
results (Ogilvie et al 2008). In the plot, studies based on the categorization of their effects
(e.g. ‘beneficial effects’, ‘no effects’ or ‘detrimental effects’) are grouped together. Each
study is represented by a bar positioned according to its categorization. The bars can be
‘visually weighted’ (by height or width) and annotated to highlight study and outcome
characteristics (e.g. risk-of-bias domains, proximal or distal outcomes, study design,
sample size) (Ogilvie et al 2008, Crowther et al 2011). Annotation canalsobeused to iden-
tify the studies. A series of plots may be combined in amatrix that displays, for example,
the vote counting results from different interventions or outcome domains.
The methods papers describing harvest plots have employed vote counting based on

statistical significance (Ogilvie et al 2008, Crowther et al 2011). For the reasons outlined
in Section 12.2.2.1, this can be misleading. However, an acceptable approach would be
to display the results based on direction of effect.
The effect direction plot is similar in concept to the harvest plot in the sense that both

display information on the direction of effects (Thomson and Thomas 2013). In the first
version of the effect direction plot, the direction of effects for each outcome within a
single study are displayed, while the second version displays the direction of the effects
for outcome domains across studies. In this second version, an algorithm is first applied
to ‘synthesize’ the directions of effect for all outcomes within a domain (e.g. outcomes
‘sleep disturbed by wheeze’, ‘wheeze limits speech’, ‘wheeze during exercise’ in the out-
come domain ‘respiratory’). This algorithm is based on the proportion of effects that
are in a consistent direction and statistical significance. Arrows are used to indicate the
reported direction of effect (for either outcomes or outcome domains). Features such
as statistical significance, study design and sample size are denoted using size and col-
our. While this version of the plot conveys a large amount of information, it requires
further development before its use can be recommended since the algorithm underly-
ing the plot is likely to have poor performance validity.

12.4 Worked example

The example that follows uses four scenarios to illustrate methods for presentation and
synthesis when meta-analysis is not possible. The first scenario contrasts a common

12.4 Worked example

333



approach to tabulationwithalternativepresentations thatmayenhance the transparency
of reporting and interpretation of findings. Subsequent scenarios show the application of
the synthesis approaches outlined in preceding sections of the chapter. Box 12.4.a sum-
marizes the reviewcomparisonsandoutcomes, anddecisions takenby the reviewauthors

Box 12.4.a The review

The review used in this example examines the effects of midwife-led continuity models
versus other models of care for childbearing women. One of the outcomes considered in
the review, and of interest to many women choosing a care option, is maternal
satisfaction with care. The review included 15 randomized trials, all of which reported a
measure of satisfaction. Overall, 32 satisfaction outcomes were reported, with between
one and 11 outcomes reported per study. There were differences in the concepts
measured (e.g. global satisfaction; specific domains such as of satisfaction with
information), the measurement period (i.e. antenatal, intrapartum, postpartum care),
and the measurement tools (different scales; variable evidence of validity and reliability).
Before conducting their synthesis, the review authors did the following.

1) Specified outcome groups in their protocol (see Chapter 3). Five types of satisfac-
tion outcomes were defined (global measures, satisfaction with information, satis-
faction with decisions, satisfaction with care, sense of control), any of which would
be grouped for synthesis since they all broadly reflect satisfaction with care. The
review authors hypothesized that the period of care (antenatal, intrapartum, post-
partum) might influence satisfaction with a model of care, so planned to analyse
outcomes for each period separately. The review authors specified that outcomes
would be synthesized across periods if data were sparse.

2) Specified decision rules in their protocol for dealing with multiplicity of outcomes
(Chapter3).Forstudiesthatreportedmultiplesatisfactionoutcomesperperiod,oneout-
come would be chosen by (i) selecting the most relevant outcome (a global measure >
satisfactionwith care > sense of control > satisfactionwith decisions > satisfaction with
information),and if therewere twoormoreequally relevantoutcomes, then (ii) selecting
the measurement tool with best evidence of validity and reliability.

3) Examined study characteristics to determinewhich studies were similar enough
for synthesis (Chapter 9). All studies had similar models of care as a comparator.
Satisfaction outcomes from each study were categorized into one of the five pre-
specified categories, and then the decision rules were applied to select the most rel-
evant outcome for synthesis.

4) Determined what data were available for synthesis (Chapter 9). All measures of
satisfaction were ordinal; however, outcomes were treated differently across studies
(see Tables 12.4.a, 12.4.b and 12.4.c). In some studies, the outcome was dichoto-
mized, while in others it was treated as ordinal or continuous. Based on their
pre-specified synthesis methods, the review authors selected the preferred method
for the available data. In this example, four scenarios, with progressively fewer data,
are used to illustrate the application of alternative synthesis methods.

5) Determined if modification to the planned comparison or outcomes was
needed. No changes were required to comparisons or outcome groupings.
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in planning their synthesis. While the example is loosely based on an actual review, the
review description, scenarios and data are fabricated for illustration.

12.4.1 Scenario 1: structured reporting of effects

We first address a scenario in which review authors have decided that the tools used to
measure satisfaction measured concepts that were too dissimilar across studies for
synthesis to be appropriate. Setting aside three of the 15 studies that reported on
the birth partner’s satisfaction with care, a structured summary of effects is sought
of the remaining 12 studies. To keep the example table short, only one outcome is
shown per study for each of the measurement periods (antenatal, intrapartum or
postpartum).
Table 12.4.a depicts a common yet suboptimal approach to presenting results. Note

two features.

• Studies are ordered by study ID, rather than grouped by characteristics that might
enhance interpretation (e.g. risk of bias, study size, validity of the measures, certainty
of the evidence (GRADE)).

• Data reported are as extracted from each study; effect estimates were not calculated
by the review authors and, where reported, were not standardized across studies
(although data were available to do both).

Table 12.4.b shows an improved presentation of the same results. In line with best
practice, here effect estimates have been calculated by the review authors for all out-
comes, and a common metric computed to aid interpretation (in this case an odds
ratio; see Chapter 6 for guidance on conversion of statistics to the desired format).
Redundant information has been removed (‘statistical test’ and ‘P value’ columns).
The studies have been re-ordered, first to group outcomes by period of care (intrapar-
tum outcomes are shown here), and then by risk of bias. This re-ordering serves two
purposes. Grouping by period of care aligns with the plan to consider outcomes for
each period separately and ensures the table structure matches the order in which
results are described in the text. Re-ordering by risk of bias increases the prominence
of studies at lowest risk of bias, focusing attention on the results that should most influ-
ence conclusions. Had the review authors determined that a synthesis would be infor-
mative, then ordering to facilitate comparison across studies would be appropriate; for
example, ordering by the type of satisfaction outcome (as pre-defined in the protocol,
starting with global measures of satisfaction), or the comparisons made in the studies.
The results may also be presented in a forest plot, as shown in Figure 12.4.b. In both

the table and figure, studies are grouped by risk of bias to focus attention on the most
trustworthy evidence. The pattern of effects across studies is immediately apparent in
Figure 12.4.b and can be described efficiently without having to interpret each estimate
(e.g. difference between studies at low and high risk of bias emerge), although these
results should be interpreted with caution in the absence of a formal test for subgroup
differences (see Chapter 10, Section 10.11). Only outcomes measured during the intra-
partum period are displayed, although outcomes from other periods could be added,
maximizing the information conveyed.
An example description of the results from Scenario 1 is provided in Box 12.4.b. It

shows that describing results study by study becomes unwieldy with more than a
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Table 12.4.a Scenario 1: table ordered by study ID, data as reported by study authors

Outcome (scale details*) Intervention Control
Effect estimate
(metric) 95% CI Statistical test P value

Barry 2005 % (N) % (N)

Experience of labour 37% (246) 32% (223) 5% (RD) P > 0.05

Biro 2000 n/N n/N

Perception of care: labour/birth 260/344 192/287 1.13 (RR) 1.02 to 1.25 z = 2.36 0.018

Crowe 2010 Mean (SD) N Mean (SD) N

Experience of antenatal care
(0 to 24 points)

21.0 (5.6) 182 19.7 (7.3) 186 1.3 (MD) –0.1 to 2.7 t = 1.88 0.061

Experience of labour/birth (0 to
18 points)

9.8 (3.1) 182 9.3 (3.3) 186 0.5 (MD) –0.2 to 1.2 t = 1.50 0.135

Experience of postpartum care
(0 to 18 points)

11.7 (2.9) 182 10.9 (4.2) 186 0.8 (MD) 0.1 to 1.5 t = 2.12 0.035

Flint 1989 n/N n/N

Care from staff during labour 240/275 208/256 1.07 (RR) 1.00 to 1.16 z = 1.89 0.059

Frances 2000

Communication: labour/birth 0.90 (OR) 0.61 to 1.33 z = –0.52 0.606

Harvey 1996 Mean (SD) N Mean (SD) N

Labour & Delivery Satisfaction
Index (37 to 222 points)

182 (14.2) 101 185 (30) 93 t = –0.90 for MD 0.369 for MD
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Johns 2004 n/N n/N

Satisfaction with intrapartum
care

605/1163 363/826 8.1% (RD) 3.6 to 12.5 <0.001

Mac Vicar 1993 n/N n/N

Birth satisfaction 849/1163 496/826 13.0% (RD) 8.8 to 17.2 z = 6.04 0.000

Parr 2002

Experience of childbirth 0.85 (OR) 0.39 to 1.86 z = -0.41 0.685

Rowley 1995

Encouraged to ask questions 1.02 (OR) 0.66 to 1.58 z = 0.09 0.930

Turnbull 1996 Mean (SD) N Mean (SD) N

Intrapartum care rating
(–2 to 2 points)

1.2 (0.57) 35 0.93 (0.62) 30 P > 0.05

Zhang 2011 N N

Perception of antenatal care 359 322 1.23 (POR) 0.68 to 2.21 z = 0.69 0.490

Perception of care: labour/birth 355 320 1.10 (POR) 0.91 to 1.34 z = 0.95 0.341

∗ All scales operate in the same direction; higher scores indicate greater satisfaction.
CI = confidence interval; MD = mean difference; OR = odds ratio; POR = proportional odds ratio; RD = risk difference; RR = risk ratio.
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Table 12.4.b Scenario 1: intrapartum outcome table ordered by risk of bias, standardized effect estimates calculated for all studies

Outcome* (scale details) Intervention Control Mean difference (95% CI)** Odds ratio (95% CI)†

Low risk of bias

Barry 2005 n/N n/N

Experience of labour 90/246 72/223 1.21 (0.82 to 1.79)

Frances 2000 n/N n/N

Communication: labour/birth 0.90 (0.61 to 1.34)

Rowley 1995 n/N n/N

Encouraged to ask questions [during labour/birth] 1.02 (0.66 to 1.58)

Some concerns

Biro 2000 n/N n/N

Perception of care: labour/birth 260/344 192/287 1.54 (1.08 to 2.19)

Crowe 2010 Mean (SD) N Mean (SD) N

Experience of labour/birth (0 to 18 points) 9.8 (3.1) 182 9.3 (3.3) 186 0.5 (–0.15 to 1.15) 1.32 (0.91 to 1.92)

Harvey 1996 Mean (SD) N Mean (SD) N

Labour & Delivery Satisfaction Index (37 to 222 points) 182 (14.2) 101 185 (30) 93 –3 (–10 to 4) 0.79 (0.48 to 1.32)

Johns 2004 n/N n/N

Satisfaction with intrapartum care 605/1163 363/826 1.38 (1.15 to 1.64)

Parr 2002 n/N n/N

Experience of childbirth 0.85 (0.39 to 1.87)

12 Synthesizing and presenting findings using other methods

338



Zhang 2011 n/N n/N

Perception of care: labour and birth N = 355 N = 320 POR 1.11 (0.91 to 1.34)

High risk of bias

Flint 1989 n/N n/N

Care from staff during labour 240/275 208/256 1.58 (0.99 to 2.54)

Mac Vicar 1993 n/N n/N

Birth satisfaction 849/1163 496/826 1.80 (1.48 to 2.19)

Turnbull 1996 Mean (SD) N Mean (SD) N

Intrapartum care rating (–2 to 2 points) 1.2 (0.57) 35 0.93 (0.62) 30 0.27 (–0.03 to 0.57) 2.27 (0.92 to 5.59)

∗Outcomes operate in the same direction. A higher score, or an event, indicates greater satisfaction.
∗∗Mean difference calculated for studies reporting continuous outcomes.
† For binary outcomes, odds ratios were calculated from the reported summary statistics or were directly extracted from the study. For continuous outcomes,
standardized mean differences were calculated and converted to odds ratios (see Chapter 6).
CI = confidence interval; POR = proportional odds ratio.
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few studies, highlighting the importance of tables and plots. It also brings into focus the
risk of presenting results without any synthesis, since it seems likely that the reader will
try to make sense of the results by drawing inferences across studies. Since a synthesis
was considered inappropriate, GRADE was applied to individual studies and then used
to prioritize the reporting of results, focusing attention on the most relevant and trust-
worthy evidence. An alternative might be to report results at low risk of bias, an
approach analogous to limiting a meta-analysis to studies at low risk of bias. Where
possible, these and other approaches to prioritizing (or ordering) results from individ-
ual studies in text and tables should be pre-specified at the protocol stage.

12.4.2 Overview of scenarios 2–4: synthesis approaches

We now address three scenarios in which review authors have decided that the out-
comes reported in the 15 studies all broadly reflect satisfaction with care. While the
measures were quite diverse, a synthesis is sought to help decision makers understand
whether women and their birth partners were generally more satisfied with the care
received in midwife-led continuity models compared with other models. The three sce-
narios differ according to the data available (see Table 12.4.c), with each reflecting pro-
gressively less complete reporting of the effect estimates. The data available determine
the synthesis method that can be applied.

1.1.1 Low risk of bias

Barry 2005

Frances 2000

Rowley 1995

Study or Subgroup log(OR) SE
Odds Ratio

IV, Random, 95% CI
Odds Ratio

IV, Random, 95% CI

0.2

Favours other models Favours midwife-led

0.5 1 2 5

0.19

–0.1

0.02

0.2

0.2

0.22

1.21 [0.82 to 1.79]

0.90 [0.61 to 1.34]

1.02 [0.66 to 1.57]

0.46

0.59

0.82

0.24

0.1

0.46

1.58 [0.99 to 2.54]

1.80 [1.48 to 2.19]

2.27 [0.92 to 5.59]

0.43

0.28

–0.23

0.32

–0.16

0.1

0.18

0.19

0.26

0.09

0.4

0.1

1.54 [1.08 to 2.19]

1.32 [0.91 to 1.92]

0.79 [0.48 to 1.32]

1.38 [1.15 to 1.64]

0.85 [0.39 to 1.87]

1.11 [0.91 to 1.34]

1.1.2 Some concerns

Biro 2000

Crowe 2010

Harvey 1996

Johns 2004

Parr 2002

Zhang 2011

1.1.3 High risk of bias

Flint 1989

Mac Vicar 1993

Turnbull 1996

Figure 12.4.b Forest plot depicting standardized effect estimates (odds ratios) for satisfaction
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• Scenario 2: effect estimates available without measures of precision (illustrating syn-
thesis of summary statistics).

• Scenario 3: P values available (illustrating synthesis of P values).

• Scenario 4: directions of effect available (illustrating synthesis using vote-counting
based on direction of effect).

For studies that reported multiple satisfaction outcomes, one result is selected for syn-
thesis using the decision rules in Box 12.4.a (point 2).

12.4.2.1 Scenario 2: summarizing effect estimates
In Scenario 2, effect estimates are available for all outcomes. However, for most stud-
ies, a measure of variance is not reported, or cannot be calculated from the available
data. We illustrate how the effect estimates may be summarized using descriptive sta-
tistics. In this scenario, it is possible to calculate odds ratios for all studies. For the con-
tinuous outcomes, this involves first calculating a standardized mean difference, and
then converting this to an odds ratio (Chapter 10, Section 10.6). The median odds ratio
is 1.32 with an interquartile range of 1.02 to 1.53 (15 studies). Box-and-whisker plots
may be used to display these results and examine informally whether the distribution
of effects differs by the overall risk-of-bias assessment (Figure 12.4.a, Panel A). How-
ever, because there are relatively few effects, a reasonable alternative would be to pres-
ent bubble plots (Figure 12.4.a, Panel B).
An example description of the results from the synthesis is provided in Box 12.4.c.

Box 12.4.b How to describe the results from this structured summary

Scenario 1. Structured reporting of effects (no synthesis)

Table 12.4.b and Figure 12.4.b present results for the 12 included studies that reported a
measure of maternal satisfaction with care during labour and birth (hereafter ‘satisfac-
tion’). Results from these studies were not synthesized for the reasons reported in the
data synthesis methods. Here, we summarize results from studies providing high or
moderate certainty evidence (based on GRADE) for which results from a valid measure
of global satisfaction were available. Barry 2015 found a small increase in satisfaction
with midwife-led care compared to obstetrician-led care (4 more women per 100 were
satisfied with care; 95% CI 4 fewer to 15 more per 100 women; 469 participants, 1 study;
moderate certainty evidence). Harvey 1996 found a small possibly unimportant decrease
in satisfaction withmidwife-led care compared with obstetrician-led care (3-point reduc-
tion on a 185-point LADSI scale, higher scores are more satisfied; 95% CI 10 points lower
to 4 higher; 367 participants, 1 study; moderate certainty evidence). The remaining
10 studies reported specific aspects of satisfaction (Frances 2000, Rowley 1995,…), used
tools with little or no evidence of validity and reliability (Parr 2002,…) or provided low or
very low certainty evidence (Turnbull 1996, …).

Note: While it is tempting to make statements about consistency of effects across studies
(…the majority of studies showed improvement in …, X of Y studies found …), be aware
that this may contradict claims that a synthesis is inappropriate and constitute uninten-
tional vote counting.
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Table 12.4.c Scenarios 2, 3 and 4: available data for the selected outcome from each study

Scenario 2. Summary statistics
Scenario 3. Combining

P values Scenario 4. Vote counting

Study ID
Outcome
(scale details*)

Overall RoB
judgement Available data**

Stand. metric
OR (SMD)

Available
data**
(2-sided
P value)

Stand.
metric
(1-sided
P value) Available data��

Stand.
metric

Continuous Mean (SD)

Crowe 2010 Expectation of
labour/birth
(0 to 18 points)

Some
concerns

Intervention 9.8 (3.1);
Control 9.3 (3.3)

1.3 (0.16) Favours
intervention,
P = 0.135,
N = 368

0.068 NS —

Finn 1997 Experience of
labour/birth
(0 to 24 points)

Some
concerns

Intervention 21 (5.6);
Control 19.7 (7.3)

1.4 (0.20) Favours
intervention,
P = 0.061,
N = 351

0.030 MD 1.3, NS 1

Harvey 1996 Labour & Delivery
Satisfaction Index
(37 to 222 points)

Some
concerns

Intervention 182
(14.2); Control 185
(30)

0.8 (–0.13) MD –3,
P = 0.368,
N = 194

0.816 MD –3, NS 0

Kidman 2007 Control during
labour/birth (0 to
18 points)

High Intervention 11.7
(2.9); Control 10.9
(4.2)

1.5 (0.22) MD 0.8,
P = 0.035,
N = 368

0.017 MD 0.8 (95% CI
0.1 to 1.5)

1

Turnbull 1996 Intrapartum care
rating (–2 to 2
points)

High Intervention 1.2
(0.57); Control 0.93
(0.62)

2.3 (0.45) MD 0.27,
P = 0.072,
N = 65

0.036 MD 0.27 (95%
CI0.03 to 0.57)

1

Binary

Barry 2005 Experience of
labour

Low Intervention 90/246;
Control 72/223

1.21 NS — RR 1.13, NS 1

Biro 2000 Perception of care:
labour/birth

Some
concerns

Intervention 260/344;
Control 192/287

1.53 RR 1.13,
P = 0.018

0.009 RR 1.13, P < 0.05 1
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Flint 1989 Care from staff
during labour

High Intervention 240/275;
Control 208/256

1.58 Favours
intervention,
P = 0.059

0.029 RR 1.07 (95% CI
1.00 to 1.16)

1

Frances 2000 Communication:
labour/birth

Low OR 0.90 0.90 Favours
control,
P = 0.606

0.697 Favours control,
NS

0

Johns 2004 Satisfaction with
intrapartum care

Some
concerns

Intervention 605/
1163; Control 363/
826

1.38 Favours
intervention,
P < 0.001

0.0005 RD 8.1% (95% CI
3.6% to 12.5%)

1

Mac Vicar
1993

Birth satisfaction High OR 1.80, P < 0.001 1.80 Favours
intervention,
P < 0.001

0.0005 RD 13.0% (95% CI
8.8% to 17.2%)

1

Parr 2002 Experience of
childbirth

Some
concerns

OR 0.85 0.85 OR 0.85,
P = 0.685

0.658 NS —

Rowley 1995 Encouraged to ask
questions

Low OR 1.02, NS 1.02 P = 0.685 — NS —

Ordinal

Waldenstrom
2001

Perception of
intrapartum care

Low POR 1.23, P = 0.490 1.23 POR 1.23,
P = 0.490

0.245 POR 1.23, NS 1

Zhang 2011 Perception of care:
labour/birth

Low POR 1.10, P > 0.05 1.10 POR 1.1,
P = 0.341

0.170 Favours
intervention

1

∗ All scales operate in the same direction. Higher scores indicate greater satisfaction.
∗∗ For a particular scenario, the ‘available data’ column indicates the data that were directly reported, or were calculated from the reported statistics, in terms of: effect
estimate, direction of effect, confidence interval, precise P value, or statement regarding statistical significance (either statistically significant, or not).
CI = confidence interval; direction = direction of effect reported or can be calculated; MD = mean difference; NS = not statistically significant; OR = odds ratio; RD = risk
difference; RoB = risk of bias; RR = risk ratio; sig. = statistically significant; SMD = standardized mean difference; Stand. = standardized.
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12.4.2.2 Scenario 3: combining P values
In Scenario 3, there is minimal reporting of the data, and the type of data and statistical
methods and tests vary. However, 11 of the 15 studies provide a precise P value and
direction of effect, and a further two report a P value less than a threshold (< 0.001)
and direction. We use this scenario to illustrate a synthesis of P values. Since the
reported P values are two-sided (Table 12.4.c, column 6), they must first be converted
to one-sided P values, which incorporate the direction of effect (Table 12.4.c, column 7).
Fisher’s method for combining P values involved calculating the following statistic:

X2 = −2
k

i = 1

ln Pi = −2 × ln 0 068 +… + ln 0 170 = −2 × −41 2 = 82 3

where Pi is the one-sided P value from study i, and k is the total number of P values. This
formula can be implemented using a standard spreadsheet package. The statistic is
then compared against the chi-squared distribution with 26 ( = 2 × 13) degrees of free-
dom to obtain the P value. Using a Microsoft Excel spreadsheet, this can be obtained by
typing =CHIDIST(82.3, 26) into any cell. In Stata or R, the packages (both named)metap
could be used. These packages include a range of methods for combining P values.
The combination of P values suggests there is strong evidence of benefit of midwife-

led models of care in at least one study (P < 0.001 from a Chi2 test, 13 studies). Restrict-
ing this analysis to those studies judged to be at an overall low risk of bias (sensitivity
analysis), there is no longer evidence to reject the null hypothesis of no benefit of mid-
wife-led model of care in any studies (P = 0.314, 3 studies). For the five studies reporting
continuous satisfaction outcomes, sufficient data (precise P value, direction, total sam-
ple size) are reported to construct an albatross plot (Figure 12.4.a, Panel C). The loca-
tion of the points relative to the standardized mean difference contours indicate that
the likely effects of the intervention in these studies are small.
An example description of the results from the synthesis is provided in Box 12.4.d.

Box 12.4.c How to describe the results from this synthesis

Scenario 2. Synthesis of summary statistics

‘Themedian odds ratio of satisfaction was 1.32 for midwife-ledmodels of care compared
with other models (interquartile range 1.02 to 1.53; 15 studies). Only five of the 15 effects
were judged to be at a low risk of bias, and informal visual examination suggested the
size of the odds ratios may be smaller in this group.’

Box 12.4.d How to describe the results from this synthesis

Scenario 3. Synthesis of P values

‘There was strong evidence of benefit of midwife-led models of care in at least one study
(P < 0.001, 13 studies). However, a sensitivity analysis restricted to studies with an overall
low risk of bias suggested there was no effect of midwife-led models of care in any of the
trials (P = 0.314, 3 studies). Estimated standardized mean differences for five of the out-
comes were small (ranging from –0.13 to 0.45) (Figure 12.4.a, Panel C).’
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12.4.2.3 Scenario 4: vote counting based on direction of effect
In Scenario 4, there is minimal reporting of the data, and the type of effect measure
(when used) varies across the studies (e.g. mean difference, proportional odds ratio).
Of the 15 results, only five report data suitable for meta-analysis (effect estimate and
measure of precision; Table 12.4.c, column 8), and no studies reported precise P values.
We use this scenario to illustrate vote counting based on direction of effect. For each
study, the effect is categorized as beneficial or harmful based on the direction of effect
(indicated as a binary metric; Table 12.4.c, column 9).
Of the 15 studies, we exclude three because they do not provide information on the

direction of effect, leaving 12 studies to contribute to the synthesis. Of these 12,
10 effects favour midwife-led models of care (83%). The probability of observing this
result if midwife-led models of care are truly ineffective is 0.039 (from a binomial prob-
ability test, or equivalently, the sign test). The 95% confidence interval for the percent-
age of effects favouring midwife-led care is wide (55% to 95%).
The binomial test can be implemented using standard computer spreadsheet or sta-

tistical packages. For example, the two-sided P value from the binomial probability test
presented can be obtained from Microsoft Excel by typing =2∗BINOM.DIST(2, 12, 0.5,
TRUE) into any cell in the spreadsheet. The syntax requires the smaller of the ‘number
of effects favouring the intervention’ or ‘the number of effects favouring the control’
(here, the smaller of these counts is 2), the number of effects (here 12), and the null
value (true proportion of effects favouring the intervention = 0.5). In Stata, the bitest
command could be used (e.g. bitesti 12 10 0.5).
A harvest plot can be used to display the results (Figure 12.4.a, Panel D), with char-

acteristics of the studies represented using different heights and shading. A sensitivity
analysis might be considered, restricting the analysis to those studies judged to be at
an overall low risk of bias. However, only four studies were judged to be at a low risk of
bias (of which, three favoured midwife-led models of care), precluding reasonable
interpretation of the count.
An example description of the results from the synthesis is provided in Box 12.4.e.

12.5 Chapter information

Authors: Joanne E McKenzie, Sue E Brennan

Acknowledgements: Sections of this chapter build on chapter 9 of version 5.1 of the
Handbook, with editors Jonathan J Deeks, Julian PT Higgins and Douglas G Altman.

Box 12.4.e How to describe the results from this synthesis

Scenario 4. Synthesis using vote counting based on direction of effects

‘There was evidence that midwife-led models of care had an effect on satisfaction, with
10 of 12 studies favouring the intervention (83% (95% CI 55% to 95%), P = 0.039)
(Figure 12.4.a, Panel D). Four of the 12 studies were judged to be at a low risk of bias,
and three of these favoured the intervention. The available effect estimates are pre-
sented in [review] Table X.’

12.5 Chapter information

345



We are grateful to the following for commenting helpfully on earlier drafts: Miranda
Cumpston, Jamie Hartmann-Boyce, Tianjing Li, Rebecca Ryan and Hilary Thomson.

Funding: JEM is supported by an Australian National Health and Medical Research
Council (NHMRC) Career Development Fellowship (1143429). SEB’s position is sup-
ported by the NHMRC Cochrane Collaboration Funding Program.

12.6 References

Achana F, Hubbard S, Sutton A, Kendrick D, Cooper N. An exploration of synthesis methods
in public health evaluations of interventions concludes that the use of modern statistical
methods would be beneficial. Journal of Clinical Epidemiology 2014; 67: 376–390.

Becker BJ. Combining significance levels. In: Cooper H, Hedges LV, editors. A handbook of
research synthesis. New York (NY): Russell Sage; 1994. pp. 215–235.

Boonyasai RT, Windish DM, Chakraborti C, Feldman LS, Rubin HR, Bass EB. Effectiveness of
teaching quality improvement to clinicians: a systematic review. JAMA 2007; 298:
1023–1037.

Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Meta-Analysis methods based on
direction and p-values. Introduction to Meta-Analysis. Chichester (UK): John Wiley & Sons,
Ltd; 2009. pp. 325–330.

Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statistical
Science 2001; 16: 101–117.

Bushman BJ, Wang MC. Vote-counting procedures in meta-analysis. In: Cooper H, Hedges
LV, Valentine JC, editors. Handbook of Research Synthesis and Meta-Analysis. 2nd ed. New
York (NY): Russell Sage Foundation; 2009. pp. 207–220.

Crowther M, Avenell A, MacLennan G, Mowatt G. A further use for the Harvest plot: a novel
method for the presentation of data synthesis. Research Synthesis Methods 2011; 2: 79–83.

Friedman L. Why vote-count reviews don’t count. Biological Psychiatry 2001; 49: 161–162.
Grimshaw J, McAuley LM, Bero LA, Grilli R, Oxman AD, Ramsay C, Vale L, Zwarenstein M.
Systematic reviews of the effectiveness of quality improvement strategies and
programmes. Quality and Safety in Health Care 2003; 12: 298–303.

Harrison S, Jones HE, Martin RM, Lewis SJ, Higgins JPT. The albatross plot: a novel graphical
tool for presenting results of diversely reported studies in a systematic review. Research
Synthesis Methods 2017; 8: 281–289.

Hedges L, Vevea J. Fixed- and random-effects models in meta-analysis. Psychological
Methods 1998; 3: 486–504.

Ioannidis JP, Patsopoulos NA, Rothstein HR. Reasons or excuses for avoiding meta-analysis
in forest plots. BMJ 2008; 336: 1413–1415.

Ivers N, Jamtvedt G, Flottorp S, Young JM, Odgaard-Jensen J, French SD, O’Brien MA,
Johansen M, Grimshaw J, Oxman AD. Audit and feedback: effects on professional practice
and healthcare outcomes. Cochrane Database of Systematic Reviews 2012; 6: CD000259.

Jones DR. Meta-analysis: weighing the evidence. Statistics in Medicine 1995; 14: 137–149.
Loughin TM. A systematic comparison ofmethods for combining p-values from independent
tests. Computational Statistics & Data Analysis 2004; 47: 467–485.

12 Synthesizing and presenting findings using other methods

346



McGill R, Tukey JW, Larsen WA. Variations of box plots. The American Statistician 1978; 32:
12–16.

McKenzie JE, Brennan SE. Complex reviews: methods and considerations for summarising
and synthesising results in systematic reviews with complexity. Report to the Australian
National Health and Medical Research Council. 2014.

O’Brien MA, Rogers S, Jamtvedt G, Oxman AD, Odgaard-Jensen J, Kristoffersen DT,
Forsetlund L, Bainbridge D, Freemantle N, Davis DA, Haynes RB, Harvey EL. Educational
outreach visits: effects on professional practice and health care outcomes. Cochrane
Database of Systematic Reviews 2007; 4: CD000409.

Ogilvie D, Fayter D, Petticrew M, Sowden A, Thomas S, Whitehead M, Worthy G. The harvest
plot: a method for synthesising evidence about the differential effects of interventions.
BMC Medical Research Methodology 2008; 8: 8.

Riley RD, Higgins JP, Deeks JJ. Interpretation of random effects meta-analyses. BMJ 2011;
342: d549.

Schriger DL, Sinha R, Schroter S, Liu PY, Altman DG. From submission to publication: a
retrospective review of the tables and figures in a cohort of randomized controlled trials
submitted to the British Medical Journal. Annals of Emergency Medicine 2006; 48: 750–756,
756 e751–721.

Schriger DL, Altman DG, Vetter JA, Heafner T, Moher D. Forest plots in reports of systematic
reviews: a cross-sectional study reviewing current practice. International Journal of
Epidemiology 2010; 39: 421–429.

ter Wee MM, Lems WF, Usan H, Gulpen A, Boonen A. The effect of biological agents on work
participation in rheumatoid arthritis patients: a systematic review. Annals of the
Rheumatic Diseases 2012; 71: 161–171.

Thomson HJ, Thomas S. The effect direction plot: visual display of non-standardised effects
across multiple outcome domains. Research Synthesis Methods 2013; 4: 95–101.

Thornicroft G, Mehta N, Clement S, Evans-Lacko S, Doherty M, Rose D, Koschorke M,
Shidhaye R, O’Reilly C, Henderson C. Evidence for effective interventions to reduce
mental-health-related stigma and discrimination. Lancet 2016; 387: 1123–1132.

Valentine JC, Pigott TD, Rothstein HR. How many studies do you need?: a primer on
statistical power for meta-analysis. Journal of Educational and Behavioral Statistics 2010;
35: 215–247.

12.6 References

347



13

Assessing risk of bias due to missing
results in a synthesis
Matthew J Page, Julian PT Higgins, Jonathan AC Sterne

KEY POINTS

• Systematic reviews seek to identify all research that meets the eligibility criteria.
However, this goal can be compromised by ‘non-reporting bias’: when decisions about
how, when or where to report results of eligible studies are influenced by the P value,
magnitude or direction of the results.

• There is convincing evidence for several types of non-reporting bias, reinforcing the
need for review authors to search all possible sources where study reports and results
may be located. It may be necessary to consult multiple bibliographic databases, trials
registers, manufacturers, regulators and study authors or sponsors.

• Regardless of whether an entire study report or a particular study result is unavailable
selectively (e.g. because the P value, magnitude or direction of the results were con-
sidered unfavourable by the investigators), the same consequence can arise: risk of
bias in a synthesis because available results differ systematically frommissing results.

• Several approaches for assessing risk of bias due to missing results have been sug-
gested. A thorough assessment of selective non-reporting or under-reporting of results
in the studies identified is likely to be the most valuable. Because the number of iden-
tified studies that have results missing for a given synthesis is known, the impact of
selective non-reporting or under-reporting of results can be quantified more easily
than the impact of selective non-publication of an unknown number of studies.

• Funnel plots (and the tests used for examining funnel plot asymmetry) may help
review authors to identify evidence of non-reporting biases in cases where protocols
or trials register records were unavailable for most studies. However, they have well-
documented limitations.

• When there is evidence of funnel plot asymmetry, non-reporting biases should be con-
sidered as only one of a number of possible explanations. In these circumstances,
review authors should attempt to understand the source(s) of the asymmetry, and
consider their implications in the light of any qualitative signals that raise a suspicion
of additional missing results, and other sensitivity analyses.

This chapter should be cited as: Page MJ, Higgins JPT, Sterne JAC. Chapter 13: Assessing risk of bias due to
missing results in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John
Wiley & Sons, 2019: 349–374.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

349



13.1 Introduction

Systematic reviews seek to identify all research that meets pre-specified eligibility cri-
teria. This goal can be compromised if decisions about how, when or where to report
results of eligible studies are influenced by the P value, magnitude or direction of the
study’s results. For example, ‘statistically significant’ results that suggest an interven-
tion works are more likely than ‘statistically non-significant’ results to be available,
available rapidly, available in high impact journals and cited by others, and hence more
easily identifiable for systematic reviews. The term ‘reporting bias’ has often been used
to describe this problem, but we prefer the term non-reporting bias.
Non-reporting biases lead to bias due to missing results in a systematic review.

Syntheses such as meta-analyses are at risk of bias due to missing results when results
of some eligible studies are unavailable because of the P value, magnitude or direction
of the results. Bias due to missing results differs from a related source of bias – bias in
selection of the reported result – where study authors select a result for reporting
from among multiple measurements or analyses, on the basis of the P value, magni-
tude or direction of the results. In such cases, the study result that is available for inclu-
sion in the synthesis is at risk of bias. Bias in selection of the reported result is described
in more detail in Chapter 7, and addressed in the RoB 2 tool (Chapter 8) and ROBINS-I
tool (Chapter 25).
Failure to consider the potential impact of non-reporting biases on the results of the

review can lead to the uptake of ineffective and harmful interventions in clinical prac-
tice. For example, when unreported results were included in a systematic review of
oseltamivir (Tamiflu) for influenza, the drug was not shown to reduce hospital admis-
sions, had unclear effects on pneumonia and other complications of influenza, and
increased the risk of harms such as nausea, vomiting and psychiatric adverse events.
These findings were different from synthesized results based only on published study
results (Jefferson et al 2014).
We structure the chapter as follows. We start by discussing approaches for avoiding or

minimizing bias due to missing results in systematic reviews in Section 13.2, and provide
guidance for assessing the risk of bias due to missing results in Section 13.3. For the pur-
pose of discussing these biases, ‘statistically significant’ (P < 0.05) results are sometimes
denoted as ‘positive’ results and ‘statistically non-significant’ or null results as ‘negative’
results. As explained in Chapter 15, Cochrane Review authors should not use any of these
labels when reporting their review findings, since they are based on arbitrary thresholds
and may not reflect the clinical or policy significance of the findings.
In this chapter, we use the term result to describe the combination of a point

estimate (such as a mean difference or risk ratio) and a measure of its precision (such
as a confidence interval) for a particular study outcome. We use the term outcome to
refer to an event (such as mortality or a reduction in pain). When fully defined, an out-
come for an individual participant includes the following elements: an outcome
domain; a specific measure; a specific metric; and a time point (Zarin et al 2011). An
example of a fully defined outcome is ‘a 50% change from baseline to eight weeks
on the Montgomery-Asberg Depression Rating Scale total score’. A corresponding result
for this outcome additionally requires a method of aggregation across individuals: here
it might be a risk ratio with 95% confidence interval, which estimates the between-
group difference in the proportion of people with the outcome.
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13.2 Minimizing risk of bias due to missing results

The convincing evidence for the presence of non-reporting biases, summarized in
Chapter 7 (Section 7.2.3), should be of great concern to review authors. Regardless
of whether an entire study report or a particular study result is unavailable selectively
(e.g. because the P value, magnitude or direction of the results were considered unfa-
vourable by the investigators), the same consequence can arise: risk of bias in a syn-
thesis because available results differ systematically from missing results. We discuss
two means of reducing, or potentially avoiding, bias due to missing results.

13.2.1 Inclusion of results from sources other than published reports

Eyding and colleagues provide a striking example of the value of searching beyond the
published literature (Eyding et al 2010). They sought data from published trials of
reboxetine versus placebo for major depression, as well as unpublished data from
the manufacturer (Pfizer, Berlin). Of 13 trials identified, data for only 26% were pub-
lished. Meta-analysis painted a far rosier picture of the effects of reboxetine when
restricted to the published results (Figure 13.2.a). For example, the between-group
difference in the number of patients with an important reduction in depression was
much larger in the published trial compared with a meta-analysis of the published
and unpublished trials. Similarly, a meta-analysis of two published trials suggested
a negligible difference between reboxetine and placebo in the number of patients
who withdrew because of adverse events. However, when six unpublished trials were

0.25 0.5 1 2.5

More frequent with reboxetineMore frequent with placebo

Published data (1 study)

Published and unpublished data (7 studies)

Published data (2 studies)

Published and unpublished data (8 studies)

Withdrawals owing to adverse events

Reduction in Hamilton depression rating scale by 50% or more

OR (95% Cl)

2.47 (1.49 to 4.11)

1.24 (0.98 to 1.56)

0.95 (0.45 to 1.99)

2.21 (1.45 to 3.37)

5

Figure 13.2.a Results of meta-analyses of reboxetine versus placebo for acute treatment of major
depression, with or without unpublished data (data from Eyding et al 2010). Reproduced with
permission of BMJ Publishing Group.
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added, the summary estimate suggested that patients on reboxetine were more than
twice as likely to withdraw (Eyding et al 2010).
Cases such as this illustrate how bias in a meta-analysis can be reduced by the inclu-

sion of missing results. In other situations, the bias reduction may not be so dramatic.
Schmucker and colleagues reviewed five methodological studies examining the differ-
ence in summary effect estimates of 173meta-analyses that included or omitted results
from sources other than journal articles (e.g. conference abstracts, theses, government
reports, regulatory websites) (Schmucker et al 2017). They found that the direction and
magnitude of the differences in summary estimates varied. While inclusion of unre-
ported results may not change summary estimatesmarkedly in all cases, doing so often
leads to an increase in precision of the summary estimates (Schmucker et al 2017).
Guidance on searching for unpublished sources is included in Chapter 4 (Section 4.3).

13.2.1.1 Inclusion of results from trials results registers
As outlined in Chapter 4 (Section 4.3.3), trials registers can be used to identify any
initiated, ongoing or completed (but not necessarily published) studies that meet
the eligibility criteria of a review. In 2008, ClinicalTrials.gov created data fields to accept
summary results for any registered trial (see Chapter 5, Section 5.3.1) (Zarin et al 2011).
A search of ClinicalTrials.gov in June 2019 retrieved over 305,000 studies, of which sum-
mary results were reported for around 36,000 (12%). Empirical evidence suggests that
including results from ClinicalTrials.gov can lead to important changes in the results of
somemeta-analyses. When Baudard and colleagues searched trials registers for 95 sys-
tematic reviews of pharmaceutical interventions that had not already done so, they
identified 122 trials that were eligible for inclusion in 41 (47%) of the reviews
(Baudard et al 2017). Results for 45 of the 122 trials were available and could be
included in a meta-analysis in 14 of the reviews. The percentage change in meta-
analytic effects after including results from trials registers was greater than 10% for five
of the 14 reviews and greater than 20% for two reviews; in almost all cases the revised
meta-analysis showed decreased efficacy of the drug (Baudard et al 2017). Several
initiatives are underway to increase results posting in ClinicalTrials.gov and the Euro-
pean Union Clinical Trials Register (DeVito et al 2018, Goldacre et al 2018), so searching
these registers should continue to be an important way of minimizing bias in future
systematic reviews.

13.2.1.2 Inclusion of results from clinical study reports and other
regulatory documents
Another way to minimize risk of bias due to missing results in reviews of regulated inter-
ventions (e.g. drugs, biologics) is to seek clinical study reports (CSRs) and other regula-
tory documents, such as FDADrug Approval Packages (see Chapter 4, Section 4.3.4). CSRs
are comprehensive documents submitted by pharmaceutical companies in an applica-
tion for regulatory approval of a product (Jefferson et al 2018), while FDA Drug Approval
Packages (at the Drugs@FDA website) include summaries of CSRs and related docu-
ments, written by FDA staff (Ladanie et al 2018) (see Chapter 5, Sections 5.5.6 and
5.5.7). For some trials, regulatory data are the only source of information about the trial.
Comparisons of the results available in regulatory documents with results available in
corresponding journal articles have revealed that unfavourable results for benefit out-
comes and adverse events are largely under-reported in journal articles (Wieseler et al
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2013, Maund et al 2014, Schroll et al 2016). A few systematic reviews have found that
conclusions about the benefits and harms of interventions changed after regulatory data
were included in the review (Turner et al 2008, Rodgers et al 2013, Jefferson et al 2014).
CSRs and other regulatory documents have great potential for improving the cred-

ibility of systematic reviews of regulated interventions, but substantial resources are
needed to access them and disentangle the data within them (Schroll et al 2015, Doshi
and Jefferson 2016). Only limited guidance is currently available for review authors con-
sidering embarking on a review including regulatory data. Jefferson and colleagues
provide criteria for assessing whether to include regulatory data for a drug or biologic
in a systematic review (Jefferson et al 2018). The RIAT (Restoring Invisible and Aban-
doned Trials) Support Center website provides useful information, including a taxon-
omy of regulatory documents, a glossary of relevant terms, guidance on how to request
CSRs from regulators and contact information for making requests (Doshi et al 2018).
Also, Ladanie and colleagues provide guidance on how to access and use FDA Drug
Approval Packages for evidence syntheses (Ladanie et al 2018).

13.2.2 Restriction of syntheses to inception cohorts

Review authors can sometimes reduce the risk of bias due to missing results by limiting
the type of studies that are eligible for inclusion. Because systematic reviews tradition-
ally search comprehensively for completed studies, non-reporting biases, poor index-
ing and other factors make it impossible to know whether all studies were in fact
identified. An alternative approach is to review an inception cohort of studies. An
inception cohort refers to a set of studies known to have been initiated, irrespective
of their results (e.g. selecting studies only from trials registers) (Dwan et al 2013). This
means there is a full accounting of which studies do and do not have results available.
There are various ways to assemble an inception cohort. Review authors could pre-

specify that studies will be included only if they were registered prospectively (e.g.
registered before patient enrolment in public, industry or regulatory registers
(Roberts et al 2015, Jørgensen et al 2018), or in grants databases such as NIH
RePORTER (Driessen et al 2015). Or, review authors may obtain unabridged access
to reports of all studies of a product conducted by a particular manufacturer
(Simmonds et al 2013). Alternatively, a clinical trial collaborative group may prospec-
tively plan to undertakemultiple trials using similar designs, participants, interventions
and outcomes, and synthesize the findings of all trials once completed (‘prospective
meta-analysis’; see Chapter 22) (Askie et al 2018). The benefit of these strategies is that
review authors can identify all eligible studies regardless of the P value, magnitude or
direction of any result.
Limiting inclusion to prospectively registered studies avoids the possibility of missing

any eligible studies. However, there is still the potential for missing results in these stud-
ies. Therefore, review authors would need to assess the availability of results for each
study identified (guidance on how to do so is provided in Section 13.3.3). If none of the
prospectively registered studies suffer from selective non-reporting or under-reporting
of results, then none of the syntheses will be at risk of bias due to missing results. Con-
versely, if some results are missing selectively, then there may be a risk of bias in the
synthesis, particularly if the total amount of data missing is large (for more details see
Section 13.3.4).
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Reliance on trials registers to assemble an inception cohort may not be ideal in all
instances. Prospective registration of trials started to increase only after 2004, when the
International Committee of Medical Journal Editors announced that they would no
longer publish trials that were not registered at inception (De Angelis et al 2004).
For this reason, review authors are unlikely to identify any prospectively registered
trials of interventions that were investigated only prior to this time. Also, until quite
recently there have been fewer incentives to register prospectively trials of non-
regulated interventions (Dal-Ré et al 2015), and unless registration rates increase, sys-
tematic reviews of such interventions are unlikely to identify many prospectively regis-
tered trials.
Restricting a synthesis to an inception cohort therefore involves a trade-off between

bias, precision and applicability. For example, limiting inclusion to prospectively regis-
tered trials will avoid risk of bias due to missing results if no results are missing from a
meta-analysis selectively. However, the precision of the meta-analysis may be low if
there are only a few, small, prospectively registered trials. Also, the summary estimate
from the meta-analysis may have limited applicability to the review question if the
questions asked in the prospectively registered trials are narrower in scope than the
questions asked in unregistered or retrospectively registered trials. Therefore, as with
any synthesis, review authors will need to consider precision and applicability when
interpreting the synthesis findings (methods for doing so are covered in Chapters 14
and 15).

13.3 A framework for assessing risk of bias due to missing
results in a synthesis

The strategies outlined in Section 13.2 have a common goal: to prevent bias due to
missing results in systematic reviews. However, neither strategy is infallible on its
own. For example, review authors may have been able to include results from Clinical-
Trials.gov for several unpublished trials, yet unable to obtain unreported results for
other trials. Unless review authors can eliminate the potential for bias due to missing
results (e.g. through prospective meta-analysis; see Chapter 22), they should formally
assess the risk of this bias in their review.
Several methods are available for assessing non-reporting biases. For example, Page

and colleagues identified 15 scales, checklists and domain-based tools designed for
this purpose (Page et al 2018). In addition, many graphical and statistical approaches
seeking to assess non-reporting biases have been developed (including funnel plots
and statistical tests for funnel plot asymmetry) (Mueller et al 2016).
In this section we describe a framework for assessing the risk of bias due to missing

results in a synthesis. This consolidates and extends existing guidance: a key feature is
that review authors are prompted to consider whether a synthesis (e.g. meta-analysis)
is missing any eligible results and, if so, whether the summary estimate can be trusted
given the missing results. The framework consists of the following steps.

1) Select syntheses to assess for risk of bias due to missing results (Section 13.3.1).
2) Define which results are eligible for inclusion in each synthesis (Section 13.3.2).
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3) Record whether any of the studies identified are missing from each synthesis
because results known (or presumed) to have been generated by study investigators
are unavailable: the ‘known unknowns’ (Section 13.3.3).

4) Consider whether each synthesis is likely to be biased because of the missing results
in the studies identified (Section 13.3.4).

5) Consider whether results from additional studies are likely to be missing from each
synthesis: the ‘unknown unknowns’ (Section 13.3.5).

6) Reach an overall judgement about risk of bias due to missing results in each syn-
thesis (Section 13.3.6).

The framework is designed to assess risk of bias in syntheses of quantitative
data about the effects of interventions, regardless of the type of synthesis (e.g.
meta-analysis, or calculation of the median effect estimate across studies). The issue
of non-reporting bias has received little attention in the context of qualitative research,
so more work is needed to develop methods relevant to qualitative evidence syntheses
(Toews et al 2017).
If review authors are unable to, or choose not to, generate a synthesized result (e.g. a

meta-analytic effect estimate, or median effect across studies), then the complete
framework cannot be applied. Nevertheless, review authors should not ignore any
missing results when drawing conclusions in this situation (see Chapter 12). For exam-
ple, the primary outcome in the Cochrane Review of latrepirdine for Alzheimer’s disease
(Chau et al 2015) was clinical global impression of change, measured by CIBIC-Plus
(Clinician’s Interview-Based Impression of Change Plus Caregiver Input). This was
assessed in four trials, but results were available for only one, and review authors sus-
pected selective non-reporting of results in the other three. After describing the mean
difference in CIBIC-Plus from the trial with results available, the review authors con-
cluded that they were uncertain about the efficacy of latrepirdine on clinical global
impression of change, owing to the missing results from three trials.

13.3.1 Selecting syntheses to assess for risk of bias

It may not be feasible to assess risk of bias due to missing results in all syntheses in a
review, particularly if many syntheses are conducted and many studies are eligible for
inclusion in each. Review authors should therefore strive to assess risk of bias due to
missing results in syntheses of outcomes that are most important to patients and
health professionals. Such outcomes will typically be included in ‘Summary of findings’
tables (see Chapter 14). Ideally, review authors should pre-specify the syntheses for
which they plan to assess the risk of bias due to missing results.

13.3.2 Defining eligible results for the synthesis

Review authors should consider what type of results are eligible for inclusion in each
selected synthesis. Eligibility will depend on the specificity of the planned synthesis. For
example, a highly specific approach may be to synthesize mean differences from trials
measuring depression using a particular instrument (the Beck Depression Inventory
(BDI)) at a particular time point (six weeks). A broader approach would be to synthesize
mean differences from trials measuring depression using any instrument, at any time
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up to 12 weeks, while an even broader approach would be to synthesize mean differ-
ences from trials measuring any mental health outcome (e.g. depression or anxiety) at
any time point (López-López et al 2018). The more specific the synthesis, the less likely
it is that a given study result is eligible. For example, if a trial has results only for the BDI
at two weeks, the result would be eligible for inclusion in a synthesis of ‘Depression
scores up to 12 weeks’, but ineligible for inclusion in a synthesis of ‘BDI scores at
six weeks’.
Review authors should aim to define fully the results that are eligible for inclusion in

each synthesis. This is achieved by specifying eligibility criteria for: outcome domain
(e.g. depression), time points (e.g. up to six weeks) and measures/instruments (e.g.
BDI or Hamilton Rating Scale for Depression) as discussed in Chapter 3
(Section 3.2.4.3) as well as how effect estimates will be computed in terms of metrics
(e.g. post-intervention or change from baseline) and methods of aggregation (e.g.
mean scores on depression scales or proportion of people with depression) as dis-
cussed in Chapter 6 (Mayo-Wilson et al 2017). It is best to pre-define eligibility criteria
for all of these elements, although the measurement instruments, timing and analysis
metrics used in studies identified can be difficult to predict, so plans may need to be
refined. Failure to define fully which results are eligible makes it far more difficult to
assess which results are missing.
How the synthesis is defined has implications both for the risk of bias due to missing

results and the related risk of bias in selection of the reported result, which is addressed
in the RoB 2 (Chapter 8) and ROBINS-I (Chapter 25) tools for assessing risk of bias in
study results. For example, consider a trial where the BDI was administered at two
and six weeks, but the six-week result was withheld because it was statistically non-
significant. If the synthesis was defined as ‘BDI scores up to eight weeks’, the available
two-week result would be eligible. If there were no missing results from other trials,
there would be no risk of bias due to missing results in this synthesis, because each
trial contributed an eligible result. However, the two-week result would be at high risk
of bias in selection of the reported result. This example demonstrates that the risk of
bias due to missing results in a synthesis depends not only on the availability of results
in the eligible studies, but also on how review authors define the synthesis.

13.3.3 Recording whether any of the studies identified are missing from each
synthesis because results known (or presumed) to have been generated by
study investigators are unavailable: the ‘known unknowns’

Once eligible results have been defined for each synthesis, review authors can inves-
tigate the availability of such results for all studies identified. Key questions to consider
are as follows.

1) Are the particular results I am seeking unavailable for any study?
2) If so, are the results unavailable because of the P value, magnitude or direction of

the results?

Review authors should try to identify results that are completely or partially unavail-
able because of the P value, magnitude or direction of the results (selective non-
reporting or under-reporting of results, respectively). By completely unavailable, we
mean that no information is available to estimate an intervention effect or to make
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any other inference (including a qualitative conclusion about the direction of effect)
in any of the sources identified or from the study authors/sponsors. By partially una-
vailable, we mean that some, but not all, of the information necessary to include a
result in a meta-analysis is available (e.g. study authors report only that results were
‘non-significant’ rather than providing summary statistics, or they provide a point esti-
mate without any measure of precision) (Chan et al 2004).
There are several ways to detect selective non-reporting or under-reporting of

results, although a thorough assessment is likely to be labour intensive. It is helpful
to start by assembling all sources of information obtained about each study (see
Chapter 4, Section 4.6.2). This may include the trial’s register record, protocol, statis-
tical analysis plan (SAP), reports of the results of the study (e.g. journal articles, CSRs) or
any information obtained directly from the study authors or sponsor. Themore sources
of information sought, the more reliable the assessment is likely to be. Studies should
be assessed regardless of whether a report of the results is available. For example, in
some cases review authors may only know about a study because there is a registration
record of it in ClinicalTrials.gov. If a long time has passed since the study was com-
pleted, it is possible that the results are not available because the investigators con-
sidered them unworthy of dissemination. Ignoring this registered study with no
results available could lead to less concern about the risk of bias due to missing results
than is warranted.
If study plans are available (e.g. in a trials register, protocol or statistical analysis

plan), details of outcomes that were assessed can be compared with those for which
results are available. Suspicion is raised if results are unavailable for any outcomes that
were pre-specified in these sources. However, outcomes pre-specified in a trials register
may differ from the outcomes pre-specified in a trial protocol (Chan et al 2017), and the
latest version of a trials register record may differ from the initial version. Such differ-
ences may be explained by legitimate, yet undeclared, changes to the study plans: pre-
specification of an outcome does not guarantee it was actually assessed. Further infor-
mation should be sought from study authors or sponsors to resolve any unexplained
discrepancies between sources.
If no study plans are available, then other approaches can be used to uncover missing

results. Abstracts of presentations about the study may contain information about out-
comes not subsequently mentioned in publications, or the methods section of a pub-
lished article may list outcomes not subsequently mentioned in the results section.
Missing information that seems certain to have been recorded is of particular inter-

est. For example, some measurements, such as systolic and diastolic blood pressure,
are expected to appear together, so that if only one is reported we should wonder why.
Williamson and Gamble give several examples, including a Cochrane Review in which
all nine trials reported the outcome ‘treatment failure’ but only five reported mortality
(Williamson and Gamble 2005). Since mortality was part of the definition of treatment
failure, those data must have been collected in the other four trials. Searches of the
Core Outcome Measures in Effectiveness Trials (COMET) database can help review
authors identify core sets of outcomes that are expected to have been measured in
all trials of particular conditions (Williamson and Clarke 2012), although review authors
should keep in mind that trials conducted before the publication of a relevant core out-
come set are less likely to have measured the relevant outcomes, and adoption of core
outcome sets may not be complete even after they have been published.
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If the particular results that review authors seek are not reported in any of the sources
identified (e.g. journal article, trials results register, CSR), review authors should consider
requesting the required result from the study authors or sponsors. Authors or sponsors
may be able to calculate the result for the review authors or send the individual partic-
ipant data for review authors to analyse themselves. Failure to obtain the results
requested should be acknowledged when discussing the limitations of the review proc-
ess. In some cases, review authors might be able to compute or impute missing details
(e.g. imputing standard deviations; see Chapter 6, Section 6.5.2).
Once review authors have identified that a study result is unavailable, they must

consider whether this is because of the P value, magnitude or direction of the result.
The Outcome Reporting Bias In Trials (ORBIT) system for classifying reasons for missing
results (Kirkham et al 2018) can be used to do this. Examples of scenarios where it may
be reasonable to assume that a result is not unavailable because of the P value,
magnitude or direction of the result include:

• it is clear (or very likely) that the outcome of interest was not measured in the study
(based on examination of the study protocol or SAP, or correspondence with the
authors/sponsors);

• the instrument or equipment needed to measure the outcome of interest was not
available at the time the study was conducted; and

• the outcome of interest was measured but data were not analysed owing to a fault in
the measurement instrument, or substantial missing data.

Examples of scenarios where it may be reasonable to suspect that a result ismissing
because of the P value, magnitude or direction of the result include:

• study authors claimed to have measured the outcome, but no results were available
and no explanation for this is provided;

• the between-group difference for the result of interest was reported as being ‘non-
significant’, whereas summary statistics (e.g. means and standard deviations) per
intervention group were available for other outcomes in the study when the differ-
ence was statistically significant;

• results are missing for an outcome that tends to be measured together with another
(e.g. results are available for cause-specific mortality and are favourable to the exper-
imental intervention, yet results for all-cause mortality are missing);

• summary statistics (number of events, or mean scores) are available only globally
across all groups (e.g. study authors claim that 10 of 100 participants in the trial expe-
rienced adverse events, but do not report the number of events by intervention
group); and

• the outcome is expected to have been measured, and the study is conducted by
authors or sponsored by an organization with a vested interest in the intervention
who may be inclined to withhold results that are unfavourable to the intervention
(guidance on assessing conflicts of interest is provided in Chapter 7).

Typically, selective non-reporting or under-reporting of results manifests as the sup-
pression of results that are statistically non-significant or unfavourable to the experi-
mental intervention. However, in some instances the opposite may occur. For example,
a trialist who believes that an intervention is ineffective may choose not to report
results indicating a difference in favour of the intervention over placebo. Therefore,
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review authors should consider the interventions being compared when considering
reasons for missing results.
Review authors may find it useful to construct a matrix (with rows as studies and

columns as syntheses) indicating the availability of study results for each synthesis
to be assessed for risk of bias due to missing results. Table 13.3.a shows an example
of amatrix indicating the availability of results for three syntheses in a Cochrane Review
comparing selective serotonin reuptake inhibitors (SSRIs) with placebo for fibromyal-
gia (Walitt et al 2015). Results were available from all trials for the synthesis of ‘number
of patients with at least 30% pain reduction’. For the synthesis of ‘mean fatigue scores’,
results were unavailable for two trials, but for a reason unrelated to the P value, mag-
nitude or direction of the results (fatigue was not measured in these studies). For the
synthesis of ‘mean depression scores’, results were unavailable for one study, likely on
the basis of the P value (the trialists reported only that there was a ‘non-significant’
difference between groups, and review authors’ attempts to obtain the necessary data
for the synthesis were unsuccessful). Kirkham and colleagues have developed template

Table 13.3.a Matrix indicating availability of study results for three syntheses of trials comparing
selective serotonin reuptake inhibitors (SSRIs) with placebo for fibromyalgia (Walitt et al 2015).
Adapted from Kirkham et al (2018)

Study ID

Sample
size
(SSRI)

Sample
size

(placebo)

Syntheses assessed for risk of bias

No. with at least
30% pain
reduction

Mean fatigue
scores

(any scale)

Mean depression
scores

(any scale)

Anderberg
2000

17 18 ✓ ✓ ✓

Arnold 2002 25 26 ✓ ✓ ✓

Goldenberg
1996

22 19 ✓ ✓ ✓

GSK 2005 26 26 ✓ – ✓

Norregaard
1995

20 21 ✓ ✓ ✓

Patkar 2007 58 58 ✓ – X

Wolfe 1994 15 9 ✓ ✓ ✓

Key:

✓ A study result is available for inclusion in the synthesis

X No study result is available for inclusion, (probably) because the P value, magnitude or direction of the
results generated were considered unfavourable by the study investigators

– No study result is available for inclusion, (probably) because the outcome was not assessed, or for a
reason unrelated to the P value, magnitude or direction of the results

? No study result is available for inclusion, and it is unclear if the outcome was assessed in the study
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matrices that enable review authors to classify the reporting of results of clinical trials
more specifically for both benefit and harm outcomes (Kirkham et al 2018).

13.3.4 Considering whether a synthesis is likely to be biased because of the
missing results in the studies identified

If review authors suspect that some study results are unavailable because of the
P value, magnitude or direction of the results, they should consider the potential
impact of the missingness on the synthesis. Table 13.3.a shows that review authors sus-
pected selective non-reporting of results for depression scores in the Patkar 2007 trial.
A useful device is to draw readers’ attention to this by displaying the trial in a forest
plot, underneath a meta-analysis of the trials with available results (Figure 13.3.a).
Examination of the sample sizes of the trials with available and missing results shows
that nearly one-third of the total sample size across all eligible trials ((58 + 58)/(125 +
119 + 58 + 58) = 0.32) comes from the Patkar 2007 trial. Given that we know the result for
the Patkar 2007 trial to be statistically non-significant, it would be reasonable to sus-
pect that its inclusion in the synthesis would reduce the magnitude of the summary
estimate. Thus, there is a risk of bias due to missing results in the synthesis of depres-
sion scores.

Missing results

Available results

Anderberg 2000

Study Weight SMD (95% Cl)
%

n1 n2

Arnold 2002

Goldenberg 1996

GSK 2005

Norregaard 1995

Wolfe 1994

Subtotal (l-squared = 0.0%, P = 0.584)

Patkar 2007

14.67

20.18

17.18

21.54

17.43

9.00

100.00

–0.31 (–0.98 to 0.36)

–0.74 (–1.31 to –0.17)

–0.26 (–0.88 to 0.36)

–0.44 (–0.99 to 0.11)

0.01 (–0.60 to 0.62)

–0.67 (–1.52 to 0.18)

–0.39 (–0.65 to –0.14)

17

25

22

26

20

15

18

26

19

26

21

9

58 580.00 P > 0.05

–1.5 –1 –0.5 0 0.5

Favours placeboFavours SSRIs

1

Figure 13.3.a Forest plot displaying available and missing results for a meta-analysis of depression
scores (data from Walitt et al 2015). Reproduced with permission of John Wiley and Sons

13 Assessing risk of bias due to missing results

360



In other cases, knowledge of the size of eligible studies may lead to reassurance that
a meta-analysis is unlikely to be biased due to missing results. For example, López-
López and colleagues performed a network meta-analysis of trials of oral anticoagu-
lants for prevention of stroke in atrial fibrillation (López-López et al 2017). Among
the five larger phase III trials comparing a direct acting oral anticoagulant with warfarin
(each of which included thousands or tens of thousands of participants), results were
fully available for important outcomes including stroke or systemic embolism, ischae-
mic stroke, myocardial infarction, all-cause mortality, major bleeding, intracranial
bleeding and gastrointestinal bleeding. The review authors felt that the inability to
include results for these outcomes from a few much smaller eligible trials (with at most
a few hundred participants) was unlikely to change the summary estimates of these
meta-analyses (López-López et al 2017).
Copas and colleagues have developed a more sophisticated model-based sensitivity

analysis that explores the robustness of the meta-analytic estimate to the definitely
missing results (Copas et al 2017). Its application requires that review authors use
the ORBIT classification system (see Section 13.3.3). Review authors applying this
method should always present the summary estimate from the sensitivity analysis
alongside the primary estimate. Consultation with a statistician is recommended for
its implementation.
When the amount of data missing from the synthesis due to selective non-reporting

or under-reporting of results is very high, review authors may decide not to report a
meta-analysis of the studies with results available, on the basis that such a synthesized
estimate could be seriously biased. In other cases, review authors may be uncertain
whether selective non-reporting or under-reporting of results occurred, because it
was unclear whether the outcome of interest was even assessed. This uncertainty
may arise when study plans (e.g. trials register record or protocol) were unavailable,
and studies in the field are known to vary in what they assess. If outcome assessment
was unclear for a large proportion of the studies identified, review authors might be
wary when drawing conclusions about the synthesis, and alert users to the possibility
that it could be missing additional results from these studies.

13.3.5 Assessing whether results from additional studies are likely to be
missing from a synthesis: the ‘unknown unknowns’

By this point, review authors may have judged that the synthesis they are assessing is
likely to be biased because results are missing systematically from a considerable pro-
portion of studies identified. It would be reasonable then to classify the synthesis as
being at high risk of bias due to missing results and proceed to assess another synthesis.
Alternatively, it may be clear that results for some of the studies identified are def-

initely missing, but the potential impact on the synthesis might be considered to be
minimal. This does not necessarily mean that the synthesis is free of bias due tomissing
results. It is possible that additional results are missing from the synthesis, particularly
due to studies that have been undertaken but not reported at all, so that the review
authors are unaware of them.
In this section, we describe methods that can be used to assess the possibility that

such additional results – the ‘unknown unknowns’ – are missing from a synthesis.
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13.3.5.1 Qualitative signals to raise suspicion of additional missing results
Whether results from additional studies are likely to be missing will depend on how
studies are defined to be eligible for inclusion in the review. If only studies in an incep-
tion cohort (e.g. prospectively registered trials) are eligible, then by design none of the
studies will have been missed. If studies outside an inception cohort are eligible, then
review authors should consider how comprehensive their search was. A search of MED-
LINE alone is unlikely to have captured all relevant studies, and failure to search spe-
cialized databases such as CINAHL and PsycINFO when the topic of the review is related
to the focus of the database may increase the chances that eligible studies were missed
(Bramer et al 2017). If evaluating an intervention that is more commonly delivered in
countries speaking a language other than English (e.g. traditional Chinese medicine
interventions), it may be reasonable to assume additional eligible studies are likely
to have been missed if the search is limited to databases containing only English-
language articles (Morrison et al 2012).
Further, if the research area is fast-moving, the availability of study information may

be subject to time-lag bias, where studies with positive results are available more
quickly than those with negative results (Hopewell et al 2007). If results of only a
few, early studies are available, it may be reasonable to assume that a synthesis is miss-
ing results from additional studies that have been conducted but not yet disseminated.
In addition, evidence suggests that phase III clinical trials (generally larger trials at a
late stage of intervention development) are more likely to be published than phase
II clinical trials (smaller trials at an earlier stage of intervention development): odds
ratio 2.0 (95% CI 1.6 to 2.5) (Schmucker et al 2014). Therefore, review authors might
be more concerned that there are additional missing studies when evaluating a new
biomedical intervention that has not yet reached phase III testing.
The extent towhich a study can be suppressed varies. For example, trials of population-

wide screening programmes ormassmedia campaigns are often expensive, requiremany
yearsof follow-up,and involvehundredsof thousandsofparticipants. It ismoredifficult to
hide such studies from the public than trials that can be conducted quickly and inexpen-
sively. Therefore, reviewauthors should consider the typical sizeandcomplexity of eligible
studies when considering the likelihood of additional missing studies.
In all of these cases, a judgement is made by review authors on the basis of the lim-

ited information they have available. We now turn to graphical and statistical methods
that may provide more information about the extent of missing results.

13.3.5.2 Funnel plots
Funnel plots have long been used to assess the possibility that results are missing from
ameta-analysis in amanner that is related to their magnitude or P value. However, they
require careful interpretation (Sterne et al 2011).
A funnel plot is a simple scatter plot of intervention effect estimates from individual

studies against a measure of each study’s size or precision. In common with forest plots,
it ismost common to plot the effect estimates on the horizontal scale, and thus themeas-
ure of study size on the vertical axis. This is the opposite of conventional graphical dis-
plays for scatter plots, in which the outcome (e.g. intervention effect) is plotted on the
vertical axis and the covariate (e.g. study size) is plotted on the horizontal axis.
The name ‘funnel plot’ arises from the fact that precision of the estimated interven-

tion effect increases as the size of the study increases. Effect estimates from small
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studies will therefore typically scatter more widely at the bottom of the graph, with the
spread narrowing among larger studies. Ideally, the plot should approximately resem-
ble a symmetrical (inverted) funnel. This is illustrated in Panel A of Figure 13.3.b in
which the effect estimates in the larger studies are close to the true intervention odds
ratio of 0.4. If there is bias due to missing results, for example because smaller studies
without statistically significant effects (shown as open circles in Figure 13.3.b, Panel A)
remain unpublished, this will lead to an asymmetrical appearance of the funnel plot
with a gap at the bottom corner of the graph (Panel B). In this situation the summary
estimate calculated in ameta-analysis will tend to over-estimate the intervention effect
(Egger et al 1997). The more pronounced the asymmetry, the more likely it is that the
amount of bias in the meta-analysis will be substantial.
We recommend that when generating funnel plots, effect estimates be plotted against

the standard error of the effect estimate, rather than against the total sample size, on the
vertical axis (Sterne andEgger 2001). This is because the statistical powerof a trial is deter-
mined by factors in addition to sample size, such as the number of participants experien-
cing the event for dichotomous outcomes, and the standard deviation of responses for
continuousoutcomes. For example, a studywith100,000 participants and10events is less
likely to show a statistically significant intervention effect than a study with 1000 partici-
pants and 100 events. The standard error summarizes these other factors. Plotting stand-
ard errors on a reversed scale places the larger, ormost powerful, studies towards the top
of the plot. Another advantage of using standard errors is that a simple triangular region
canbeplotted,withinwhich95%ofstudieswouldbeexpected to lie in theabsenceofboth
biasesandheterogeneity. These regionsare included inFigure13.3.b. Funnelplotsofeffect
estimates against their standard errors (on a reversed scale) can be created using RevMan
and other statistical software. A triangular 95% confidence region based on a fixed-effect
meta-analysis can be included in the plot, and different plotting symbols can be used to
allow studies in different subgroups to be identified.
Ratio measures of intervention effect (such as odds ratios and risk ratios) should be

plottedona logarithmic scale. This ensures that effects of the samemagnitudebutoppo-
site directions (e.g. odds ratios of 0.5 and 2) are equidistant from 1.0. For outcomes
measured on a continuous (numerical) scale (e.g. blood pressure, depression score)
intervention effects aremeasuredasmeandifferences or standardizedmeandifferences
(SMDs), which should therefore be used as the horizontal axis in funnel plots.
Some authors have argued that visual interpretation of funnel plots is too subjective

to be useful. In particular, Terrin and colleagues found that researchers had only a lim-
ited ability to identify correctly funnel plots for meta-analyses that were subject to bias
due to missing results (Terrin et al 2005).

13.3.5.3 Different reasons for funnel plot asymmetry
Although funnel plot asymmetry has long been equated with non-reporting bias (Light
and Pillemer 1984, Begg and Berlin 1988), the funnel plot should be seen as a generic
means of displaying small-study effects: a tendency for the intervention effects esti-
mated in smaller studies to differ from those estimated in larger studies (Sterne and
Egger 2001). Small-study effects may be due to reasons other than non-reporting bias
(Egger et al 1997, Sterne et al 2011), some of which are shown in Table 13.3.b.
A proposed amendment to the funnel plot is to include contour lines corresponding to

perceived ‘milestones’ of statistical significance (P = 0.01, 0.05, 0.1, etc (Peters et al 2008)).
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This allows the statistical significance of study estimates, and areas in which studies are
perceived tobemissing, tobeconsidered.Suchcontour-enhanced funnelplotsmayhelp
review authors to differentiate asymmetry that is due to non-reporting biases from that
due to other factors. For example, if studies appear to be missing in areas where results
would be statistically non-significant and unfavourable to the experimental intervention
(see Figure 13.3.c, Panel A) then this adds credence to thepossibility that the asymmetry is
duetonon-reportingbiases.Conversely, if thesupposedmissingstudiesare inareaswhere
results would be statistically significant and favourable to the experimental intervention
(seeFigure13.3.c, PanelB), thiswould suggest the causeof theasymmetry ismore likely to
be due to factors other than non-reporting biases (see Table 13.3.b).

13.3.5.4 Tests for funnel plot asymmetry
Tests for funnel plot asymmetry (small-study effects) examine whether the association
between estimated intervention effects and a measure of study size is greater than
expected to occur by chance (Sterne et al 2011). Several tests are available, the first
and most well-known of which is the Egger test (Egger et al 1997). The tests typically
have low power, which means that non-reporting biases cannot generally be excluded,
and in practice they do not always lead to the same conclusions about the presence of
small-study effects (Lin et al 2018).
After reviewing the results of simulation studies evaluating test characteristics, and

based on theoretical considerations, Sterne and colleagues (Sterne et al 2011) made
the following recommendations.

• As a rule of thumb, tests for funnel plot asymmetry should be used only when there
are at least 10 studies included in the meta-analysis, because when there are fewer
studies the power of the tests is low. Only 24% of a random sample of Cochrane
Reviews indexed in 2014 included a meta-analysis with at least 10 studies

Table 13.3.b Possible sources of asymmetry in funnel plots. Adapted from Egger et al (1997)

1) Non-reporting biases

• Entire study reports, or particular results, of smaller studies are unavailable because of the nature
of the findings (e.g. statistical significance, direction of effect).

2) Poor methodological quality leading to spuriously inflated effects in smaller studies

• Trials with less methodological rigour tend to show larger intervention effects (Page et al 2016a).
Therefore, trials that would have been ‘negative’, if conducted and analysed properly, may become
‘positive’. Asymmetry can arise when some smaller studies are of lower methodological quality and
therefore produce larger intervention effect estimates (Figure 13.3.b, Panel C).

3) True heterogeneity

• Substantial benefit may be seen only in patients at high risk for the outcome that is affected by the
intervention, and usually these high-risk patients are more likely to be included in small, early
studies (Davey Smith and Egger 1994).

• Some interventions may have been implemented less thoroughly in larger trials and may,
therefore, have resulted in smaller estimates of the intervention effect (Stuck et al 1998).

4) Artefactual

• Some effect estimates (e.g. odds ratios and standardizedmean differences) are naturally correlated
with their standard errors, and this can produce spurious asymmetry in a funnel plot (Sterne et al
2011, Zwetsloot et al 2017).

5) Chance
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(Page et al 2016b), which implies that tests for funnel plot asymmetry are likely to be
applicable in a minority of meta-analyses.

• Tests should not be used if studies are of similar size (similar standard errors of inter-
vention effect estimates).

• Results of tests for funnel plot asymmetry should be interpreted in the light of visual
inspection of the funnel plot (see Sections 13.3.5.2 and 13.3.5.3). Examining a
contour-enhanced funnel plot may further aid interpretation (see Figure 13.3.c).

• When there is evidence of funnel plot asymmetry from a test, non-reporting biases
should be considered as one of several possible explanations, and review authors
should attempt to distinguish the different possible reasons for it (see Table 13.3.b).

Sterne and colleagues provided more detailed suggestions specific to intervention
effects measured asmean differences, SMDs, odds ratios, risk ratios and risk differences
(Sterne et al 2011). Some tests, including the original Egger test, are not recommended
for application to odds ratios and SMDs because of artefactual correlations between
the effect size and its standard error (Sterne et al 2011, Zwetsloot et al 2017).
For odds ratios, methods proposed by Harbord and colleagues and Peters and collea-
gues overcome this problem (Harbord et al 2006, Peters et al 2006).
None of the recommended tests for funnel plot asymmetry is implemented in RevMan;

Jin and colleagues describe other software available to implement them (Jin et al 2015).
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13.3.5.5 Interpreting funnel plots: summary
To summarize, funnel plot asymmetry should not be considered to be diagnostic for
the presence of non-reporting bias. Tests for funnel plot asymmetry are applicable
only in the minority of meta-analyses for which their use is appropriate. If there is evi-
dence of funnel plot asymmetry then review authors should attempt to distinguish the
different possible reasons for it listed in Table 13.3.b. For example, considering the par-
ticular intervention, and the circumstances in which it was implemented in different
studies can help identify true heterogeneity as a cause of funnel plot asymmetry. Nev-
ertheless, a concern remains that visual interpretation of funnel plots is inherently
subjective.

13.3.5.6 Sensitivity analyses
When review authors are concerned that small-study effects are influencing the results
of ameta-analysis, they may want to conduct sensitivity analyses to explore the robust-
ness of themeta-analysis conclusions to different assumptions about the causes of fun-
nel plot asymmetry. The following approaches have been suggested. Ideally, these
should be pre-specified.

Comparing fixed-effect and random-effects estimates In the presence of heterogeneity,
a random-effects meta-analysis weights the studies relatively more equally than a
fixed-effect analysis (see Chapter 10, Section 10.10.4.1). It follows that in the pres-
ence of small-study effects, in which the intervention effect is systematically different
in the smaller compared with the larger studies, the random-effects estimate of the
intervention effect will shift towards the results of the smaller studies. We recommend
that when review authors are concerned about the influence of small-study effects on
the results of a meta-analysis in which there is evidence of between-study heteroge-
neity (I2 > 0), they compare the fixed-effect and random-effects estimates of the inter-
vention effect. If the estimates are similar, then any small-study effects have little effect
on the intervention effect estimate. If the random-effects estimate has shifted towards
the results of the smaller studies, review authors should consider whether it is reason-
able to conclude that the intervention was genuinely different in the smaller studies, or
if results of smaller studies were disseminated selectively. Formal investigations of het-
erogeneity may reveal other explanations for funnel plot asymmetry, in which case
presentation of results should focus on these. If the larger studies tend to be those
conducted with more methodological rigour, or conducted in circumstances more typ-
ical of the use of the intervention in practice, then review authors should consider
reporting the results of meta-analyses restricted to the larger, more rigorous studies.

Selection models Selection models were developed to estimate intervention effects
‘corrected’ for bias due to missing results (McShane et al 2016). The methods are based
on the assumption that the size, direction and P value of study results and the size of
studies influences the probability of their publication. For example, Copas proposed a
model (different from that described in Section 13.3.4) in which the probability that a
study is included in a meta-analysis depends on its standard error. Since it is not pos-
sible to estimate all model parameters precisely, he advocates sensitivity analyses in
which the intervention effect is estimated under a range of assumptions about the
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severity of the selection bias (Copas 1999). These analyses show how the estimated
intervention effect (and confidence interval) changes as the assumed amount of selec-
tion bias increases. If the estimates are relatively stable regardless of the selectionmodel
assumed, this suggests that the unadjusted estimate is unlikely to be influenced by non-
reporting biases. On the other hand, if the estimates vary considerably depending on the
selection model assumed, this suggests that non-reporting biases may well drive the
unadjusted estimate (McShane et al 2016).
A major problem with selection models is that they assume that mechanisms leading

to small-study effects other than non-reporting biases (see Table 13.3.b) are not oper-
ating, and may give misleading results if this assumption is not correct. Jin and collea-
gues summarize the advantages and disadvantages of eight selection models, indicate
circumstances in which each can be used, and describe software available to imple-
ment them (Jin et al 2015). Given the complexity of the models, consultation with a
statistician is recommended for their implementation.

Regression-based methods Moreno and colleagues propose an approach, based on
tests for funnel plot asymmetry, in which a regression line to the funnel plot is extra-
polated to estimate the effect of intervention in a very large study (Moreno et al 2009).
They regress effect size on within-study variance, and incorporate heterogeneity as a
multiplicative rather than additive component (Moreno et al 2012). This approach gives
more weight to the larger studies than in either a standard fixed-effect or random-
effects meta-analysis, so that the adjusted estimate will be closer to the effects
observed in the larger studies. Rücker and colleagues combine a similar approach with
a shrinkage procedure (Rücker et al 2011a, Rücker et al 2011b). The underlying model is
an extended random-effects model, with an additional parameter representing the bias
introduced by small-study effects.
In common with tests for funnel plot asymmetry, regression-based methods to esti-

mate the effect of intervention in a large study should be used only when there are
sufficient studies (at least 10) to allow appropriate estimation of the regression line.
When all the studies are small, extrapolation to an infinitely sized study may produce
effect estimates that are more extreme than any of the existing studies, and if the
approach is used in such a situation it might be more appropriate to extrapolate only
as far as the largest observed study.

13.3.6 Reaching an overall judgement about risk of bias due to
missing results

We have described several approaches review authors can use to assess the risk of bias
in a synthesis when entire studies or particular results within studies are missing selec-
tively. These include comparison of protocols with published reports to detect selective
non-reporting of results (Section 13.3.3), consideration of qualitative signals that
suggest not all studies were identified (Section 13.3.5.1), and the use of funnel plots
to identify small-study effects, for which non-reporting bias is one cause
(Section 13.3.5.3).
Reviewauthors should consider the findings of each approachwhen reachinganoverall

judgement about the risk of bias due tomissing results in a synthesis. For example, selec-
tive non-reporting of results may not have been detected in any of the studies identified.
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However, if the search for studieswasnot comprehensive, or if a contour-enhanced funnel
plot or sensitivity analysis suggests results are missing systematically, then it would be
reasonable to conclude that the synthesis is at risk of bias due to missing results. On
theotherhand, if the review isbasedonan inceptioncohort, such thatall studies thathave
beenconductedareknown,and these studieswere fully reported in linewith their analysis
plans, then there would be low risk of bias due to missing results in a synthesis. Indeed,
such a low risk-of-bias judgementwould carry even in the presence of asymmetry in a fun-
nelplot; although itwouldbe important to investigate the reason for thisasymmetry (e.g. it
might be due to systematic differences in the PICOs of smaller and larger studies, or to
problems in the methodological conduct of the smaller studies).

13.4 Summary

There is clear evidence that selective dissemination of study reports and results leads
to an over-estimate of the benefits and under-estimate of the harms of interventions in
systematic reviews and meta-analyses. However, overcoming, detecting and correcting
for bias due to missing results is difficult. Comprehensive searches are important, but
are not on their own sufficient to prevent substantial potential biases. Review authors
should therefore consider the risk of bias due tomissing results in syntheses included in
their review (see MECIR Box 13.4.a).
We have presented a framework for assessing risk of bias due to missing results in a

synthesis. Of the approaches described, a thorough assessment of selective non-
reporting or under-reporting of results in the studies identified (Section 13.3.3) is likely
to be the most labour intensive, yet the most valuable. Because the number of identified
studies with results missing for a given synthesis is known, the impact of selective non-
reporting or under-reporting of results can be quantified more easily (see Section 13.3.4)
than the impact of selective non-publication of an unknown number of studies.

MECIR Box 13.4.a Relevant expectations for conduct of intervention reviews

C73: Investigating risk of bias due to missing results (Highly desirable)

Consider the potential impact of non-
reporting biases on the results of the review
or the meta-analysis it contains.

There is overwhelming evidence of non-
reporting biases of various types. These
can be addressed at various points of the
review. A thorough search, and attempts
to obtain unpublished results, might
minimize the risk. Analyses of the results
of included studies, for example using
funnel plots, can sometimes help
determine the possible extent of the
problem, as can attempts to identify study
protocols, which should be a routine
feature of Cochrane Reviews.
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The value of the other methods described in the framework will depend on the circum-
stances of the review. For example, if review authors suspect that a synthesis is biased
because results were missing selectively from a large proportion of the studies identified,
then the graphical and statistical methods outlined in Section 13.3.5 (e.g. funnel plots)
are unlikely to change their judgement. However, funnel plots, tests for funnel plot asym-
metry and other sensitivity analyses may be useful in cases where protocols or records
from trials registers were unavailable for most studies, making it difficult to assess selec-
tive non-reporting or under-reporting of results reliably. When there is evidence of funnel
plot asymmetry, non-reporting biases should be considered as only one of a number of
possible explanations: review authors should attempt to understand the sources of the
asymmetry, and consider their implications in the light of any qualitative signals that
raise a suspicion of additional missing results, and other sensitivity analyses.
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Completing ‘Summary of findings’ tables and
grading the certainty of the evidence
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Statistical Methods Group

KEY POINTS

• A ‘Summary of findings’ table for a given comparison of interventions provides key
information concerning the magnitudes of relative and absolute effects of the inter-
ventions examined, the amount of available evidence and the certainty (or quality) of
available evidence.

• ‘Summary of findings’ tables include a row for each important outcome (up to a max-
imum of seven). Accepted formats of ‘Summary of findings’ tables and interactive
‘Summary of findings’ tables can be produced using GRADE’s software GRADEpro GDT.

• Cochrane has adopted the GRADE approach (Grading of Recommendations Assess-
ment, Development and Evaluation) for assessing certainty (or quality) of a body of
evidence.

• The GRADE approach specifies four levels of the certainty for a body of evidence for a
given outcome: high, moderate, low and very low.

• GRADE assessments of certainty are determined through consideration of five
domains: risk of bias, inconsistency, indirectness, imprecision and publication bias.
For evidence from non-randomized studies and rarely randomized studies, assess-
ments can then be upgraded through consideration of three further domains.

14.1 ‘Summary of findings’ tables

14.1.1 Introduction to ‘Summary of findings’ tables

‘Summary of findings’ tables present the main findings of a review in a transparent,
structured and simple tabular format. In particular, they provide key information

This chapter should be cited as: Schünemann HJ, Higgins JPT, Vist GE, Glasziou P, Akl EA, Skoetz N, Guyatt
GH. Chapter 14: Completing ‘Summary of findings’ tables and grading the certainty of the evidence. In:
Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for
Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 375–402.
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concerning the certainty or quality of evidence (i.e. the confidence or certainty in the
range of an effect estimate or an association), the magnitude of effect of the interven-
tions examined, and the sum of available data on the main outcomes. Cochrane
Reviews should incorporate ‘Summary of findings’ tables during planning and publica-
tion, and should have at least one key ‘Summary of findings’ table representing the
most important comparisons. Some reviews may include more than one ‘Summary
of findings’ table, for example if the review addresses more than one major compari-
son, or includes substantially different populations that require separate tables (e.g.
because the effects differ or it is important to show results separately). In the Cochrane
Database of Systematic Reviews (CDSR), the principal ‘Summary of findings’ table of a
review appears at the beginning, before the Background section. Other ‘Summary of
findings’ tables appear between the Results and Discussion sections.

14.1.2 Selecting outcomes for ‘Summary of findings’ tables

Planning for the ‘Summary of findings’ table starts early in the systematic review, with
the selection of the outcomes to be included in: (i) the review; and (ii) the ‘Summary of
findings’ table. This is a crucial step, and one that review authors need to address
carefully.
To ensure production of optimally useful information, Cochrane Reviews begin by

developing a review question and by listing all main outcomes that are important to
patients and other decision makers (see Chapters 2 and 3). The GRADE approach to
assessing the certainty of the evidence (see Section 14.2) defines and operationalizes
a rating process that helps separate outcomes into those that are critical, important or
not important for decision making. Consultation and feedback on the review protocol,
including from consumers and other decision makers, can enhance this process.
Critical outcomes are likely to include clearly important endpoints; typical examples

include mortality and major morbidity (such as strokes and myocardial infarction).
However, they may also represent frequent minor and rare major side effects, symp-
toms, quality of life, burdens associated with treatment, and resource issues (costs).
Burdens represent the impact of healthcare workload on patient function and well-
being, and include the demands of adhering to an intervention that patients or care-
givers (e.g. family) may dislike, such as having to undergo more frequent tests, or the
restrictions on lifestyle that certain interventions require (Spencer-Bonilla et al 2017).
Frequently, when formulating questions that include all patient-important outcomes

for decision making, review authors will confront reports of studies that have not
included all these outcomes. This is particularly true for adverse outcomes. For
instance, randomized trials might contribute evidence on intended effects, and on fre-
quent, relatively minor side effects, but not report on rare adverse outcomes such as
suicide attempts. Chapter 19 discusses strategies for addressing adverse effects. To
obtain data for all important outcomes it may be necessary to examine the results
of non-randomized studies (see Chapter 24). Cochrane, in collaboration with others,
has developed guidance for review authors to support their decision about when to
look for and include non-randomized studies (Schünemann et al 2013).
If a review includes only randomized trials, these trials may not address all important

outcomes and it may therefore not be possible to address these outcomes within the
constraints of the review. Review authors should acknowledge these limitations and
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make them transparent to readers. Review authors are encouraged to include non-
randomized studies to examine rare or long-term adverse effects that may not ade-
quately be studied in randomized trials. This raises the possibility that harm outcomes
may come from studies inwhich participants differ from those in studies used in the anal-
ysis of benefit. Review authors will then need to consider howmuch such differences are
likely to impact on the findings, and this will influence the certainty of evidence because
of concerns about indirectness related to the population (see Section 14.2.2).
Non-randomized studies can provide important information not only when rando-

mized trials do not report on an outcome or randomized trials suffer from indirectness,
but also when the evidence from randomized trials is rated as very low and non-
randomized studies provide evidence of higher certainty. Further discussion of these
issues appears also in Chapter 24.

14.1.3 General template for ‘Summary of findings’ tables

Several alternative standard versions of ‘Summary of findings’ tables have been devel-
oped to ensure consistency and ease of use across reviews, inclusion of themost impor-
tant information needed by decision makers, and optimal presentation (see examples
at Figures 14.1.a and 14.1.b). These formats are supported by research that focused on
improved understanding of the information they intend to convey (Carrasco-Labra et al
2016, Langendam et al 2016, Santesso et al 2016). They are available through GRADE’s
official software package developed to support the GRADE approach: GRADEpro GDT
(www.gradepro.org).
Standard Cochrane ‘Summary of findings’ tables include the following elements

using one of the accepted formats. Further guidance on each of these is provided in
Section 14.1.6.

1) A brief description of the population and setting addressed by the available evi-
dence (which may be slightly different to or narrower than those defined by the
review question).

2) A brief description of the comparison addressed in the ‘Summary of findings’ table,
including both the experimental and comparison interventions.

3) A list of the most critical and/or important health outcomes, both desirable and
undesirable, limited to seven or fewer outcomes.

4) Ameasure of the typical burden of each outcomes (e.g. illustrative risk, or illustrative
mean, on comparator intervention).

5) The absolute and relative magnitude of effect measured for each (if both are
appropriate).

6) The numbers of participants and studies contributing to the analysis of each outcomes.
7) A GRADE assessment of the overall certainty of the body of evidence for each out-

come (which may vary by outcome).
8) Space for comments.
9) Explanations (formerly known as footnotes).

Ideally, ‘Summary of findings’ tables are supported by more detailed tables (known
as ‘evidence profiles’) to which the review may be linked, which provide more detailed
explanations. Evidence profiles include the same important health outcomes, and
provide greater detail than ‘Summary of findings’ tables of both of the individual

14.1 ‘Summary of findings’ tables
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Compression stockings compared with no compression stockings for people

taking long flights

Patients or population: anyone taking a long flight (lasting more than 6 hours)

Settings: international air travel

Intervention: compression stockingsa

Comparison: without stockings

Outcomes Illustrative comparative
risks* (95% Cl)

Number of 
participants
(studies)

Certainty of
the evidence
(GRADE)

Comments

Assumed risk Corresponding
risk

Without
stockings

With
stockings

Symptomatic deep
vein thrombosis
(DVT)

See comment See comment Not estimable 2821

(9 studies)

See
comment

0 participants developed
symptomatic DVT in these
studies

Symptomless DVT Low risk populationb RR 0.10

(0.04 to 0.26)

2637

(9 studies)

⊕⊕⊕⊕

High10 per 1000 1 per 1000

(0 to 3)

High risk populationb

20 per 1000 2 per 1000

(1 to 8)

Superficial vein

thrombosis

13 per 1000 6 per 1000

(2 to 15)

RR 0.45

(0.18 to 1.13)

1804

(8 studies)

⊕⊕⊕ ⃝

⃝ ⃝

Moderatec

Oedema

Post-flight values

measured on a scale

from 0, no oedema,

to 10, maximum

oedema

The mean

oedema score

ranged across

control groups

from

6 to 9

The mean

oedema score

in the

intervention

groups was on

average

4.7 lower

(95% Cl –4.9 to

–4.5)

1246

(6 studies)

⊕⊕
Lowd

Pulmonary embolus See comment See comment Not estimable 2821

(9 studies)

See

comment

0 participants developed

pulmonary embolus in these

studiese

Death See comment See comment Not estimable 2821

(9 studies)

See

comment

0 participants died in these

studies

Adverse effects See comment See comment Not estimable 1182

(4 studies)

See

comment

The tolerability of the

stockings was described as

very good with no

complaints of side effects in

4 studiesf

*The basis for the assumed risk is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on
the assumed risk in the intervention group and the relative effect of the intervention (and its 95% Cl).
Cl: confidence interval; RR: risk ratio; GRADE: GRADE Working Group grades of evidence (see explanations).

aAll the stockings in the nine studies included in this review were below-knee compression stockings. In four studies the compression strength was 20 mmHg to

30 mmHg at the ankle. It was 10 mmHg to 20 mmHg in the other four studies. Stockings come in different sizes. If a stocking is too tight around the knee it can

Summary of findings (for an interactive version in GRADEpro, see http://bit.ly/2Fl9SQl)

prevent essential venous return causing the blood to pool around the knee. Compression stockings should be fitted properly. A stocking that is too tight could cut

into the skin on a long flight and potentially cause ulceration and increased risk of DVT. Some stockings can be slightly thicker than normal leg covering and can

be potentially restrictive with tight foot wear. It is a good idea to wear stockings around the house prior to travel to ensure a good, comfortable fit. Participants put

their stockings on two to three hours before the flight in most of the studies. The availability and cost of stockings can vary.
b Two studies recruited high risk participants defined as those with previous episodes of DVT, coagulation disorders, severe obesity, limited mobility due to bone

or joint problems, neoplastic disease within the previous two years, large varicose veins or, in one of the studies, participants taller than 190 cm and heavier than

90 kg. The incidence for the seven studies that excluded high risk participants was 1.45% and the incidence for the two studies that recruited high-risk 

participants (with at least one risk factor) was 2.43%. We have used 10 and 30 per 1000 to express different risk strata, respectively. 
c The confidence interval crosses no difference and does not rule out a small increase.
d The measurement of oedema was not validated (indirectness of the outcome) or blinded to the intervention (risk of bias).
e If there are very few or no events and the number of participants is large, judgement about the certainty of evidence (particularly judgements about imprecision)

may be based on the absolute effect. Here the certainty rating may be considered ‘high’ if the outcome was appropriately assessed and the event, in fact, did not

occur in 2821 studied participants.
f None of the other studies reported adverse effects, apart from four cases of superficial vein thrombosis in varicose veins in the knee region that were

compressed by the upper edge of the stocking in one study.

Relative effect
(95% Cl)

Figure 14.1.a Example of a ‘Summary of findings’ table
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Outcomes

No of participants

(studies)

Relative

effects

(95% Cl)

Certainty of the

evidence

(GRADE)

Comments

Summary of findings (for an interactive version in GRADEpro, see http://bit.ly/2WQwVbJ)

Probiotics compared to no probiotics as an adjunct to antibiotics in children

Patient or population: children given antibiotics

Settings: inpatients and outpatient

Intervention: probiotics

Comparison: no probiotics

Anticipated absolute effects* (95% Cl)

Without

probiotics

With

probiotics

Difference

Incidence of diarrhoea:

Probiotic dose 5 billion

CFU/day
Follow-up: 10 days to 3

months

Children < 5 years Children < 5 years

⊕⊕⊕⊝
moderateb

Due to risk of bias

Probably

decreases the

incidence of

diarrhoea.

1474 (7 studies) RR 0.41
(0.29 to 0.55)

22.3%a 8.9%
(6.5 to 12.2)

13.4% fewer

childrena

(10.1 to 15.8

fewer)

Children > 5 years Children > 5 years ⊕⊕⊝⊝
lowb, c

Due to risk of bias

and imprecision

May decrease

the incidence

of diarrhoea.
624 (4 studies) RR 0.81

(0.53 to 1.21)
11.2% a 9%

(5.9 to 13.6)
2.2% fewer

childrena

(5.3 fewer to 2.4

more)

Adverse eventsd

Follow-up: 10 to 44 days

1575 (11 studies)

- 1.8% a 2.3%
(0.8 to 3.8)

0.5% more

adverse eventse

(1 fewer to 2

more)

⊕⊕⊝⊝
lowf, g

Due to risk of bias

and inconsistency

There may be

little or no

difference in

adverse

events.

Duration of diarrhoea
Follow-up: 10 days to 3

months

897 (5 studies)

- The mean
duration of
diarrhoea
without
probiotics was
4 days.

- 0.6 fewer days
(1.18 to 0.02

fewer days)

⊕⊕⊝⊝
lowh, i

Due to imprecision

and inconsistency

May decrease

the duration of

diarrhoea.

Stools per day
Follow-up: 10 days to 3

months

425 (4 studies)

- The mean stools -
per day without
probiotics was
2.5 stools per
day.

0.3 fewer stools

per day

(0.6 to 0 fewer)

⊕⊕⊝⊝
lowj, k

Due to imprecision

and inconsistency

There may be

little or no

difference in

stools per day.

*The basis for the risk in the control group (e.g. the median control group risk across studies) is provided in footnotes. The risk in the

intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the

intervention (and its 95% Cl). Cl: confidence interval; RR: risk ratio.

EXPLANATIONS
a Control group risk estimates come from pooled estimates of control groups. Relative effect based on available case analysis
b High risk of bias due to high loss to follow-up.
c Imprecision due to few events and confidence intervals include appreciable benefit or harm.
d Side effects: rash, nausea, flatulence, vomiting, increased phlegm, chest pain, constipation, taste disturbance and low appetite.
e Risks were calculated from pooled risk differences.
f High risk of bias. Only 11 of 16 trials reported on adverse events, suggesting a selective reporting bias.
g Serious inconsistency. Numerous probiotic agents and doses were evaluated amongst a relatively small number of trials, limiting
our ability to draw conclusions on the safety of the many probiotics agents and doses administered.
h Serious unexplained inconsistency (large heterogeneity l2 = 79%, P value [P = 0.04], point estimates and confidence intervals vary
considerably).
i Serious imprecision. The upper bound of 0.02 fewer days of diarrhoea is not considered patient important.
j Serious unexplained inconsistency (large heterogeneity l2 = 78%, P value [P = 0.05], point estimates and confidence intervals vary
considerably).
k Serious imprecision. The 95% confidence interval includes no effect and lower bound of 0.60 stools per day is of questionable

patient importance.

Figure 14.1.b Example of alternative ‘Summary of findings’ table
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considerations feeding into the grading of certainty and of the results of the studies
(Guyatt et al 2011a). They ensure that a structured approach is used to rating the cer-
tainty of evidence. Although they are rarely published in Cochrane Reviews, evidence
profiles are often used, for example, by guideline developers in considering the cer-
tainty of the evidence to support guideline recommendations. Review authors will find
it easier to develop the ‘Summary of findings’ table by completing the rating of the cer-
tainty of evidence in the evidence profile first in GRADEpro GDT. They can then auto-
matically convert this to one of the ‘Summary of findings’ formats in GRADEpro GDT,
including an interactive ‘Summary of findings’ for publication.
As a measure of the magnitude of effect for dichotomous outcomes, the ‘Summary of

findings’ table should provide a relative measure of effect (e.g. risk ratio, odds ratio,
hazard) and measures of absolute risk. For other types of data, an absolute measure
alone (such as a difference in means for continuous data) might be sufficient. It is
important that the magnitude of effect is presented in a meaningful way, which
may require some transformation of the result of a meta-analysis (see also
Chapter 15, Sections 15.4 and 15.5). Reviews with more than one main comparison
should include a separate ‘Summary of findings’ table for each comparison.
Figure 14.1.a provides an example of a ‘Summary of findings’ table. Figure 14.1.b pro-

vides an alternative format that may further facilitate users’ understanding and inter-
pretation of the review’s findings. Evidence evaluating different formats suggests that
the ‘Summary of findings’ table should include a risk difference as a measure of the
absolute effect and authors should preferably use a format that includes a risk differ-
ence (Carrasco-Labra et al 2016).
A detailed description of the contents of a ‘Summary of findings’ table appears in

Section 14.1.6.

14.1.4 Producing ‘Summary of findings’ tables

The GRADE Working Group’s software, GRADEpro GDT (www.gradepro.org), including
GRADE’s interactive handbook, is available to assist review authors in the preparation
of ‘Summary of findings’ tables. GRADEpro can use data on the comparator group risk
and the effect estimate (entered by the review authors or imported from files generated
in RevMan) to produce the relative effects and absolute risks associated with experi-
mental interventions. In addition, it leads the user through the process of a GRADE
assessment, and produces a table that can be used as a standalone table in a review
(including by direct import into software such as RevMan or integration with RevMan
Web), or an interactive ‘Summary of findings’ table (see help resources in GRADEpro).

14.1.5 Statistical considerations in ‘Summary of findings’ tables

14.1.5.1 Dichotomous outcomes
‘Summary of findings’ tables should include both absolute and relative measures of
effect for dichotomous outcomes. Risk ratios, odds ratios and risk differences are dif-
ferent ways of comparing two groups with dichotomous outcome data (see Chapter 6,
Section 6.4.1). Furthermore, there are two distinct risk ratios, depending on which
event (e.g. ‘yes’ or ‘no’) is the focus of the analysis (see Chapter 6, Section 6.4.1.5).
In the presence of a non-zero intervention effect, any variation across studies in the
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comparator group risks (i.e. variation in the risk of the event occurring without the
intervention of interest, for example in different populations) makes it impossible
for more than one of these measures to be truly the same in every study.
It has long been assumed in epidemiology that relative measures of effect are more

consistent than absolute measures of effect from one scenario to another. There is
empirical evidence to support this assumption (Engels et al 2000, Deeks and Altman
2001, Furukawa et al 2002). For this reason, meta-analyses should generally use either
a risk ratio or an odds ratio as a measure of effect (see Chapter 10, Section 10.4.3). Cor-
respondingly, a single estimate of relative effect is likely to be a more appropriate sum-
mary than a single estimate of absolute effect. If a relative effect is indeed consistent
across studies, then different comparator group risks will have different implications
for absolute benefit. For instance, if the risk ratio is consistently 0.75, then the exper-
imental intervention would reduce a comparator group risk of 80% to 60% in the inter-
vention group (an absolute risk reduction of 20 percentage points), but would also
reduce a comparator group risk of 20% to 15% in the intervention group (an absolute
risk reduction of 5 percentage points).
‘Summary of findings’ tables are built around the assumption of a consistent relative

effect. It is therefore important to consider the implications of this effect for different
comparator group risks (these can be derived or estimated from a number of sources,
see Section 14.1.6.3), which may require an assessment of the certainty of evidence for
prognostic evidence (Spencer et al 2012, Iorio et al 2015). For any comparator group
risk, it is possible to estimate a corresponding intervention group risk (i.e. the absolute
risk with the intervention) from the meta-analytic risk ratio or odds ratio. Note that the
numbers provided in the ‘Corresponding risk’ column are specific to the ‘risks’ in the
adjacent column.
For the meta-analytic risk ratio (RR) and assumed comparator risk (ACR) the corre-

sponding intervention risk is obtained as:

Corresponding intervention risk per 1000 = 1000 × ACR × RR

As an example, in Figure 14.1.a, the meta-analytic risk ratio for symptomless deep vein
thrombosis (DVT) is RR = 0.10 (95% CI 0.04 to 0.26). Assuming a comparator risk of
ACR = 10 per 1000 = 0.01, we obtain:

Corresponding intervention risk per 1000 = 1000 × 0 01 × 0 10 = 1

For the meta-analytic odds ratio (OR) and assumed comparator risk, ACR, the corre-
sponding intervention risk is obtained as:

Corresponding intervention risk per 1000 = 1000 ×
OR × ACR

1 − ACR + OR × ACR

Upper and lower confidence limits for the corresponding intervention risk are obtained
by replacing RR or OR by their upper and lower confidence limits, respectively (e.g.
replacing 0.10 with 0.04, then with 0.26, in the example). Such confidence intervals
do not incorporate uncertainty in the assumed comparator risks.
When dealing with risk ratios, it is critical that the same definition of ‘event’ is used as

was used for themeta-analysis. For example, if themeta-analysis focused on ‘death’ (as
opposed to survival) as the event, then corresponding risks in the ‘Summary of findings’
table must also refer to ‘death’.

14.1 ‘Summary of findings’ tables
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In (rare) circumstances in which there is clear rationale to assume a consistent risk
difference in the meta-analysis, in principle it is possible to present this for relevant
‘assumed risks’ and their corresponding risks, and to present the corresponding (dif-
ferent) relative effects for each assumed risk.
The risk difference expresses the difference between the ACR and the corresponding

intervention risk (or the difference between the experimental and the comparator
intervention).
For the meta-analytic risk ratio (RR) and assumed comparator risk (ACR) the corre-

sponding risk difference is obtained as (note that risks can also be expressed using per-
centage or percentage points):

Risk difference per 1000 = 1000 × ACR × 1 – RR ,

Risk difference inpercentage points = ACR × 1 – RR

As an example, in Figure 14.1.b the meta-analytic risk ratio is 0.41 (95% CI 0.29 to 0.55)
for diarrhoea in children less than 5 years of age. Assuming a comparator group risk of
22.3% we obtain:

Risk difference inpercentage points = 22 3 × 1 – 0 41 = 13 4

For the meta-analytic odds ratio (OR) and assumed comparator risk (ACR) the abso-
lute risk difference is obtained as (percentage points):

Risk difference in percentage points =
1 – OR × ACR

1−ACR + 1−OR × ACR

Upper and lower confidence limits for the absolute risk difference are obtained by re-
running the calculation above while replacing RR or OR by their upper and lower con-
fidence limits, respectively (e.g. replacing 0.41 with 0.28, then with 0.55, in the example).
Such confidence intervals do not incorporate uncertainty in the assumed compara-
tor risks.

14.1.5.2 Time-to-event outcomes
Time-to-event outcomes measure whether and when a particular event (e.g. death)
occurs (van Dalen et al 2007). The impact of the experimental intervention relative
to the comparison group on time-to-event outcomes is usually measured using a haz-
ard ratio (HR) (see Chapter 6, Section 6.8.1).
A hazard ratio expresses a relative effect estimate. It may be used in various ways to

obtain absolute risks and other interpretable quantities for a specific population. Here
we describe how to re-express hazard ratios in terms of: (i) absolute risk of event-free
survival within a particular period of time; (ii) absolute risk of an event within a partic-
ular period of time; and (iii) median time to the event. All methods are built on
an assumption of consistent relative effects (i.e. that the hazard ratio does not vary over
time).

(i) Absolute risk of event-free survival within a particular period of time Event-free survival
(e.g. overall survival) is commonly reported by individual studies. To obtain absolute
effects for time-to-event outcomes measured as event-free survival, the summary
HR can be used in conjunction with an assumed proportion of patients who are
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event-free in the comparator group (Tierney et al 2007). This proportion of patients will
be specific to a period of time of observation. However, it is not strictly necessary to
specify this period of time. For instance, a proportion of 50% of event-free patients
might apply to patients with a high event rate observed over 1 year, or to patients with
a low event rate observed over 2 years.

Corresponding intervention risk per 1000

= exp ln proportion of patients event-free × HR × 1000

As an example, suppose the meta-analytic hazard ratio is 0.42 (95% CI 0.25 to 0.72).
Assuming a comparator group risk of event-free survival (e.g. for overall survival people
being alive) at 2 years of ACR = 900 per 1000 = 0.9 we obtain:

Corresponding intervention risk per 1000 = exp ln 0 9 × 0 42 × 1000 = 956

so that that 956 per 1000 people will be alive with the experimental intervention at
2 years. The derivation of the risk should be explained in a comment or footnote.

(ii) Absolute risk of an event within a particular period of time To obtain this absolute effect,
again the summary HR can be used (Tierney et al 2007):

Corresponding intervention risk per 1000

= 1000 – exp ln 1 – proportion of patients with event × HR × 1000

In the example, suppose we assume a comparator group risk of events (e.g. for mor-
tality, people being dead) at 2 years of ACR = 100 per 1000 = 0.1. We obtain:

Corresponding intervention risk per 1000

= 1000 – exp ln 1 – 0 1 × 0 42 × 1000 = 44

so that that 44 per 1000 people will be dead with the experimental intervention at
2 years.

(iii) Median time to the event Instead of absolute numbers, the time to the event in the
intervention and comparison groups can be expressed as median survival time in
months or years. To obtain median survival time the pooled HR can be applied to
an assumed median survival time in the comparator group (Tierney et al 2007):

Corresponding median survival, inmonths = comparator group median survival time,

inmonths/HR

In the example, assuming a comparator group median survival time of 80 months, we
obtain:

Corresponding median survival, inmonths = 80months/0 42 = 190months

For all three of these options for re-expressing results of time-to-event analyses,
upper and lower confidence limits for the corresponding intervention risk are obtained
by replacing HR by its upper and lower confidence limits, respectively (e.g. replacing
0.42 with 0.25, then with 0.72, in the example). Again, as for dichotomous outcomes,

14.1 ‘Summary of findings’ tables

383



such confidence intervals do not incorporate uncertainty in the assumed comparator
group risks. This is of special concern for long-term survival with a low or moderate
mortality rate and a corresponding high number of censored patients (i.e. a low num-
ber of patients under risk and a high censoring rate).

14.1.6 Detailed contents of a ‘Summary of findings’ table

14.1.6.1 Table title and header
The title of each ‘Summary of findings’ table should specify the healthcare question,
framed in terms of the population andmaking it clear exactly what comparison of inter-
ventions are made. In Figure 14.1.a, the population is people taking long aeroplane
flights, the intervention is compression stockings, and the control is no compression
stockings.
The first rows of each ‘Summary of findings’ table should provide the following

‘header’ information:

Patients or population This further clarifies the population (and possibly the subpopu-
lations) of interest and ideally the magnitude of risk of the most crucial adverse out-
come at which an intervention is directed. For instance, people on a long-haul flight
may be at different risks for DVT; those using selective serotonin reuptake inhibitors
(SSRIs) might be at different risk for side effects; while those with atrial fibrillation
may be at low (<1%), moderate (1% to 4%) or high (>4%) yearly risk of stroke.

Setting This should state any specific characteristics of the settings of the healthcare
question that might limit the applicability of the summary of findings to other settings
(e.g. primary care in Europe and North America).

Intervention The experimental intervention.

Comparison The comparator intervention (including no specific intervention).

14.1.6.2 Outcomes
The rows of a ‘Summary of findings’ table should include all desirable and undesirable
health outcomes (listed in order of importance) that are essential for decision making,
up to a maximum of seven outcomes. If there are more outcomes in the review, review
authors will need to omit the less important outcomes from the table, and the decision
selecting which outcomes are critical or important to the review should bemade during
protocol development (see Chapter 3). Review authors should provide time frames for
the measurement of the outcomes (e.g. 90 days or 12 months) and the type of instru-
ment scores (e.g. ranging from 0 to 100).
Note that review authors should include the pre-specified critical and important out-

comes in the table whether data are available or not. However, they should be alert to
the possibility that the importance of an outcome (e.g. a serious adverse effect) may
only become known after the protocol was written or the analysis was carried out, and
should take appropriate actions to include these in the ‘Summary of findings’ table.
The ‘Summary of findings’ table can include effects in subgroups of the population for

different comparator risks and effect sizes separately. For instance, in Figure 14.1.b effects
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are presented for children younger andolder than 5 years separately. Reviewauthorsmay
also opt to produce separate ‘Summary of findings’ tables for different populations.
Review authors should include serious adverse events, but it might be possible to

combine minor adverse events as a single outcome, and describe this in an explanatory
footnote (note that it is not appropriate to add events together unless they are inde-
pendent, that is, a participant who has experienced one adverse event has an unaf-
fected chance of experiencing the other adverse event).
Outcomes measured at multiple time points represent a particular problem. In gen-

eral, to keep the table simple, review authors should present multiple time points only
for outcomes critical to decision making, where either the result or the decision made
are likely to vary over time. The remainder should be presented at a common time
point where possible.
Review authors can present continuous outcome measures in the ‘Summary of find-

ings’ table and should endeavour to make these interpretable to the target audience.
This requires that the units are clear and readily interpretable, for example, days of pain,
or frequency of headache, and the name and scale of any measurement tools used
should be stated (e.g. a Visual Analogue Scale, ranging from 0 to 100). However, many
measurement instruments are not readily interpretable by non-specialist clinicians or
patients, for example, points on a Beck Depression Inventory or quality of life score.
For these, a more interpretable presentation might involve converting a continuous to
a dichotomous outcome, such as > 50% improvement (see Chapter 15, Section 15.5).

14.1.6.3 Best estimate of risk with comparator intervention
Review authors should provide up to three typical risks for participants receiving the
comparator intervention. For dichotomous outcomes, we recommend that these be
presented in the form of the number of people experiencing the event per 100 or
1000 people (natural frequency) depending on the frequency of the outcome. For con-
tinuous outcomes, this would be stated as a mean or median value of the outcome
measured.
Estimated or assumed comparator intervention risks could bebased on assessments of

typical risks in different patient groups derived from the review itself, individual represen-
tative studies in the review, or risks derived from a systematic review of prognosis studies
or other sources of evidence which may in turn require an assessment of the certainty for
the prognostic evidence (Spencer et al 2012, Iorio et al 2015). Ideally, risks would reflect
groups that clinicians can easily identify on the basis of their presenting features.
An explanatory footnote should specify the source or rationale for each comparator

group risk, including the time period to which it corresponds where appropriate. In
Figure 14.1.a, clinicians can easily differentiate individuals with risk factors for deep
venous thrombosis from those without. If there is known to be little variation in base-
line risk then review authors may use the median comparator group risk across studies.
If typical risks are not known, an option is to choose the risk from the included studies,
providing the second highest for a high and the second lowest for a low risk population.

14.1.6.4 Risk with intervention
For dichotomous outcomes, review authors should provide a corresponding absolute
risk for each comparator group risk, along with a confidence interval. This absolute risk
with the (experimental) intervention will usually be derived from the meta-analysis
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result presented in the relative effect column (see Section 14.1.6.6). Formulae are pro-
vided in Section 14.1.5. Review authors should present the absolute effect in the same
format as the risks with comparator intervention (see Section 14.1.6.3), for example as
the number of people experiencing the event per 1000 people.
For continuous outcomes, a difference in means or standardized difference in means

should be presented with its confidence interval. These will typically be obtained
directly from a meta-analysis. Explanatory text should be used to clarify the meaning,
as in Figures 14.1.a and 14.1.b.

14.1.6.5 Risk difference
For dichotomous outcomes, the risk difference can be provided using one of the ‘Sum-
mary of findings’ table formats as an additional option (see Figure 14.1.b). This risk dif-
ference expresses the difference between the experimental and comparator intervention
and will usually be derived from the meta-analysis result presented in the relative effect
column (see Section 14.1.6.6). Formulae are provided in Section 14.1.5. Review authors
should present the risk difference in the same format as assumed and corresponding
risks with comparator intervention (see Section 14.1.6.3); for example, as the number
of people experiencing the event per 1000 people or as percentage points if the assumed
and corresponding risks are expressed in percentage.
For continuous outcomes, if the ‘Summary of findings’ table includes this option, the

mean difference can be presented here and the ‘corresponding risk’ column left blank
(see Figure 14.1.b).

14.1.6.6 Relative effect (95% CI)
The relative effect will typically be a risk ratio or odds ratio (or occasionally a hazard
ratio) with its accompanying 95% confidence interval, obtained from a meta-analysis
performed on the basis of the same effect measure. Risk ratios and odds ratios are sim-
ilar when the comparator intervention risks are low and effects are small, butmay differ
considerably when comparator group risks increase. The meta-analysis may involve an
assumption of either fixed or random effects, depending on what the review authors
consider appropriate, and implying that the relative effect is either an estimate of
the effect of the intervention, or an estimate of the average effect of the intervention
across studies, respectively.

14.1.6.7 Number of participants (studies)
This column should include the number of participants assessed in the included studies
for each outcome and the corresponding number of studies that contributed these
participants.

14.1.6.8 Certainty of the evidence (GRADE)
Review authors should comment on the certainty of the evidence (also known as qual-
ity of the body of evidence or confidence in the effect estimates). Review authors
should use the specific evidence grading system developed by the GRADE Working
Group (Atkins et al 2004, Guyatt et al 2008, Guyatt et al 2011a), which is described
in detail in Section 14.2. The GRADE approach categorizes the certainty in a body of
evidence as ‘high’, ‘moderate’, ‘low’ or ‘very low’ by outcome. This is a result of judge-
ment, but the judgement process operates within a transparent structure. As an
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example, the certainty would be ‘high’ if the summary were of several randomized trials
with low risk of bias, but the rating of certainty becomes lower if there are concerns
about risk of bias, inconsistency, indirectness, imprecision or publication bias. Judge-
ments other than of ‘high’ certainty should be made transparent using explanatory
footnotes or the ‘Comments’ column in the ‘Summary of findings’ table (see
Section 14.1.6.10).

14.1.6.9 Comments
The aim of the ‘Comments’ field is to help interpret the information or data identified in
the row. For example, this may be on the validity of the outcome measure or the pres-
ence of variables that are associated with the magnitude of effect. Important caveats
about the results should be flagged here. Not all rows will need comments, and it is best
to leave a blank if there is nothing warranting a comment.

14.1.6.10 Explanations
Detailed explanations should be included as footnotes to support the judgements in
the ‘Summary of findings’ table, such as the overall GRADE assessment. The explana-
tions should describe the rationale for important aspects of the content. Table 14.1.a
lists guidance for useful explanations. Explanations should be concise, informative, rel-
evant, easy to understand and accurate. If explanations cannot be sufficiently
described in footnotes, review authors should provide further details of the issues in
the Results and Discussion sections of the review.

Table 14.1.a Guidance for providing useful explanations in ‘Summary of findings’ (SoF) tables.
Adapted from Santesso et al (2016)

General guidance
1) Enter the information for readers directly into the table if possible (e.g. information about the

duration of follow-up or the scale used).
2) Generally, do not cite references in the explanations section, unless there are specific reasons,

for example, for providing information about sources of baseline risks (see point 3).
3) Provide the source of information about the baseline risks used to calculate absolute effects.
4) On completion of the table, review all explanations to determine if some could be referenced

multiple times if reworded or combined.
5) Provide reasons for upgrading and downgrading the evidence (see domain-specific guidance

below) and use GRADEpro GDT software to adhere to GRADE guidance.
6) The body of evidence for a particular outcomemay be determined to have serious or very serious

issues for the affected domain (or critically serious for risk of bias when ROBINS-I is used). Thus,
it may be useful to indicate the number of levels for downgrading (e.g. downgraded by one level
for risk of bias), but avoid repetition of what is in the table (and the impression of formulaic or
algorithmic reporting). In evidence profiles, this information is already in the cells of the table.

7) Although explanations about the certainty in the evidence are primarily required when they alter
the certainty, consider adding an explanation when the certainty in the evidence has not been
altered but when this decision may be questioned by others. This will help with understanding
reasons for disagreement.

(Continued)
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Table 14.1.a (Continued)

8) Ensure that the table is not used as a description of the methods of the review (e.g. do not
describe the reasons for the statistical analysis).

9) Enter results for outcomes that could not be combined statistically in a meta-analysis (i.e.
narrative outcomes) directly into the SoF table in the results columns. An explanation may
not be necessary to communicate those results. If considered beneficial to the intended
audience, add complementary estimates of intervention effects (e.g. number needed to treat for
benefit and harm, risk difference expressed as percentage, continuous outcome expressed in
minimal important difference units) in the Comments column.

10) Use the information presented in the explanations about the GRADE process to inform other key
parts of the review, including summary versions and the discussion.

Domain-specific guidance for writing useful explanations

Risk of bias
1) Describe the number of studies, or the amount of information that they provide in the meta-

analysis, that were at high risk of bias and for which criterion.
a) Use terms such asmajority, minority, all, some or none; or the number of studies as X/X studies.
b) For randomized trials, mention the specific criteria including allocation sequence concealment,

selective outcome reporting, etc.
For non-randomized studies, describe the criterion in the tool used (e.g. using the ROBINS-I tool).

c) Indicate if the effect of the risk of bias was examined in a sensitivity analysis. When appropriate,
mention the contribution of the studies at high risk of bias to the estimates.

2) Information about study design may be included in the explanations, in particular, in SoF when
different study designs are included.

Inconsistency
1) Indicate the measure used to judge inconsistency, such as the statistical test or measure (I2, Chi2,

Tau), or the overlap of confidence intervals, or similarity of point estimates.
2) If inconsistency is based on I2, describe it as considerable, substantial, moderate or not important.
3) If applicable, mention if heterogeneity was explored in subgroup analyses by PICO (patients,

intervention, comparison, outcome), and if there are other potential reasons for the heterogeneity.
4) In the case of a single study for an outcome, say that there is ‘none’ rather than ‘not applicable’.

Indirectness
1) Indicate where indirectness is due to the elements of PICO (see Table 14.2.b).

Imprecision
1) Indicate where the sample size or number of events does not meet the optimal information size

as calculated, or the ‘rules of thumb’ (e.g. 400 events). Avoid reference to the number of studies as
a reason for imprecision.

2) Indicate whether the confidence intervals include the possibility of a small or no effect AND
important benefit or harm. If known, provide the numerical value of the threshold of important
benefit.

3) Avoid reporting the result as statistically or non-statistically significant.

Publication bias
1) Indicate the reason or methods used to detect publication bias (e.g. asymmetrical funnel plot,

small studies with positive results, suspected selective availability of data from published or
unpublished studies).

Upgrading
1) Mention the reason for upgrading: due to large effect; a dose-response gradient; or plausible

residual opposing confounding increases the certainty of evidence.
2) For large effects, report if the relative effect is > 2 or > 5. For dose-response gradients, provide the

level of intervention and effect on the outcome. For the domain ‘plausible residual opposing
confounding’, describe the effect of the confounding factor on the estimate.
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14.2 Assessing the certainty or quality of a body of evidence

14.2.1 The GRADE approach

The Grades of Recommendation, Assessment, Development and Evaluation Working
Group (GRADE Working Group) has developed a system for grading the certainty of evi-
dence (Schünemann et al 2003, Atkins et al 2004, Schünemann et al 2006, Guyatt et al
2008, Guyatt et al 2011a). Over 100 organizations including the World Health Organiza-
tion (WHO), the American College of Physicians, the American Society of Hematology
(ASH), the Canadian Agency for Drugs and Technology in Health (CADTH) and the
National Institutes of Health and Clinical Excellence (NICE) in the UK have adopted
the GRADE system (www.gradeworkinggroup.org).
Cochrane has also formally adopted this approach, and all Cochrane Reviews should

use GRADE to evaluate the certainty of evidence for important outcomes (see MECIR
Box 14.2.a).

MECIR Box 14.2.a Relevant expectations for conduct of intervention reviews

C74: Assessing the certainty of the body of evidence (Mandatory)

Use the five GRADE considerations (risk of
bias, consistency of effect, imprecision,
indirectness and publication bias) to assess
the certainty of the body of evidence for
each outcome, and to draw conclusions
about the certainty of evidence within the
text of the review.

GRADE is the most widely used approach
for summarizing confidence in effects of
interventions by outcome across studies.
It is preferable to use the online GRADEpro
tool, and to use it as described in the help
system of the software. This should help
to ensure that author teams are accessing
the same information to inform their
judgements. Ideally, two people working
independently should assess the certainty
of the body of evidence and reach a
consensus view on any downgrading
decisions. The five GRADE considerations
should be addressed irrespective of
whether the review includes a ‘Summary
of findings’ table. It is helpful to draw on
this information in the Discussion, in the
Authors’ conclusions and to convey the
certainty in the evidence in the Abstract
and Plain language summary.

C75: Justifying assessments of the certainty of the body of evidence (Mandatory)

Justify and document all assessments of
the certainty of the body of evidence (e.g.
downgrading or upgrading using GRADE).

The adoption of a structured approach
ensures transparency in formulating an
interpretation of the evidence, and the
result is more informative to the user.
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For systematic reviews, the GRADE approach defines the certainty of a body of evi-
dence as the extent to which one can be confident that an estimate of effect or asso-
ciation is close to the quantity of specific interest. Assessing the certainty of a body of
evidence involves consideration of within- and across-study risk of bias (limitations in
study design and execution or methodological quality), inconsistency (or heterogene-
ity), indirectness of evidence, imprecision of the effect estimates and risk of publication
bias (see Section 14.2.2), as well as domains that may increase our confidence in the
effect estimate (as described in Section 14.2.3). The GRADE system entails an assess-
ment of the certainty of a body of evidence for each individual outcome. Judgements
about the domains that determine the certainty of evidence should be described in the
results or discussion section and as part of the ‘Summary of findings’ table.
The GRADE approach specifies four levels of certainty (Figure 14.2.a). For interven-

tions, including diagnostic and other tests that are evaluated as interventions
(Schünemann et al 2008b, Schünemann et al 2008a, Balshem et al 2011, Schünemann
et al 2012), the starting point for rating the certainty of evidence is categorized into
two types:

• randomized trials; and

• non-randomized studies of interventions (NRSI), including observational studies
(including but not limited to cohort studies, and case-control studies, cross-sectional
studies, case series and case reports, although not all of these designs are usually
included in Cochrane Reviews).

There are many instances in which review authors rely on information from NRSI, in
particular to evaluate potential harms (see Chapter 24). In addition, review authors can
obtain relevant data from both randomized trials and NRSI, with each type of evidence
complementing the other (Schünemann et al 2013).

1. 

Establish initial

level of certainty

2.

Consider lowering or raising

level of certainty

3. 

Final level of 

certainty rating

Study design Initial certainty
in an estimate

of effect

Reasons for considering lowering 
or raising certainty

Certainty 
in an estimate of effect 

across those considerations

Lower if Higher if*

Randomized trials or 
studies evaluated with 
ROBINS-I

High
certainty

Risk of bias

Inconsistency

Indirectness

Imprecision

Publication bias

Large effect

Dose response

All plausible 

confounding & 

bias:

would reduce a 
demonstrated effect 

or
•

•

would suggest a 
spurious effect if no 
effect was observed

High

Moderate

Observational studies 
not using ROBINS-I

Low
certainty

Low

Very low

⊕⊕⊕⊕

⊕⊕⊕○

⊕⊕○○

⊕○○○

Figure 14.2a Levels of the certainty of a body of evidence in the GRADE approach. ∗Upgrading criteria
are usually applicable to non-randomized studies only (but exceptions exist).
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In GRADE, a body of evidence from randomized trials begins with a high-certainty
rating while a body of evidence from NRSI begins with a low-certainty rating. The lower
rating with NRSI is the result of the potential bias induced by the lack of randomization
(i.e. confounding and selection bias).
However, when using the new Risk Of Bias In Non-randomized Studies of Interven-

tions (ROBINS-I) tool (Sterne et al 2016), an assessment tool that covers the risk of bias
due to lack of randomization, all studies may start as high certainty of the evidence
(Schünemann et al 2018). The approach of starting all study designs (including NRSI)
as high certainty does not conflict with the initial GRADE approach of starting the rating
of NRSI as low certainty evidence. This is because a body of evidence from NRSI should
generally be downgraded by two levels due to the inherent risk of bias associated with
the lack of randomization, namely confounding and selection bias. Not downgrading
NRSI from high to low certainty needs transparent and detailed justification for what
mitigates concerns about confounding and selection bias (Schünemann et al 2018).
Very few examples of where not rating down by two levels is appropriate currently exist.
The highest certainty rating is a body of evidence when there are no concerns in any

of the GRADE factors listed in Figure 14.2.a. Review authors often downgrade evidence
tomoderate, low or even very low certainty evidence, depending on the presence of the
five factors in Figure 14.2.a. Usually, certainty rating will fall by one level for each factor,
up to a maximum of three levels for all factors. If there are very severe problems for any
one domain (e.g. when assessing risk of bias, all studies were unconcealed, unblinded
and lost over 50% of their patients to follow-up), evidence may fall by two levels due to
that factor alone. It is not possible to rate lower than ‘very low certainty’ evidence.
Review authors will generally grade evidence from sound non-randomized studies as

low certainty, even if ROBINS-I is used. If, however, such studies yield large effects and
there is no obvious bias explaining those effects, review authors may rate the evidence
asmoderate or – if the effect is large enough – even as high certainty (Figure 14.2.a). The
very low certainty level is appropriate for, but is not limited to, studies with critical pro-
blems and unsystematic clinical observations (e.g. case series or case reports).

14.2.2 Domains that can lead to decreasing the certainty level of a body
of evidence

We now describe in more detail the five reasons (or domains) for downgrading the cer-
tainty of a body of evidence for a specific outcome. In each case, if a reason is found for
downgrading the evidence, it should be classified as ‘no limitation’ (not important
enough to warrant downgrading), ‘serious’ (downgrading the certainty rating by one
level) or ‘very serious’ (downgrading the certainty grade by two levels). For non-
randomized studies assessed with ROBINS-I, rating down by three levels should be clas-
sified as ‘extremely’ serious.

1) Risk of bias or limitations in the detailed design and implementation

Our confidence in an estimate of effect decreases if studies suffer from major limita-
tions that are likely to result in a biased assessment of the intervention effect. For ran-
domized trials, these methodological limitations include failure to generate a random
sequence, lack of allocation sequence concealment, lack of blinding (particularly with
subjective outcomes that are highly susceptible to biased assessment), a large loss to
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follow-up or selective reporting of outcomes. Chapter 8 provides a discussion of study-
level assessments of risk of bias in the context of a Cochrane Review, and proposes an
approach to assessing the risk of bias for an outcome across studies as ‘Low’ risk of
bias, ‘Some concerns’ and ‘High’ risk of bias for randomized trials. Levels of ‘Low’.
‘Moderate’, ‘Serious’ and ‘Critical’ risk of bias arise for non-randomized studies
assessed with ROBINS-I (Chapter 25). These assessments should feed directly into this
GRADE domain. In particular, ‘Low’ risk of bias would indicate ‘no limitation’; ‘Some
concerns’ would indicate either ‘no limitation’ or ‘serious limitation’; and ‘High’ risk
of bias would indicate either ‘serious limitation’ or ‘very serious limitation’. ‘Critical’
risk of bias on ROBINS-I would indicate extremely serious limitations in GRADE. Review
authors should use their judgement to decide between alternative categories, depend-
ing on the likely magnitude of the potential biases.
Every study addressing a particular outcome will differ, to some degree, in the risk of

bias. Review authors should make an overall judgement on whether the certainty of
evidence for an outcome warrants downgrading on the basis of study limitations.
The assessment of study limitations should apply to the studies contributing to the
results in the ‘Summary of findings’ table, rather than to all studies that could poten-
tially be included in the analysis. We have argued in Chapter 7 (Section 7.6.2) that the
primary analysis should be restricted to studies at low (or low and unclear) risk of bias
where possible.
Table 14.2.a presents the judgements that must be made in going from assessments

of the risk of bias to judgements about study limitations for each outcome included in a
‘Summary of findings’ table. A rating of high certainty evidence can be achieved only
when most evidence comes from studies that met the criteria for low risk of bias. For
example, of the 22 studies addressing the impact of beta-blockers on mortality in
patients with heart failure, most probably or certainly used concealed allocation of
the sequence, all blinded at least some key groups and follow-up of randomized
patients was almost complete (Brophy et al 2001). The certainty of evidence might
be downgraded by one level when most of the evidence comes from individual studies
either with a crucial limitation for one item, or with some limitations for multiple items.
An example of very serious limitations, warranting downgrading by two levels, is pro-
vided by evidence on surgery versus conservative treatment in the management of
patients with lumbar disc prolapse (Gibson and Waddell 2007). We are uncertain of
the benefit of surgery in reducing symptoms after one year or longer, because the
one study included in the analysis had inadequate concealment of the allocation
sequence and the outcome was assessed using a crude rating by the surgeon without
blinding.

2) Unexplained heterogeneity or inconsistency of results

When studies yield widely differing estimates of effect (heterogeneity or variability in
results), investigators should look for robust explanations for that heterogeneity. For
instance, drugs may have larger relative effects in sicker populations or when given
in larger doses. A detailed discussion of heterogeneity and its investigation is provided
in Chapter 10 (Sections 10.10 and 10.11). If an important modifier exists, with good evi-
dence that important outcomes are different in different subgroups (which would ide-
ally be pre-specified), then a separate ‘Summary of findings’ table may be considered
for a separate population. For instance, a separate ‘Summary of findings’ table would
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be used for carotid endarterectomy in symptomatic patients with high grade stenosis
(70% to 99%) in which the intervention is, in the hands of the right surgeons, beneficial,
and another (if review authors considered it relevant) for asymptomatic patients with
low grade stenosis (less than 30%) in which surgery appears harmful (Orrapin and
Rerkasem 2017). When heterogeneity exists and affects the interpretation of results,
but review authors are unable to identify a plausible explanation with the data avail-
able, the certainty of the evidence decreases.

3) Indirectness of evidence

Two types of indirectness are relevant. First, a review comparing the effectiveness of
alternative interventions (say A and B) may find that randomized trials are available,
but they have compared A with placebo and B with placebo. Thus, the evidence is
restricted to indirect comparisons between A and B. Where indirect comparisons are

Table 14.2.a Further guidelines for domain 1 (of 5) in a GRADE assessment: going from assessments of
risk of bias in studies to judgements about study limitations for main outcomes across studies

Risk
of bias Across studies Interpretation Considerations

GRADE
assessment of
risk of bias or
study
limitations of
study
limitations

Low risk
of bias

Most information is
from results at low risk
of bias.

Plausible bias
unlikely to
seriously alter
the results.

No apparent
limitations.

No serious
limitations,
do not
downgrade.

Some
concerns

Most information is
from results at low risk
of bias or with some
concerns.

Plausible bias
that raises
some doubt
about the
results.

Potential limitations
are unlikely to lower
confidence in the
estimate of effect.

No serious
limitations, do
notdowngrade.

Potential limitations
are likely to lower
confidence in the
estimate of effect.

Serious
limitations,
downgrade
one level.

High risk
of bias

The proportion of
information from
results at high risk of
bias is sufficient to
affect the
interpretation of
results.

Plausible bias
that seriously
weakens
confidence in
the results.

Crucial limitation for
one criterion, or some
limitations for multiple
criteria, sufficient to
lower confidence in the
estimate of effect.

Serious
limitations,
downgrade
one level.

Crucial limitation for
one or more criteria
sufficient to
substantially lower
confidence in the
estimate of effect.

Very serious
limitations,
downgrade
two levels.
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undertaken within a network meta-analysis context, GRADE for network meta-analysis
should be used (see Chapter 11, Section 11.5).
Second, a review may find randomized trials that meet eligibility criteria but address a

restricted version of the main review question in terms of population, intervention, com-
parator or outcomes. For example, suppose that in a review addressing an intervention
for secondary prevention of coronary heart disease, most identified studies happened to
be in people who also had diabetes. Then the evidence may be regarded as indirect in
relation to the broader question of interest because the population is primarily related to
people with diabetes. The opposite scenario can equally apply: a review addressing the
effect of a preventive strategy for coronary heart disease in people with diabetes may
consider studies in people without diabetes to provide relevant, albeit indirect, evidence.
This would be particularly likely if investigators had conducted few if any randomized
trials in the target population (e.g. people with diabetes). Other sources of indirectness
may arise from interventions studied (e.g. if in all included studies a technical interven-
tion was implemented by expert, highly trained specialists in specialist centres, then evi-
dence on the effects of the intervention outside these centres may be indirect),
comparators used (e.g. if the comparator groups received an intervention that is less
effective than standard treatment inmost settings) and outcomes assessed (e.g. indirect-
ness due to surrogate outcomeswhen data on patient-important outcomes are not avail-
able, or when investigators seek data on quality of life but only symptoms are reported).
Review authors should make judgements transparent when they believe downgrading is
justified, based on differences in anticipated effects in the group of primary interest.
Review authors may be aided and increase transparency of their judgements about indi-
rectness if they use Table 14.2.b available in the GRADEpro GDT software (Schünemann
et al 2013).

4) Imprecision of results

When studies include few participants or few events, and thus have wide confidence
intervals, review authors can lower their rating of the certainty of the evidence. The
confidence intervals included in the ‘Summary of findings’ table will provide readers
with information that allows them to make, to some extent, their own rating of preci-
sion. Review authors can use a calculation of the optimal information size (OIS) or
review information size (RIS), similar to sample size calculations, to make judgements
about imprecision (Guyatt et al 2011b, Schünemann 2016). The OIS or RIS is calculated
on the basis of the number of participants required for an adequately powered individ-
ual study. If the 95% confidence interval excludes a risk ratio (RR) of 1.0, and the total
number of events or patients exceeds the OIS criterion, precision is adequate. If the 95%
CI includes appreciable benefit or harm (an RR of under 0.75 or over 1.25 is often sug-
gested as a very rough guide) downgrading for imprecision may be appropriate even if
OIS criteria are met (Guyatt et al 2011b, Schünemann 2016).

5) High probability of publication bias

The certainty of evidence level may be downgraded if investigators fail to report studies
on the basis of results (typically those that show no effect: publication bias) or out-
comes (typically those that may be harmful or for which no effect was observed: selec-
tive outcome non-reporting bias). Selective reporting of outcomes from among
multiple outcomes measured is assessed at the study level as part of the assessment
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of risk of bias (see Chapter 8, Section 8.7), so for the studies contributing to the out-
come in the ‘Summary of findings’ table this is addressed by domain 1 above (limita-
tions in the design and implementation). If a large number of studies included in the
review do not contribute to an outcome, or if there is evidence of publication bias, the
certainty of the evidence may be downgraded. Chapter 13 provides a detailed discus-
sion of reporting biases, including publication bias, and how it may be tackled in a
Cochrane Review. A prototypical situation that may elicit suspicion of publication bias
is when published evidence includes a number of small studies, all of which are
industry-funded (Bhandari et al 2004). For example, 14 studies of flavanoids in patients
with haemorrhoids have shown apparent large benefits, but enrolled a total of only

Table 14.2.b Judgements about indirectness by outcome (available in GRADEpro GDT)

Outcome: …

Domain
(original
question
asked)

Description (evidence
found and included,
including evidence from
other studies) –
consider the domains of
study design and study
limitation,
inconsistency,
imprecision and
publication bias Judgement – is the evidence sufficiently direct?

Population:
Yes

Probably
yes

Probably
no

No

☐ ☐ ☐ ☐

Intervention: Yes Probably
yes

Probably
no

No

☐ ☐ ☐ ☐

Comparator: Yes Probably
yes

Probably
no

No

☐ ☐ ☐ ☐

Direct
comparison:

Yes Probably
yes

Probably
no

No

☐ ☐ ☐ ☐

Outcome: Yes Probably
yes

Probably
no

No

☐ ☐ ☐ ☐

Final
judgement
about
indirectness
across
domains:

☐ No
indirectness

☐ Serious
indirectness

☐ Very
serious

indirectness
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1432 patients (i.e. each study enrolled relatively few patients) (Alonso-Coello et al
2006). The heavy involvement of sponsors in most of these studies raises questions
of whether unpublished studies that suggest no benefit exist (publication bias).

A particular body of evidence can suffer from problems associated with more than one
of the five factors listed here, and the greater the problems, the lower the certainty of
evidence rating that should result. One could imagine a situation in which randomized
trials were available, but all or virtually all of these limitations would be present, and in
serious form. A very low certainty of evidence rating would result.

14.2.3 Domains that may lead to increasing the certainty level of a body of
evidence

Although NRSI and downgraded randomized trials will generally yield a low rating for
certainty of evidence, there will be unusual circumstances in which review authors
could ‘upgrade’ such evidence to moderate or even high certainty (Table 14.3.a).

1) Large effects On rare occasions when methodologically well-done observational
studies yield large, consistent and precise estimates of the magnitude of an inter-
vention effect, one may be particularly confident in the results. A large estimated
effect (e.g. RR > 2 or RR < 0.5) in the absence of plausible confounders, or a very large
effect (e.g. RR > 5 or RR < 0.2) in studies with no major threats to validity, might
qualify for this. In these situations, while the NRSI may possibly have provided
an over-estimate of the true effect, the weak study design may not explain all of
the apparent observed benefit. Thus, despite reservations based on the observa-
tional study design, review authors are confident that the effect exists. The magni-
tude of the effect in these studies may move the assigned certainty of evidence from
low to moderate (if the effect is large in the absence of other methodological limita-
tions). For example, a meta-analysis of observational studies showed that bicycle
helmets reduce the risk of head injuries in cyclists by a large margin (odds ratio
(OR) 0.31, 95% CI 0.26 to 0.37) (Thompson et al 2000). This large effect, in the
absence of obvious bias that could create the association, suggests a rating of
moderate-certainty evidence.
Note: GRADE guidance suggests the possibility of rating up one level for a large

effect if the relative effect is greater than 2.0. However, if the point estimate of
the relative effect is greater than 2.0, but the confidence interval is appreciably
below 2.0, then some hesitation would be appropriate in the decision to rate up
for a large effect. Another situation allows inference of a strong association without
a formal comparative study. Consider the question of the impact of routine colon-
oscopy versus no screening for colon cancer on the rate of perforation associated
with colonoscopy. Here, a large series of representative patients undergoing colon-
oscopy may provide high certainty evidence about the risk of perforation associated
with colonoscopy. When the risk of the event among patients receiving the relevant
comparator is known to be near 0 (i.e. we are certain that the incidence of sponta-
neous colon perforation in patients not undergoing colonoscopy is extremely low),
case series or cohort studies of representative patients can provide high certainty
evidence of adverse effects associated with an intervention, thereby allowing us
to infer a strong association from even a limited number of events.
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2) Dose-response The presence of a dose-response gradient may increase our confi-
dence in the findings of observational studies and thereby enhance the assigned cer-
tainty of evidence. For example, our confidence in the result of observational studies
that show an increased risk of bleeding in patients who have supratherapeutic antic-
oagulation levels is increased by the observation that there is a dose-response gradi-
ent between the length of time needed for blood to clot (as measured by the
international normalized ratio (INR)) and an increased risk of bleeding (Levine et al
2004). A systematic review of NRSI investigating the effect of cyclooxygenase-2 inhi-
bitors on cardiovascular events found that the summary estimate (RR) with rofecoxib
was 1.33 (95% CI 1.00 to 1.79) with doses less than 25mg/d, and 2.19 (95% CI 1.64 to
2.91) with dosesmore than 25mg/d. Although residual confounding is likely to exist in
the NRSI that address this issue, the existence of a dose-response gradient and the
large apparent effect of higher doses of rofecoxib markedly increase our strength
of inference that the association cannot be explained by residual confounding, and
is therefore likely to be both causal and, at high levels of exposure, substantial.
Note: GRADE guidance suggests the possibility of rating up one level for a large

effect if the relative effect is greater than 2.0. Here, the fact that the point estimate
of the relative effect is greater than 2.0, but the confidence interval is appreciably
below 2.0 might make some hesitate in the decision to rate up for a large effect

3) Plausible confounding On occasion, all plausible biases from randomized or non-
randomized studies may be working to under-estimate an apparent intervention
effect. For example, if only sicker patients receive an experimental intervention or
exposure, yet they still fare better, it is likely that the actual intervention or exposure
effect is larger than the data suggest. For instance, a rigorous systematic review of
observational studies including a total of 38 million patients demonstrated higher
death rates in private for-profit versus private not-for-profit hospitals (Devereaux
et al 2002). One possible bias relates to different disease severity in patients in the
two hospital types. It is likely, however, that patients in the not-for-profit hospitals
were sicker than those in the for-profit hospitals. Thus, to the extent that residual con-
founding existed, it would bias results against the not-for-profit hospitals. The second
likely bias was the possibility that higher numbers of patients with excellent private
insurance coverage could lead to a hospital having more resources and a spill-over
effect that would benefit those without such coverage. Since for-profit hospitals
are likely to admit a larger proportion of such well-insured patients than not-for-profit
hospitals, the bias is once again against the not-for-profit hospitals. Since the plau-
sible biases would all diminish the demonstrated intervention effect, one might con-
sider the evidence from these observational studies as moderate rather than low
certainty. A parallel situation exists when observational studies have failed to dem-
onstrate an association, but all plausible biases would have increased an intervention
effect. This situation will usually arise in the exploration of apparent harmful effects.
For example, because the hypoglycaemic drug phenformin causes lactic acidosis, the
related agent metformin was under suspicion for the same toxicity. Nevertheless, very
large observational studies have failed to demonstrate an association (Salpeter et al
2007). Given the likelihood that clinicians would be more alert to lactic acidosis in the
presence of the agent and over-report its occurrence, one might consider this mod-
erate, or even high certainty, evidence refuting a causal relationship between typical
therapeutic doses of metformin and lactic acidosis.
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14.3 Describing the assessment of the certainty of a body
of evidence using the GRADE framework

Review authors should report the grading of the certainty of evidence in the Results
section for each outcome for which this has been performed, providing the rationale
for downgrading or upgrading the evidence, and referring to the ‘Summary of findings’
table where applicable.
Table 14.3.a provides a framework and examples for how review authors can justify

their judgements about the certainty of evidence in each domain. These justifications
should also be included in explanatory notes to the ‘Summary of findings’ table (see
Section 14.1.6.10).

Table 14.3.a Framework for describing the certainty of evidence and justifying downgrading or
upgrading

Domains for assessing
certainty of evidence
by outcome Results section

Examples of reasons for lowering or
increasing the certainty of evidence

Risk of bias Describe the risk of bias based on
the criteria used in the risk-of-bias
table.

Downgraded because of
10 randomized trials, five did not
blind patients and caretakers.

Inconsistency Describe the degree of
inconsistency by outcome using one
or more indicators (e.g. I2 and
P value), confidence interval
overlap, difference in point
estimate, between-study variance.

Not downgraded because the
proportion of the variability in
effect estimates that is due to true
heterogeneity rather than chance
is not important (I2 = 0%).

Indirectness Describe if the majority of studies
address the PICO –were they similar
to the question posed?

Downgraded because the included
studies were restricted to patients
with advanced cancer.

Imprecision Describe the number of events, and
width of the confidence intervals.

The confidence intervals for the
effect on mortality are consistent
with both an appreciable benefit
and appreciable harm and we
lowered the certainty.

Publication bias Describe the possible degree of
publication bias.

1) The funnel plot of
14 randomized trials indicated
that there were several small
studies that showed a small
positive effect, but small studies
that showed no effect or harm
may have been unpublished.
The certainty of the evidence
was lowered.

2) There are only three small
positive studies, it appears that
studies showing no effect or
harm have not been published.
There also is for-profit interest in
the intervention. The certainty of
the evidence was lowered.
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Chapter 15 (Section 15.6) describes in more detail how the overall GRADE assessment
across all domains can be used to draw conclusions about the effects of the interven-
tion, as well as providing implications for future research.
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15

Interpreting results and drawing conclusions
Holger J Schünemann, Gunn E Vist, Julian PT Higgins, Nancy Santesso,
Jonathan J Deeks, Paul Glasziou, Elie A Akl, Gordon H Guyatt; on behalf
of the Cochrane GRADEing Methods Group

KEY POINTS

• This chapter provides guidance on interpreting the results of synthesis in order to
communicate the conclusions of the review effectively.

• Methods are presented for computing, presenting and interpreting relative and absolute
effects for dichotomous outcome data, including the number needed to treat (NNT).

• For continuous outcome measures, review authors can present summary results for
studies using natural units of measurement or as minimal important differences when
all studies use the same scale. When studies measure the same construct but with
different scales, review authors will need to find a way to interpret the standardized
mean difference, or to use an alternative effect measure for the meta-analysis such as
the ratio of means.

• Review authors should not describe results as ‘statistically significant’, ‘not statisti-
cally significant’ or ‘non-significant’ or unduly rely on thresholds for P values, but
report the confidence interval together with the exact P value.

• Review authors should not make recommendations about healthcare decisions, but
they can – after describing the certainty of evidence and the balance of benefits and
harms – highlight different actions that might be consistent with particular patterns of
values and preferences and other factors that determine a decision such as cost.

15.1 Introduction

The purpose of Cochrane Reviews is to facilitate healthcare decisions by patients and
the general public, clinicians, guideline developers, administrators and policy makers.
They also inform future research. A clear statement of findings, a considered discussion

This chapter should be cited as: Schünemann HJ, Vist GE, Higgins JPT, Santesso N, Deeks JJ, Glasziou P,
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and a clear presentation of the authors’ conclusions are, therefore, important parts of
the review. In particular, the following issues can help people make better informed
decisions and increase the usability of Cochrane Reviews:

• information on all important outcomes, including adverse outcomes;

• the certainty of the evidence for each of these outcomes, as it applies to specific
populations and specific interventions; and

• clarification of the manner in which particular values and preferences may bear on
the desirable and undesirable consequences of the intervention.

A ‘Summary of findings’ table, described in Chapter 14 (Section 14.1), provides key
pieces of information about health benefits and harms in a quick and accessible for-
mat. It is highly desirable that review authors include a ‘Summary of findings’ table
in Cochrane Reviews alongside a sufficient description of the studies and meta-
analyses to support its contents. This description includes the rating of the certainty
of evidence, also called the quality of the evidence or confidence in the estimates of
the effects, which is expected in all Cochrane Reviews.
‘Summary of findings’ tables are usually supported by full evidence profiles which

include the detailed ratings of the evidence (Guyatt et al 2011a, Guyatt et al 2013a,
Guyatt et al 2013b, Santesso et al 2016). The Discussion section of the text of the review
provides space to reflect and consider the implications of these aspects of the review’s
findings. Cochrane Reviews include five standard subheadings to ensure the Discussion
section places the review in an appropriate context: ‘Summary of main results (benefits
and harms)’; ‘Potential biases in the review process’; ‘Overall completeness and appli-
cability of evidence’; ‘Certainty of the evidence’; and ‘Agreements and disagreements
with other studies or reviews’. Following the Discussion, the Authors’ conclusions
section is divided into two standard subsections: ‘Implications for practice’ and ‘Impli-
cations for research’. The assessment of the certainty of evidence facilitates a struc-
tured description of the implications for practice and research.
Because Cochrane Reviews have an international audience, the Discussion and

Authors’ conclusions should, so far as possible, assume a broad international perspec-
tive and provide guidance for how the results could be applied in different settings,
rather than being restricted to specific national or local circumstances. Cultural differ-
ences and economic differences may both play an important role in determining the
best course of action based on the results of a Cochrane Review. Furthermore, indivi-
duals within societies have widely varying values and preferences regarding health
states, and use of societal resources to achieve particular health states. For all these
reasons, and because information that goes beyond that included in a Cochrane
Review is required to make fully informed decisions, different people will often make
different decisions based on the same evidence presented in a review.
Thus, review authors should avoid specific recommendations that inevitably depend

on assumptions about available resources, values and preferences, and other factors
such as equity considerations, feasibility and acceptability of an intervention. The pur-
pose of the review should be to present information and aid interpretation rather than
to offer recommendations. The discussion and conclusions should help people under-
stand the implications of the evidence in relation to practical decisions and apply the
results to their specific situation. Review authors can aid this understanding of the
implications by laying out different scenarios that describe certain value structures.
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In this chapter, we address first one of the key aspects of interpreting findings that is
also fundamental in completing a ‘Summary of findings’ table: the certainty of evidence
related to each of the outcomes. We then provide a more detailed consideration of
issues around applicability and around interpretation of numerical results, and provide
suggestions for presenting authors’ conclusions.

15.2 Issues of indirectness and applicability

15.2.1 The role of the review author

“A leap of faith is always required when applying any study findings to the population
at large” or to a specific person. “In making that jump, onemust always strike a balance
between making justifiable broad generalizations and being too conservative in one’s
conclusions” (Friedman et al 1985). In addition to issues about risk of bias and other
domains determining the certainty of evidence, this leap of faith is related to how well
the identified body of evidence matches the posed PICO (Population, Intervention,
Comparator(s) and Outcome) question. As to the population, no individual can be
entirely matched to the population included in research studies. At the time of decision,
there will always be differences between the study population and the person or pop-
ulation to whom the evidence is applied; sometimes these differences are slight, some-
times large.
The terms applicability, generalizability, external validity and transferability are

related, sometimes used interchangeably and have in common that they lack a clear
and consistent definition in the classic epidemiological literature (Schünemann et al
2013). However, all of the terms describe one overarching theme: whether or not avail-
able research evidence can be directly used to answer the health and healthcare ques-
tion at hand, ideally supported by a judgement about the degree of confidence in this
use (Schünemann et al 2013). GRADE’s certainty domains include a judgement about
‘indirectness’ to describe all of these aspects including the concept of direct versus indi-
rect comparisons of different interventions (Atkins et al 2004, Guyatt et al 2008, Guyatt
et al 2011b).
To address adequately the extent to which a review is relevant for the purpose to

which it is being put, there are certain things the review author must do, and certain
things the user of the review must do to assess the degree of indirectness. Cochrane
and the GRADE Working Group suggest using a very structured framework to address
indirectness. We discuss here and in Chapter 14 what the review author can do to help
the user. Cochrane Review authors must be extremely clear on the population, inter-
vention and outcomes that they intend to address. Chapter 14 (Section 14.1.2) also
emphasizes a crucial step: the specification of all patient-important outcomes relevant
to the intervention strategies under comparison.
In considering whether the effect of an intervention applies equally to all partici-

pants, and whether different variations on the intervention have similar effects, review
authors need to make a priori hypotheses about possible effect modifiers, and then
examine those hypotheses (see Chapter 10, Sections 10.10 and 10.11). If they find
apparent subgroup effects, they must ultimately decide whether or not these effects
are credible (Sun et al 2012). Differences between subgroups, particularly those that
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correspond to differences between studies, should be interpreted cautiously. Some
chance variation between subgroups is inevitable so, unless there is good reason to
believe that there is an interaction, review authors should not assume that the sub-
group effect exists. If, despite due caution, review authors judge subgroup effects in
terms of relative effect estimates as credible (i.e. the effects differ credibly), they should
conduct separate meta-analyses for the relevant subgroups, and produce separate
‘Summary of findings’ tables for those subgroups.
The user of the review will be challenged with ‘individualization’ of the findings,

whether they seek to apply the findings to an individual patient or a policy decision
in a specific context. For example, even if relative effects are similar across subgroups,
absolute effects will differ according to baseline risk. Review authors can help provide
this information by identifying identifiable groups of people with varying baseline risks
in the ‘Summary of findings’ tables, as discussed in Chapter 14 (Section 14.1.3). Users
can then identify their specific case or population as belonging to a particular risk
group, if relevant, and assess their likely magnitude of benefit or harm accordingly.
A description of the identifying prognostic or baseline risk factors in a brief scenario
(e.g. age or gender) will help users of a review further.
Another decision users must make is whether their individual case or population of

interest is so different from those included in the studies that they cannot use the
results of the systematic review and meta-analysis at all. Rather than rigidly applying
the inclusion and exclusion criteria of studies, it is better to ask whether or not there are
compelling reasons why the evidence should not be applied to a particular patient.
Review authors can sometimes help decision makers by identifying important variation
where divergence might limit the applicability of results (Rothwell 2005, Schünemann
et al 2006, Guyatt et al 2011b, Schünemann et al 2013), including biologic and cultural
variation, and variation in adherence to an intervention.
In addressing these issues, review authors cannot be aware of, or address, the myriad

of differences in circumstances around the world. They can, however, address differ-
ences of known importance to many people and, importantly, they should avoid
assuming that other people’s circumstances are the same as their own in discussing
the results and drawing conclusions.

15.2.2 Biological variation

Issues of biological variation that may affect the applicability of a result to a reader or
population include divergence in pathophysiology (e.g. biological differences between
women andmen that may affect responsiveness to an intervention) and divergence in a
causative agent (e.g. for infectious diseases such as malaria, which may be caused by
several different parasites). The discussion of the results in the review should make
clear whether the included studies addressed all or only some of these groups, and
whether any important subgroup effects were found.

15.2.3 Variation in context

Some interventions, particularly non-pharmacological interventions, may work in
some contexts but not in others; the situation has been described as program by con-
text interaction (Hawe et al 2004). Contextual factors might pertain to the host
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organization in which an intervention is offered, such as the expertise, experience and
morale of the staff expected to carry out the intervention, the competing priorities for
the clinician’s or staff’s attention, the local resources such as service and facilities made
available to the program and the status or importance given to the program by the host
organization. Broader context issues might include aspects of the system within which
the host organization operates, such as the fee or payment structure for healthcare
providers and the local insurance system. Some interventions, in particular complex
interventions (see Chapter 17), can be only partially implemented in some contexts,
and this requires judgements about indirectness of the intervention and its compo-
nents for readers in that context (Schünemann 2013).
Contextual factors may also pertain to the characteristics of the target group or pop-

ulation, such as cultural and linguistic diversity, socio-economic position, rural/urban
setting. These factors may mean that a particular style of care or relationship evolves
between service providers and consumers that may or may not match the values and
technology of the program.
For many years these aspects have been acknowledged when decision makers have

argued that results of evidence reviews from other countries do not apply in their own
country or setting. Whilst some programmes/interventions have been successfully
transferred from one context to another, others have not (Resnicow et al 1993, Lumley
et al 2004, Coleman et al 2015). Review authors should be cautious when making gen-
eralizations from one context to another. They should report on the presence (or oth-
erwise) of context-related information in intervention studies, where this information is
available.

15.2.4 Variation in adherence

Variation in the adherence of the recipients and providers of care can limit the certainty
in the applicability of results. Predictable differences in adherence can be due to diver-
gence in how recipients of care perceive the intervention (e.g. the importance of side
effects), economic conditions or attitudes that make some forms of care inaccessible in
some settings, such as in low-income countries (Dans et al 2007). It should not be
assumed that high levels of adherence in closely monitored randomized trials will
translate into similar levels of adherence in normal practice.

15.2.5 Variation in values and preferences

Decisions about healthcare management strategies and options involve trading off
health benefits and harms. The right choice may differ for people with different values
and preferences (i.e. the importance people place on the outcomes and interventions),
and it is important that decision makers ensure that decisions are consistent with a
patient or population’s values and preferences. The importance placed on outcomes,
together with other factors, will influence whether the recipients of care will or will not
accept an option that is offered (Alonso-Coello et al 2016) and, thus, can be one factor
influencing adherence. In Section 15.6, we describe how the review author can help this
process and the limits of supporting decision making based on intervention reviews.
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15.3 Interpreting results of statistical analyses

15.3.1 Confidence intervals

Results for both individual studies and meta-analyses are reported with a point esti-
mate together with an associated confidence interval. For example, ‘The odds ratio
was 0.75 with a 95% confidence interval of 0.70 to 0.80’. The point estimate (0.75) is
the best estimate of the magnitude and direction of the experimental intervention’s
effect compared with the comparator intervention. The confidence interval describes
the uncertainty inherent in any estimate, and describes a range of values within which
we can be reasonably sure that the true effect actually lies. If the confidence interval
is relatively narrow (e.g. 0.70 to 0.80), the effect size is known precisely. If the interval
is wider (e.g. 0.60 to 0.93) the uncertainty is greater, although there may still be
enough precision to make decisions about the utility of the intervention. Intervals
that are very wide (e.g. 0.50 to 1.10) indicate that we have little knowledge about
the effect and this imprecision affects our certainty in the evidence, and that further
information would be needed before we could draw a more certain conclusion.
A 95% confidence interval is often interpreted as indicating a range within which we

can be 95% certain that the true effect lies. This statement is a loose interpretation,
but is useful as a rough guide. The strictly correct interpretation of a confidence inter-
val is based on the hypothetical notion of considering the results that would be
obtained if the study were repeated many times. If a study were repeated infinitely
often, and on each occasion a 95% confidence interval calculated, then 95% of these
intervals would contain the true effect (see Section 15.3.3 for further explanation).
The width of the confidence interval for an individual study depends to a large

extent on the sample size. Larger studies tend to give more precise estimates of
effects (and hence have narrower confidence intervals) than smaller studies. For con-
tinuous outcomes, precision depends also on the variability in the outcome measure-
ments (i.e. how widely individual results vary between people in the study, measured
as the standard deviation); for dichotomous outcomes it depends on the risk of the
event (more frequent events allow more precision, and narrower confidence inter-
vals), and for time-to-event outcomes it also depends on the number of events
observed. All these quantities are used in computation of the standard errors of effect
estimates from which the confidence interval is derived.
The width of a confidence interval for ameta-analysis depends on the precision of the

individual study estimates and on the number of studies combined. In addition, for
random-effects models, precision will decrease with increasing heterogeneity and con-
fidence intervals will widen correspondingly (see Chapter 10, Section 10.10.4). As more
studies are added to a meta-analysis the width of the confidence interval usually
decreases. However, if the additional studies increase the heterogeneity in the
meta-analysis and a random-effects model is used, it is possible that the confidence
interval width will increase.
Confidence intervals and point estimates have different interpretations in fixed-effect

and random-effects models. While the fixed-effect estimate and its confidence interval
address the question ‘what is the best (single) estimate of the effect?’, the random-
effects estimate assumes there to be a distribution of effects, and the estimate and
its confidence interval address the question ‘what is the best estimate of the average
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effect?’ A confidence interval may be reported for any level of confidence (although
they are most commonly reported for 95%, and sometimes 90% or 99%). For example,
the odds ratio of 0.80 could be reported with an 80% confidence interval of 0.73 to 0.88;
a 90% interval of 0.72 to 0.89; and a 95% interval of 0.70 to 0.92. As the confidence level
increases, the confidence interval widens.
There is logical correspondence between the confidence interval and the P value (see

Section 15.3.3). The 95% confidence interval for an effect will exclude the null value
(such as an odds ratio of 1.0 or a risk difference of 0) if and only if the test of significance
yields a P value of less than 0.05. If the P value is exactly 0.05, then either the upper or
lower limit of the 95% confidence interval will be at the null value. Similarly, the 99%
confidence interval will exclude the null if and only if the test of significance yields a
P value of less than 0.01.
Together, the point estimate and confidence interval provide information to assess

the effects of the intervention on the outcome. For example, suppose that we are eval-
uating an intervention that reduces the risk of an event and we decide that it would be
useful only if it reduced the risk of an event from 30% by at least 5 percentage points to
25% (these values will depend on the specific clinical scenario and outcomes, including
the anticipated harms). If the meta-analysis yielded an effect estimate of a reduction of
10 percentage points with a tight 95% confidence interval, say, from 7% to 13%, we
would be able to conclude that the intervention was useful since both the point esti-
mate and the entire range of the interval exceed our criterion of a reduction of 5% for
net health benefit. However, if the meta-analysis reported the same risk reduction of
10% but with a wider interval, say, from 2% to 18%, although we would still conclude
that our best estimate of the intervention effect is that it provides net benefit, we could
not be so confident as we still entertain the possibility that the effect could be between
2% and 5%. If the confidence interval was wider still, and included the null value of a
difference of 0%, we would still consider the possibility that the intervention has no
effect on the outcome whatsoever, and would need to be even more sceptical in
our conclusions.
Review authors may use the same general approach to conclude that an intervention

is not useful. Continuing with the above example where the criterion for an important
difference that should be achieved to provide more benefit than harm is a 5% risk dif-
ference, an effect estimate of 2% with a 95% confidence interval of 1% to 4% suggests
that the intervention does not provide net health benefit.

15.3.2 P values and statistical significance

A P value is the standard result of a statistical test, and is the probability of obtaining
the observed effect (or larger) under a ‘null hypothesis’. In the context of Cochrane
Reviews there are two commonly used statistical tests. The first is a test of overall effect
(a Z-test), and its null hypothesis is that there is no overall effect of the experimental
intervention compared with the comparator on the outcome of interest. The second is
the (Chi2) test for heterogeneity, and its null hypothesis is that there are no differences
in the intervention effects across studies.
A P value that is very small indicates that the observed effect is very unlikely to have

arisen purely by chance, and therefore provides evidence against the null hypothesis.
It has been common practice to interpret a P value by examining whether it is smaller
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than particular threshold values. In particular, P values less than 0.05 are often
reported as ‘statistically significant’, and interpreted as being small enough to justify
rejection of the null hypothesis. However, the 0.05 threshold is an arbitrary one that
became commonly used in medical and psychological research largely because
P values were determined by comparing the test statistic against tabulations of spe-
cific percentage points of statistical distributions. If review authors decide to present
a P value with the results of a meta-analysis, they should report a precise P value
(as calculated by most statistical software), together with the 95% confidence inter-
val. Review authors should not describe results as ‘statistically significant’, ‘not
statistically significant’ or ‘non-significant’ or unduly rely on thresholds for
P values, but report the confidence interval together with the exact P value (see
MECIR Box 15.3.a).
We discuss interpretation of the test for heterogeneity in Chapter 10 (Section 10.10.2);

the remainder of this section refers mainly to tests for an overall effect. For tests of an
overall effect, the computation of P involves both the effect estimate and precision of
the effect estimate (driven largely by sample size). As precision increases, the range of
plausible effects that could occur by chance is reduced. Correspondingly, the statistical
significance of an effect of a particular magnitude will usually be greater (the P value
will be smaller) in a larger study than in a smaller study.
P values are commonly misinterpreted in two ways. First, a moderate or large

P value (e.g. greater than 0.05) may be misinterpreted as evidence that the interven-
tion has no effect on the outcome. There is an important difference between this
statement and the correct interpretation that there is a high probability that the
observed effect on the outcome is due to chance alone. To avoid such a misinterpre-
tation, review authors should always examine the effect estimate and its 95% confi-
dence interval.
The second misinterpretation is to assume that a result with a small P value for the

summary effect estimate implies that an experimental intervention has an important
benefit. Such a misinterpretation is more likely to occur in large studies and meta-
analyses that accumulate data over dozens of studies and thousands of participants.
The P value addresses the question of whether the experimental intervention effect is
precisely nil; it does not examine whether the effect is of a magnitude of importance to
potential recipients of the intervention. In a large study, a small P value may represent
the detection of a trivial effect that may not lead to net health benefit when compared
with the potential harms (i.e. harmful effects on other important outcomes). Again,
inspection of the point estimate and confidence interval helps correct interpretations
(see Section 15.3.1).

MECIR Box 15.3.a Relevant expectations for conduct of intervention reviews

C72: Interpreting results (Mandatory)

Do not describe results as statistically
significant or non-significant. Interpret
the confidence intervals and their width.

Authors commonly mistake a lack of
evidence of effect as evidence of a lack
of effect.
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15.3.3 Relation between confidence intervals, statistical significance and
certainty of evidence

The confidence interval (and imprecision) is only one domain that influences overall
uncertainty about effect estimates. Uncertainty resulting from imprecision (i.e. statis-
tical uncertainty) may be no less important than uncertainty from indirectness, or any
other GRADE domain, in the context of decision making (Schünemann 2016). Thus, the
extent to which interpretations of the confidence interval described in Sections 15.3.1
and 15.3.2 correspond to conclusions about overall certainty of the evidence for the
outcome of interest depends on these other domains. If there are no concerns about
other domains that determine the certainty of the evidence (i.e. risk of bias, inconsist-
ency, indirectness or publication bias), then the interpretation in Sections 15.3.1 and
15.3.2. about the relation of the confidence interval to the true effect may be carried
forward to the overall certainty. However, if there are concerns about the other
domains that affect the certainty of the evidence, the interpretation about the true
effect needs to be seen in the context of further uncertainty resulting from those
concerns.
For example, nine randomized controlled trials in almost 6000 cancer patients indi-

cated that the administration of heparin reduces the risk of venous thromboembolism
(VTE), with a risk ratio of 43% (95% CI 19% to 60%) (Akl et al 2011a). For patients with a
plausible baseline risk of approximately 4.6% per year, this relative effect suggests that
heparin leads to an absolute risk reduction of 20 fewer VTEs (95% CI 9 fewer to 27 fewer)
per 1000 people per year (Akl et al 2011a). Now consider that the review authors or
those applying the evidence in a guideline have lowered the certainty in the evidence
as a result of indirectness. While the confidence intervals would remain unchanged, the
certainty in that confidence interval and in the point estimate as reflecting the truth for
the question of interest will be lowered. In fact, the certainty range will have unknown
width so there will be unknown likelihood of a result within that range because of this
indirectness. The lower the certainty in the evidence, the less we know about the width
of the certainty range, althoughmethods for quantifying risk of bias and understanding
potential direction of bias may offer insight when lowered certainty is due to risk of
bias. Nevertheless, decision makers must consider this uncertainty, and must do so
in relation to the effect measure that is being evaluated (e.g. a relative or absolute
measure). We will describe the impact on interpretations for dichotomous outcomes
in Section 15.4.

15.4 Interpreting results from dichotomous outcomes
(including numbers needed to treat)

15.4.1 Relative and absolute risk reductions

Clinicians may be more inclined to prescribe an intervention that reduces the relative
risk of death by 25% than one that reduces the risk of death by 1 percentage point,
although both presentations of the evidence may relate to the same benefit (i.e. a
reduction in risk from 4% to 3%). The former refers to the relative reduction in risk
and the latter to the absolute reduction in risk. As described in Chapter 6
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(Section 6.4.1), there are several measures for comparing dichotomous outcomes in
two groups. Meta-analyses are usually undertaken using risk ratios (RR), odds ratios
(OR) or risk differences (RD), but there are several alternative ways of expressing
results.
Relative risk reduction (RRR) is a convenient way of re-expressing a risk ratio as a

percentage reduction:

RRR = 100 × 1 – RR

For example, a risk ratio of 0.75 translates to a relative risk reduction of 25%, as in the
example above.
The risk difference is often referred to as the absolute risk reduction (ARR) or abso-

lute risk increase (ARI), and may be presented as a percentage (e.g. 1%), as a decimal
(e.g. 0.01), or as account (e.g. 10 out of 1000). We consider different choices for present-
ing absolute effects in Section 15.4.3. We then describe computations for obtaining
these numbers from the results of individual studies and of meta-analyses in
Section 15.4.4.

15.4.2 Number needed to treat (NNT)

The number needed to treat (NNT) is a common alternative way of presenting infor-
mation on the effect of an intervention. The NNT is defined as the expected number of
people who need to receive the experimental rather than the comparator intervention
for one additional person to either incur or avoid an event (depending on the direction
of the result) in a given time frame. Thus, for example, an NNT of 10 can be interpreted
as ‘it is expected that one additional (or less) person will incur an event for every 10 par-
ticipants receiving the experimental intervention rather than comparator over a given
time frame’. It is important to be clear that:

1) since the NNT is derived from the risk difference, it is still a comparativemeasure of
effect (experimental versus a specific comparator) and not a general property of a
single intervention; and

2) the NNT gives an ‘expected value’. For example, NNT = 10 does not imply that one
additional event will occur in each and every group of 10 people.

NNTs can be computed for both beneficial and detrimental events, and for interven-
tions that cause both improvements and deteriorations in outcomes. In all instances
NNTs are expressed as positive whole numbers. Some authors use the term ‘number
needed to harm’ (NNH) when an intervention leads to an adverse outcome, or a
decrease in a positive outcome, rather than improvement. However, this phrase can
be misleading (most notably, it can easily be read to imply the number of people
who will experience a harmful outcome if given the intervention), and it is strongly
recommended that ‘number needed to harm’ and ‘NNH’ are avoided. The preferred
alternative is to use phrases such as ‘number needed to treat for an additional bene-
ficial outcome’ (NNTB) and ‘number needed to treat for an additional harmful out-
come’ (NNTH) to indicate direction of effect.
As NNTs refer to events, their interpretation needs to be worded carefully when the

binary outcome is a dichotomization of a scale-based outcome. For example, if the
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outcome is pain measured on a ‘none, mild, moderate or severe’ scale it may have been
dichotomized as ‘none or mild’ versus ‘moderate or severe’. It would be inappropriate
for an NNT from these data to be referred to as an ‘NNT for pain’. It is an ‘NNT for mod-
erate or severe pain’.
We consider different choices for presenting absolute effects in Section 15.4.3. We

then describe computations for obtaining these numbers from the results of individual
studies and of meta-analyses in Section 15.4.4.

15.4.3 Expressing risk differences

Users of reviews are liable to be influenced by the choice of statistical presentations of
the evidence. Hoffrage and colleagues suggest that physicians’ inferences about statis-
tical outcomes are more appropriate when they deal with ‘natural frequencies’ –whole
numbers of people, both treated and untreated (e.g. treatment results in a drop from
20 out of 1000 to 10 out of 1000 women having breast cancer) – than when effects are
presented as percentages (e.g. 1% absolute reduction in breast cancer risk) (Hoffrage
et al 2000). Probabilities may be more difficult to understand than frequencies, partic-
ularly when events are rare. While standardization may be important in improving the
presentation of research evidence (and participation in healthcare decisions), current
evidence suggests that the presentation of natural frequencies for expressing differ-
ences in absolute risk is best understood by consumers of healthcare information
(Akl et al 2011b). This evidence provides the rationale for presenting absolute risks
in ‘Summary of findings’ tables as numbers of people with events per 1000 people
receiving the intervention (see Chapter 14).
RRs and RRRs remain crucial because relative effects tend to be substantially more

stable across risk groups than absolute effects (see Chapter 10, Section 10.4.3). Review
authors can use their own data to study this consistency (Cates 1999, Smeeth et al
1999). Risk differences from studies are least likely to be consistent across baseline
event rates; thus, they are rarely appropriate for computing numbers needed to
treat in systematic reviews. If a relative effect measure (OR or RR) is chosen for
meta-analysis, then a comparator group risk needs to be specified as part of the cal-
culation of an RD or NNT. In addition, if there are several different groups of partici-
pants with different levels of risk, it is crucial to express absolute benefit for each
clinically identifiable risk group, clarifying the time period to which this applies. Studies
in patients with differing severity of disease, or studies with different lengths of follow-
up will almost certainly have different comparator group risks. In these cases, different
comparator group risks lead to different RDs and NNTs (except when the intervention
has no effect). A recommended approach is to re-express an odds ratio or a risk ratio as
a variety of RD or NNTs across a range of assumed comparator risks (ACRs) (McQuay
and Moore 1997, Smeeth et al 1999). Review authors should bear these considerations
in mind not only when constructing their ‘Summary of findings’ table, but also in the
text of their review.
For example, a review of oral anticoagulants to prevent stroke presented information

to users by describing absolute benefits for various baseline risks (Aguilar and Hart
2005, Aguilar et al 2007). They presented their principal findings as “The inherent risk
of stroke should be considered in the decision to use oral anticoagulants in atrial fibril-
lation patients, selecting those who stand to benefit most for this therapy” (Aguilar and

15.4 Interpreting results from dichotomous outcomes

413



Hart 2005). Among high-risk atrial fibrillation patients with prior stroke or transient
ischaemic attack who have stroke rates of about 12% (120 per 1000) per year, warfarin
prevents about 70 strokes yearly per 1000 patients, whereas for low-risk atrial fibrilla-
tion patients (with a stroke rate of about 2% per year or 20 per 1000), warfarin prevents
only 12 strokes. This presentation helps users to understand the important impact that
typical baseline risks have on the absolute benefit that they can expect.

15.4.4 Computations

Direct computation of risk difference (RD) or a number needed to treat (NNT) depends
on the summary statistic (odds ratio, risk ratio or risk differences) available from the
study or meta-analysis. When expressing results of meta-analyses, review authors
should use, in the computations, whatever statistic they determined to be the most
appropriate summary for meta-analysis (see Chapter 10, Section 10.4.3). Here we pres-
ent calculations to obtain RD as a reduction in the number of participants per 1000. For
example, a risk difference of –0.133 corresponds to 133 fewer participants with the
event per 1000.
RDs and NNTs should not be computed from the aggregated total numbers of parti-

cipants and events across the trials. This approach ignores the randomization within
studies, and may produce seriously misleading results if there is unbalanced random-
ization in any of the studies. Using the pooled result of a meta-analysis is more appro-
priate. When computing NNTs, the values obtained are by convention always rounded
up to the next whole number.

15.4.4.1 Computing NNT from a risk difference (RD)
A NNT may be computed from a risk difference as

NNT =
1

absolute value of risk difference
=

1
RD

where the vertical bars (‘absolute value of’) in the denominator indicate that any minus
sign should be ignored. It is convention to round the NNT up to the nearest whole num-
ber. For example, if the risk difference is –0.12 the NNT is 9; if the risk difference is –0.22
the NNT is 5. Cochrane Review authors should qualify the NNT as referring to benefit
(improvement) or harm by denoting the NNT as NNTB or NNTH. Note that this
approach, although feasible, should be used only for the results of a meta-analysis
of risk differences. In most cases meta-analyses will be undertaken using a relative
measure of effect (RR or OR), and those statistics should be used to calculate the
NNT (see Section 15.4.4.2 and 15.4.4.3).

15.4.4.2 Computing risk differences or NNT from a risk ratio
To aid interpretation of the results of a meta-analysis of risk ratios, review authors may
compute an absolute risk reduction or NNT. In order to do this, an assumed comparator
risk (ACR) (otherwise known as a baseline risk, or risk that the outcome of interest
would occur with the comparator intervention) is required. It will usually be appropri-
ate to do this for a range of different ACRs. The computation proceeds as follows:

15 Interpreting results and drawing conclusions

414



number fewer per 1000 ARR = 1000 × ACR × 1−RR

NNT =
1

ACR × 1−RR

As an example, suppose the risk ratio is RR = 0.92, and an ACR = 0.3 (300 per 1000) is
assumed. Then the effect on risk is 24 fewer per 1000:

number fewer per 1000 = 1000 × 0 3 × 1−0 92 = 24

The NNT is 42:

NNT =
1

0 3 × 1−0 92
=

1
0 3 × 0 08

= 41 67

15.4.4.3 Computing risk differences or NNT from an odds ratio
Review authors may wish to compute a risk difference or NNT from the results of a
meta-analysis of odds ratios. In order to do this, an ACR is required. It will usually
be appropriate to do this for a range of different ACRs. The computation proceeds
as follows:

number fewer per 1000 = 1000 × ACR−
OR × ACR

1−ACR +OR × ACR

NNT =
1

ACR−
OR × ACR

1−ACR +OR × ACR

As an example, suppose the odds ratio is OR = 0.73, and a comparator risk of ACR = 0.3
is assumed. Then the effect on risk is 62 fewer per 1000:

number fewer per 1000 = 1000 × 0 3−
0 73 × 0 3

1−0 3 + 0 73 × 0 3

= 1000 × 0 3−
0 219

1−0 3 + 0 219

= 1000 × 0 3−0 238 = 61 7

The NNT is 17:

NNT =
1

0 3−
0 73 × 0 3

1−0 3 + 0 73 × 0 3

=
1

0 3−
0 219

1−0 3 + 0 219

=
1

0 3−0 238
= 16 2
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15.4.4.4 Computing risk ratio from an odds ratio
Because risk ratios are easier to interpret than odds ratios, but odds ratios have favour-
able mathematical properties, a review author may decide to undertake a meta-
analysis based on odds ratios, but to express the result as a summary risk ratio (or rel-
ative risk reduction). This requires an ACR. Then

RR =
OR

1−ACR × 1−OR

It will often be reasonable to perform this transformation using themedian comparator
group risk from the studies in the meta-analysis.

15.4.4.5 Computing confidence limits
Confidence limits for RDs and NNTs may be calculated by applying the above formulae
to the upper and lower confidence limits for the summary statistic (RD, RR or OR)
(Altman 1998). Note that this confidence interval does not incorporate uncertainty
around the ACR.
If the 95% confidence interval of OR or RR includes the value 1, one of the confidence

limits will indicate benefit and the other harm. Thus, appropriate use of the words
‘fewer’ and ‘more’ is required for each limit when presenting results in terms of events.
For NNTs, the two confidence limits should be labelled as NNTB and NNTH to indicate
the direction of effect in each case. The confidence interval for the NNT will include a
‘discontinuity’, because increasingly smaller risk differences that approach zero will
lead to NNTs approaching infinity. Thus, the confidence interval will include both an
infinitely large NNTB and an infinitely large NNTH.

15.5 Interpreting results from continuous outcomes
(including standardized mean differences)

15.5.1 Meta-analyses with continuous outcomes

Review authors should describe in the study protocol how they plan to interpret results
for continuous outcomes. When outcomes are continuous, review authors have a num-
ber of options to present summary results. These options differ if studies report the
same measure that is familiar to the target audiences, studies report the same or very
similar measures that are less familiar to the target audiences, or studies report differ-
ent measures.

15.5.2 Meta-analyses with continuous outcomes using the same measure

If all studies have used the same familiar units, for instance, results are expressed as
durations of events, such as symptoms for conditions including diarrhoea, sore throat,
otitis media, influenza or duration of hospitalization, a meta-analysis may generate a
summary estimate in those units, as a difference in mean response (see, for instance,
the row summarizing results for duration of diarrhoea in Chapter 14, Figure 14.1.b and
the row summarizing oedema in Chapter 14, Figure 14.1.a). For such outcomes, the
‘Summary of findings’ table should include a difference of means between the two
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interventions. However, when units of such outcomes may be difficult to interpret, par-
ticularly when they relate to rating scales (again, see the oedema row of Chapter 14,
Figure 14.1.a). ‘Summary of findings’ tables should include theminimum andmaximum
of the scale of measurement, and the direction. Knowledge of the smallest change in
instrument score that patients perceive is important – the minimal important differ-
ence (MID) – and can greatly facilitate the interpretation of results (Guyatt et al
1998, Schünemann and Guyatt 2005). Knowing the MID allows review authors and users
to place results in context. Review authors should state the MID – if known – in the Com-
ments column of their ‘Summary of findings’ table. For example, the chronic respiratory
questionnaire has possible scores in health-related quality of life ranging from 1 to 7
and 0.5 represents a well-established MID (Jaeschke et al 1989, Schünemann
et al 2005).

15.5.3 Meta-analyses with continuous outcomes using different measures

When studies have used different instruments to measure the same construct, a stan-
dardized mean difference (SMD) may be used in meta-analysis for combining contin-
uous data. Without guidance, clinicians and patients may have little idea how to
interpret results presented as SMDs. Review authors should therefore consider issues
of interpretability when planning their analysis at the protocol stage and should
consider whether there will be suitable ways to re-express the SMD or whether alter-
native effect measures, such as a ratio of means, or possibly as minimal important dif-
ference units (Guyatt et al 2013b) should be used. Table 15.5.a and the following
sections describe these options.

Table 15.5.a Approaches and their implications to presenting results of continuous variables when
primary studies have used different instruments to measure the same construct. Adapted from Guyatt
et al (2013b)

Approach
Observations about using the
approach Recommendation

Options for interpreting SMDs

1a. Generic standard
deviation (SD) units
and guiding rules

It is widely used, but the
interpretation is challenging. It can
be misleading depending on
whether the population is very
homogenous or heterogeneous (i.e.
how variable the outcome was in the
population of each included study,
and therefore how applicable a
standard SD is likely to be). See
Section 15.5.3.1.

Use together with other
approaches below.

1b. Re-express and
present as units of a
familiar measure

Presenting data with this approach
may be viewed by users as closer to
the primary data. However, few

When the units and measures are
familiar to the decision makers (e.g.
healthcare providers and patients),

(Continued)
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15.5.3.1 Presenting and interpreting SMDs using generic effect size estimates
The SMD expresses the intervention effect in standard units rather than the original
units of measurement. The SMD is the difference in mean effects between the exper-
imental and comparator groups divided by the pooled standard deviation of partici-
pants’ outcomes, or external SDs when studies are very small (see Chapter 6,

Table 15.5.a (Continued)

Approach
Observations about using the
approach Recommendation

instruments are sufficiently used in
clinical practice to make many of the
presented units easily interpretable.
See Section 15.5.3.2.

this presentation should be
seriously considered.

Note: Conversion to natural units is
also an option for expressing results
using the MID approach below
(row 3).

1c. Re-express as
result for a
dichotomous
outcome

Dichotomous outcomes are very
familiar to clinical audiences and
may facilitate understanding.
However, this approach involves
assumptions that may not always be
valid (e.g. it assumes that
distributions in intervention and
comparator group are roughly
normally distributed and variances
are similar). It allows applying
GRADE guidance for large and very
large effects. See Section 15.5.3.3.

Consider this approach if the
assumptions appear reasonable.
If the minimal important difference
for an instrument is known
describing the probability of
individuals achieving this difference
may be more intuitive. Review
authors should always seriously
consider this option.

Note: Re-expressing SMDs is not the
only way of expressing results as
dichotomous outcomes. For
example, the actual outcomes in the
studies can be dichotomized, either
directly or using assumptions, prior
to meta-analysis.

Options based on other effect measures

2. Ratio of means This approach may be easily
interpretable to clinical audiences
and involves fewer assumptions
than some other approaches. It
allows applying GRADE guidance for
large and very large effects. It cannot
be applied when measure is a
change from baseline and therefore
negative values possible and the
interpretation requires knowledge
and interpretation of comparator
group mean. See Section 15.5.3.4

Consider as complementing other
approaches, particularly the
presentation of relative and
absolute effects.

3. Minimal important
difference units

This approach may be easily
interpretable for audiences but is
applicable only when minimal
important differences are known.
See Section 15.5.3.5.

Consider as complementing other
approaches, particularly the
presentation of relative and
absolute effects.
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Section 6.5.1.2). The value of a SMD thus depends on both the size of the effect (the
difference between means) and the standard deviation of the outcomes (the inherent
variability among participants or based on an external SD).
If review authors use the SMD, they might choose to present the results directly as

SMDs (row 1a, Table 15.5.a and Table 15.5.b). However, absolute values of the interven-
tion and comparison groups are typically not useful because studies have used differ-
ent measurement instruments with different units. Guiding rules for interpreting SMDs
(or ‘Cohen’s effect sizes’) exist, and have arisen mainly from researchers in the social
sciences (Cohen 1988). One example is as follows: 0.2 represents a small effect, 0.5 a
moderate effect and 0.8 a large effect (Cohen 1988). Variations exist (e.g. < 0.40 = small,
0.40 to 0.70 = moderate, > 0.70 = large). Review authors might consider including such a
guiding rule in interpreting the SMD in the text of the review, and in summary versions
such as the Comments column of a ‘Summary of findings’ table. However, some meth-
odologists believe that such interpretations are problematic because patient impor-
tance of a finding is context-dependent and not amenable to generic statements.

15.5.3.2 Re-expressing SMDs using a familiar instrument
The second possibility for interpreting the SMD is to express it in the units of one or
more of the specific measurement instruments used by the included studies (row
1b, Table 15.5.a and Table 15.5.b). The approach is to calculate an absolute difference
in means by multiplying the SMD by an estimate of the SD associated with the most
familiar instrument. To obtain this SD, a reasonable option is to calculate a weighted
average across all intervention groups of all studies that used the selected instrument
(preferably a pre-intervention or post-intervention SD as discussed in Chapter 10,
Section 10.5.2). To better reflect among-person variation in practice, or to use an instru-
ment not represented in the meta-analysis, it may be preferable to use a standard devi-
ation from a representative observational study. The summary effect is thus re-
expressed in the original units of that particular instrument and the clinical relevance
and impact of the intervention effect can be interpreted using that familiar instrument.
The same approach of re-expressing the results for a familiar instrument can also be

used for other standardized effect measures such as when standardizing by MIDs
(Guyatt et al 2013b): see Section 15.5.3.5.

15.5.3.3 Re-expressing SMDs through dichotomization and transformation to
relative and absolute measures
A third approach (row 1c, Table 15.5.a and Table 15.5.b) relies on converting the con-
tinuous measure into a dichotomy and thus allows calculation of relative and absolute
effects on a binary scale. A transformation of a SMD to a (log) odds ratio is available,
based on the assumption that an underlying continuous variable has a logistic distri-
bution with equal standard deviation in the two intervention groups, as discussed in
Chapter 10 (Section 10.6) (Furukawa 1999, Guyatt et al 2013b). The assumption is
unlikely to hold exactly and the results must be regarded as an approximation. The
log odds ratio is estimated as

ln OR =
π

3
SMD
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Table 15.5.b Application of approaches when studies have used different measures: effects of dexamethasone for pain after laparoscopic cholecystectomy
(Karanicolas et al 2008). Reproduced with permission of Wolters Kluwer

Options for presenting information
about the outcome post-operative
pain and suggested description of
the measure

Estimated risk or
estimated score/
value with placebo

Risk difference or relative reduction
in score/value with dexamethasone

Relative
effect
(95% CI)

Number of
participants
(studies)

Certainty
of
evidence1 Comments

1a. Post-operative pain, standard
deviation units
Investigators measured pain using
different instruments. Lower scores
mean less pain.

The pain score in the dexamethasone groups was on average
0.79 SDs (1.41 to 0.17) lower than in the placebo groups).

– 539 (5) OO2,3

Low
As a rule of thumb, 0.2 SD
represents a small difference,
0.5 a moderate and 0.8 a large.

1b. Post-operative pain
Measured on a scale from 0, no pain,
to 100, worst pain imaginable.

The mean post-
operative pain scores
with placebo ranged
from 43 to 54.

The mean pain score in the
intervention groups was on average
8.1 (1.8 to 14.5) lower.

– 539 (5) OO
Low2,3

Scores calculated based on an
SMD of 0.79 (95% CI –1.41 to –
0.17) and rescaled to a 0 to 100
pain scale.

The minimal important
difference on the 0 to 100 pain
scale is approximately 10.

1c. Substantial post-operative pain,
dichotomized
Investigators measured pain using
different instruments.

20 per 1004 15 more (4 more to 18 more) per 100
patients in dexamethasone group
achieved important improvement in
the pain score.

RR = 0.25
(95% CI
0.05 to
0.75)

539 (5) OO2,3

Low
Scores estimated based on an
SMD of 0.79 (95% CI –1.41 to –
0.17).

2. Post-operative pain
Investigators measured pain using
different instruments. Lower scores
mean less pain.

The mean post-
operative pain scores
with placebo was
28.1.5

On average a 3.7 lower pain score
(0.6 to 6.1 lower)

Ratio of
means
0.87
(0.78 to
0.98)

539 (5) OO2,3

Low
Weighted average of the mean
pain score in dexamethasone
group divided by mean pain
score in placebo.

3. Post-operative pain
Investigators measured pain using
different instruments.

The pain score in the dexamethasone groups was on average 0.40
(95% CI 0.74 to 0.07) minimal important difference units less
than the control group.

– 539 (5) OO2,3

Low
An effect less than half the
minimal important difference
suggests a small or very small
effect.

1 Certainty rated according to GRADE from very low to high certainty.
2 Substantial unexplained heterogeneity in study results.
3 Imprecision due to wide confidence intervals.
4 The 20% comes from the proportion in the control group requiring rescue analgesia.
5 Crude (arithmetic) means of the post-operative pain mean responses across all five trials when transformed to a 100-point scale.
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(or approximately 1.81 × SMD). The resulting odds ratio can then be presented as nor-
mal, and in a ‘Summary of findings’ table, combined with an assumed comparator
group risk to be expressed as an absolute risk difference. The comparator group risk
in this case would refer to the proportion of people who have achieved a specific value
of the continuous outcome. In randomized trials this can be interpreted as the propor-
tion who have improved by some (specified) amount (responders), for instance by 5
points on a 0 to 100 scale. Table 15.5.c shows some illustrative results from this
method. The risk differences can then be converted to NNTs or to people per thousand
using methods described in Section 15.4.4.

15.5.3.4 Ratio of means
A more frequently used approach is based on calculation of a ratio of means between
the intervention and comparator groups (Friedrich et al 2008) as discussed in Chapter 6
(Section 6.5.1.3). Interpretational advantages of this approach include the ability to
pool studies with outcomes expressed in different units directly, to avoid the vulnera-
bility of heterogeneous populations that limits approaches that rely on SD units, and
for ease of clinical interpretation (row 2, Table 15.5.a and Table 15.5.b). This method is
currently designed for post-intervention scores only. However, it is possible to calculate
a ratio of change scores if both intervention and comparator groups change in the
same direction in each relevant study, and this ratio may sometimes be informative.
Limitations to this approach include its limited applicability to change scores (since it

is unlikely that both intervention and comparator group changes are in the same
direction in all studies) and the possibility of misleading results if the comparator group

Table 15.5.c Risk difference derived for specific SMDs for various given ‘proportions improved’ in the
comparator group (Furukawa 1999, Guyatt et al 2013b). Reproduced with permission of Elsevier

Comparator
group response
proportion 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Situations in which the event is undesirable, reduction (or increase if intervention harmful) in
adverse events with the intervention

SMD = −0.2 −3% −5% −7% −8% −8% −8% −7% −6% −40%

SMD = −0.5 −6% −11% −15% −17% −19% −20% −20% −17% −12%

SMD = −0.8 −8% −15% −21% −25% −29% −31% −31% −28% −22%

SMD = −1.0 −9% −17% −24% −23% −34% −37% −38% −36% −29%

Situations in which the event is desirable, increase (or decrease if intervention harmful) in positive
responses to the intervention

SMD = 0.2 4% 61% 7% 8% 8% 8% 7% 5% 3%

SMD = 0.5 12% 17% 19% 20% 19% 17% 15% 11% 6%

SMD = 0.8 22% 28% 31% 31% 29% 25% 21% 15% 8%

SMD = 1.0 29% 36% 38% 38% 34% 30% 24% 17% 9%
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mean is very small, in which case even a modest difference from the intervention group
will yield a large and therefore misleading ratio of means. It also requires that separate
ratios of means be calculated for each included study, and then entered into a generic
inverse variance meta-analysis (see Chapter 10, Section 10.3).
The ratio of means approach illustrated in Table 15.5.b suggests a relative reduction

in pain of only 13%, meaning that those receiving steroids have a pain severity 87% of
those in the comparator group, an effect that might be considered modest.

15.5.3.5 Presenting continuous results as minimally important
difference units
To express results in MID units, review authors have two options. First, they can be com-
bined across studies in the same way as the SMD, but instead of dividing the mean dif-
ference of each study by its SD, review authors divide by the MID associated with that
outcome (Johnston et al 2010, Guyatt et al 2013b). Instead of SD units, the pooled
results represent MID units (row 3, Table 15.5.a and Table 15.5.b), and may be more
easily interpretable. This approach avoids the problem of varying SDs across studies
that may distort estimates of effect in approaches that rely on the SMD. The approach,
however, relies on having well-established MIDs. The approach is also risky in that a
difference less than the MIDmay be interpreted as trivial when a substantial proportion
of patients may have achieved an important benefit.
The other approach makes a simple conversion (not shown in Table 15.5.b), before

undertaking the meta-analysis, of the means and SDs from each study to means and
SDs on the scale of a particular familiar instrument whose MID is known. For example,
one can rescale the mean and SD of other chronic respiratory disease instruments (e.g.
rescaling a 0 to 100 score of an instrument) to a the 1 to 7 score in Chronic Respiratory
Disease Questionnaire (CRQ) units (by assuming 0 equals 1 and 100 equals 7 on the
CRQ). Given the MID of the CRQ of 0.5, a mean difference in change of 0.71 after rescal-
ing of all studies suggests a substantial effect of the intervention (Guyatt et al 2013b).
This approach, presenting in units of the most familiar instrument, may be the most
desirable when the target audiences have extensive experience with that instrument,
particularly if the MID is well established.

15.6 Drawing conclusions

15.6.1 Conclusions sections of a Cochrane Review

Authors’ conclusions in a Cochrane Review are divided into implications for practice
and implications for research. While Cochrane Reviews about interventions can provide
meaningful information and guidance for practice, decisions about the desirable and
undesirable consequences of healthcare options require evidence and judgements for
criteria that most Cochrane Reviews do not provide (Alonso-Coello et al 2016). In
describing the implications for practice and the development of recommendations,
however, review authors may consider the certainty of the evidence, the balance of
benefits and harms, and assumed values and preferences.
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15.6.2 Implications for practice

Drawing conclusions about the practical usefulness of an intervention entails making
trade-offs, either implicitly or explicitly, between the estimated benefits, harms and the
values and preferences. Making such trade-offs, and thus making specific recommen-
dations for an action in a specific context, goes beyond a Cochrane Review and requires
additional evidence and informed judgements that most Cochrane Reviews do not pro-
vide (Alonso-Coello et al 2016). Such judgements are typically the domain of clinical
practice guideline developers for which Cochrane Reviews will provide crucial informa-
tion (Graham et al 2011, Schünemann et al 2014, Zhang et al 2018a). Thus, authors of
Cochrane Reviews should not make recommendations.
If review authors feel compelled to lay out actions that clinicians and patients could

take, they should – after describing the certainty of evidence and the balance of ben-
efits and harms – highlight different actions that might be consistent with particular
patterns of values and preferences. Other factors that might influence a decision
should also be highlighted, including any known factors that would be expected to
modify the effects of the intervention, the baseline risk or status of the patient, costs
and who bears those costs, and the availability of resources. Review authors should
ensure they consider all patient-important outcomes, including those for which limited
data may be available. In the context of public health reviews the focus may be on
population-important outcomes as the target may be an entire (non-diseased) popu-
lation and include outcomes that are not measured in the population receiving an
intervention (e.g. a reduction of transmission of infections from those receiving an
intervention). This process implies a high level of explicitness in judgements about
values or preferences attached to different outcomes and the certainty of the related
evidence (Zhang et al 2018b, Zhang et al 2018c); this and a full cost-effectiveness
analysis is beyond the scope of most Cochrane Reviews (although they might well
be used for such analyses; see Chapter 20).
A review on the use of anticoagulation in cancer patients to increase survival (Akl et al

2011a) provides an example for laying out clinical implications for situations where
there are important trade-offs between desirable and undesirable effects of the inter-
vention: “The decision for a patient with cancer to start heparin therapy for survival
benefit should balance the benefits and downsides and integrate the patient’s values
and preferences. Patients with a high preference for a potential survival prolongation,
limited aversion to potential bleeding, and who do not consider heparin (both UFH or
LMWH) therapy a burden may opt to use heparin, while those with aversion to bleeding
may not.”

15.6.3 Implications for research

The second category for authors’ conclusions in a Cochrane Review is implications for
research. To help people make well-informed decisions about future healthcare
research, the ‘Implications for research’ section should comment on the need for
further research, and the nature of the further research that would be most desirable.
It is helpful to consider the population, intervention, comparison and outcomes that
could be addressed, or addressed more effectively in the future, in the context of
the certainty of the evidence in the current review (Brown et al 2006):
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• P (Population): diagnosis, disease stage, comorbidity, risk factor, sex, age, ethnic
group, specific inclusion or exclusion criteria, clinical setting;

• I (Intervention): type, frequency, dose, duration, prognostic factor;

• C (Comparison): placebo, routine care, alternative treatment/management;

• O (Outcome): which clinical or patient-related outcomes will the researcher need to
measure, improve, influence or accomplish? Which methods of measurement should
be used?

While Cochrane Review authors will find the PICO domains helpful, the domains of
the GRADE certainty framework further support understanding and describing what
additional research will improve the certainty in the available evidence. Note that as
the certainty of the evidence is likely to vary by outcome, these implications will be
specific to certain outcomes in the review. Table 15.6.a shows how review authors
may be aided in their interpretation of the body of evidence and drawing conclusions
about future research and practice.
The review of compression stockings for prevention of deep vein thrombosis (DVT) in

airline passengers described in Chapter 14 provides an example where there is some
convincing evidence of a benefit of the intervention: “This review shows that the ques-
tion of the effects on symptomless DVT of wearing versus not wearing compression
stockings in the types of people studied in these trials should now be regarded as
answered. Further research may be justified to investigate the relative effects of differ-
ent strengths of stockings or of stockings compared to other preventative strategies.
Further randomised trials to address the remaining uncertainty about the effects of
wearing versus not wearing compression stockings on outcomes such as death, pulmo-
nary embolism and symptomatic DVT would need to be large.” (Clarke et al 2016).
A review of therapeutic touch for anxiety disorder provides an example of the impli-

cations for research when no eligible studies had been found: “This review highlights
the need for randomized controlled trials to evaluate the effectiveness of therapeutic
touch in reducing anxiety symptoms in people diagnosed with anxiety disorders. Future
trials need to be rigorous in design and delivery, with subsequent reporting to include
high quality descriptions of all aspects of methodology to enable appraisal and inter-
pretation of results.” (Robinson et al 2007).

15.6.4 Reaching conclusions

A common mistake is to confuse ‘no evidence of an effect’ with ‘evidence of no effect’.
When the confidence intervals are too wide (e.g. including no effect), it is wrong to claim
that the experimental intervention has ‘no effect’ or is ‘no different’ from the compar-
ator intervention. Review authors may also incorrectly ‘positively’ frame results for
some effects but not others. For example, when the effect estimate is positive for a ben-
eficial outcome but confidence intervals are wide, review authors may describe the
effect as promising. However, when the effect estimate is negative for an outcome that
is considered harmful but the confidence intervals include no effect, review authors
report no effect. Another mistake is to frame the conclusion in wishful terms. For exam-
ple, review authors might write, “there were too few people in the analysis to detect a
reduction in mortality” when the included studies showed a reduction or even increase
in mortality that was not ‘statistically significant’. One way of avoiding errors such as
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Table 15.6.a Implications for research and practice suggested by individual GRADE domains

Domain Implications for research Examples for research statements Implications for practice

Risk of bias Need for methodologically better
designed and executed studies.

All studies suffered from lack of blinding of
outcome assessors. Trials of this type are
required.

The estimates of effect may be biased because
of a lack of blinding of the assessors of the
outcome.

Inconsistency Unexplained inconsistency: need for
individual participant data meta-
analysis; need for studies in relevant
subgroups.

Studies in patients with small cell lung cancer
are needed to understand if the effects differ
from those in patients with pancreatic cancer.

Unexplained inconsistency: consider and
interpret overall effect estimates as for the
overall certainty of a body of evidence.
Explained inconsistency (if results are not
presented in strata): consider and interpret
effects estimates by subgroup.

Indirectness Need for studies that better fit the PICO
question of interest.

Studies in patients with early cancer are
needed because the evidence is from studies
in patients with advanced cancer.

It is uncertain if the results directly apply to the
patients or the way that the intervention is
applied in a particular setting.

Imprecision Need for more studies with more
participants to reach optimal
information size.

Studies with approximately 200 more events
in the experimental intervention group and
the comparator intervention group are
required.

Same uncertainty interpretation as for certainty
of a body of evidence: e.g. the true effect may
be substantially different.

Publication
bias

Need to investigate and identify
unpublished data; large studies might
help resolve this issue.

Large studies are required. Same uncertainty interpretation as for certainty
of a body of evidence (e.g. the true effect may
be substantially different).

Large effects No direct implications. Not applicable. The effect is large in the populations that were
included in the studies and the true effect is
likely going to cross important thresholds.

Dose effects No direct implications. Not applicable. The greater the reduction in the exposure the
larger is the expected harm (or benefit).

Opposing
bias and
confounding

Studies controlling for the residual bias
and confounding are needed.

Studies controlling for possible confounders
such as smoking and degree of education are
required.

The effect could be even larger or smaller
(depending on the direction of the results) than
the one that is observed in the studies
presented here.
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these is to consider the results blinded; that is, consider how the results would be pre-
sented and framed in the conclusions if the direction of the results was reversed. If the
confidence interval for the estimate of the difference in the effects of the interventions
overlaps with no effect, the analysis is compatible with both a true beneficial effect and
a true harmful effect. If one of the possibilities is mentioned in the conclusion, the other
possibility should be mentioned as well. Table 15.6.b suggests narrative statements for
drawing conclusions based on the effect estimate from the meta-analysis and the
certainty of the evidence.

Table 15.6.b Suggested narrative statements for phrasing conclusions

Size of the effect estimate

Suggested statements for conclusions
(replace X with intervention, choose ‘reduce’ or ‘increase’ depending on
the direction of the effect, replace ‘outcome’ with name of outcome,
include ‘when compared with Y’ when needed)

High certainty of the evidence

Large effect X results in a large reduction/increase in outcome

Moderate effect X reduces/increases outcome
X results in a reduction/increase in outcome

Small important effect X reduces/increases outcome slightly
X results in a slight reduction/increase in outcome

Trivial, small unimportant
effect or no effect

X results in little to no difference in outcome
X does not reduce/increase outcome

Moderate certainty of the evidence

Large effect X likely results in a large reduction/increase in outcome
X probably results in a large reduction/increase in outcome

Moderate effect X likely reduces/increases outcome
X probably reduces/increases outcome
X likely results in a reduction/increase in outcome
X probably results in a reduction/increase in outcome

Small important effect X probably reduces/increases outcome slightly
X likely reduces/increases outcome slightly
X probably results in a slight reduction/increase in outcome
X likely results in a slight reduction/increase in outcome

Trivial, small unimportant
effect or no effect

X likely results in little to no difference in outcome
X probably results in little to no difference in outcome
X likely does not reduce/increase outcome
X probably does not reduce/increase outcome

Low certainty of the evidence

Large effect X may result in a large reduction/increase in outcome
The evidence suggests X results in a large reduction/increase in
outcome

Moderate effect X may reduce/increase outcome
The evidence suggests X reduces/increases outcome
X may result in a reduction/increase in outcome
The evidence suggests X results in a reduction/increase in outcome

Small important effect X may reduce/increase outcome slightly
The evidence suggests X reduces/increases outcome slightly
X may result in a slight reduction/increase in outcome

15 Interpreting results and drawing conclusions

426



Another common mistake is to reach conclusions that go beyond the evidence. Often
this is done implicitly, without referring to the additional information or judgements
that are used in reaching conclusions about the implications of a review for practice.
Even when additional information and explicit judgements support conclusions about
the implications of a review for practice, review authors rarely conduct systematic
reviews of the additional information. Furthermore, implications for practice are often
dependent on specific circumstances and values that must be taken into consideration.
As we have noted, review authors should always be cautious when drawing conclusions
about implications for practice and they should not make recommendations.
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Table 15.6.b (Continued)

Size of the effect estimate

Suggested statements for conclusions
(replace X with intervention, choose ‘reduce’ or ‘increase’ depending on
the direction of the effect, replace ‘outcome’ with name of outcome,
include ‘when compared with Y’ when needed)

The evidence suggests X results in a slight reduction/increase in
outcome

Trivial, small unimportant
effect or no effect

X may result in little to no difference in outcome
The evidence suggests that X results in little to no difference in
outcome
X may not reduce/increase outcome
The evidence suggests that X does not reduce/increase outcome

Very low certainty of the evidence

Any effect The evidence is very uncertain about the effect of X on outcome
X may reduce/increase/have little to no effect on outcome but the
evidence is very uncertain
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Equity and specific populations
Vivian A Welch, Jennifer Petkovic, Janet Jull, Lisa Hartling, Terry Klassen, Elizabeth
Kristjansson, Jordi Pardo Pardo, Mark Petticrew, David J Stott, Denise Thomson, Erin
Ueffing, Katrina Williams, Camilla Young, Peter Tugwell

KEY POINTS

• Health equity is the absence of avoidable and unfair differences in health.

• Health inequity may be experienced across characteristics defined by PROGRESS-Plus
(Place of residence, Race/ethnicity/culture/language, Occupation, Gender/sex, Reli-
gion, Education, Socio-economic status, Social capital and other characteristics
(‘Plus’) such as sexual orientation, age and disability).

• Cochrane Reviews can inform decision making by considering the distribution of
effects in the population and implications for equity.

• To address health equity in Cochrane Reviews, review authors may: consider health
equity at the question formulation stage, possibly using a logic model; decide what
methods will be used to identify and appraise evidence related to equity and specific
populations; consider implications for ‘Summary of findings’ tables (e.g. separate
tables for disadvantaged populations, separate rows for differences in risk of events);
and interpret findings related to health equity in the discussion.

16.1 Introduction to equity in systematic reviews

Health equity reflects a concern for social justice (Braveman 2006, Krieger 2008, Marmot
et al 2008, Frieden 2011, Marmot et al 2012). When differences in health are avoidable,
remediable and considered unjust and unfair, they are considered health inequities
(Whitehead 1992). Not all health differences are considered inequitable. For example,
sickle cell disease is more common in some populations defined by ethnicity due to

This chapter should be cited as: Welch VA, Petkovic J, Jull J, Hartling L, Klassen T, Kristjansson E, Pardo
Pardo J, PetticrewM, Stott DJ, Thomson D, Ueffing E, Williams K, Young C, Tugwell P. Chapter 16: Equity and
specific populations. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors).
Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): JohnWiley & Sons,
2019: 435–450.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

435



genetic differences and is not likely to be considered unfair. However, socio-economic
differences in childhood asthma rates due to differential distribution of air pollutants
would be considered an inequity. Reducing health inequities is considered an impor-
tant public policy objective for social justice (i.e. moral grounds), social cohesion (for
utilitarian reasons) and inter-generational solidarity (for sustainability).
We use the term ‘disadvantaged’ to denote disadvantage created by social, political

and legal structures and processes (Welch et al 2015). Axes of potential disadvantage
can be defined by the acronym PROGRESS-Plus (place of residence, race/ethnicity/
culture/language, occupation, gender/sex, religion, education, socio-economic status
and social capital) and ‘Plus’ refers to additional categories such as age, sexual ori-
entation and disability which may influence opportunities for health of individuals
and populations (O’Neill et al 2013). Other lists of characteristics may be helpful,
depending on the intended audience of the review, such as the social determinants
of health or SCRAP (sex, comorbidities, race, age and pathophysiology) (Dans et al
2008). The degree to which these factors are associated with disadvantage depends
on time, place and interaction between the determinants (Lorenc et al 2013).
Review authors and decision makers increasingly recognize the importance of the

impact of interventions on health equity. Some populations may not benefit from inter-
ventions to the same extent as others, which could lead to unintentional intervention-
generated inequities (Lorenc et al 2013). Policy makers report that the lack of health
equity considerations in systematic reviews limits their usefulness for decision making
(Petticrew et al 2004).
Average results hide differences in effects between different populations. Therefore,

review authors should consider not only what works on average, but also consider
intervention impacts on health inequities. Systematic reviews may assess effects on
health equity according to three types of interventions (Welch et al 2012):

1) interventions aimed at the general population, where it is important to understand
the distribution of effects across one or more PROGRESS-Plus characteristics;

2) interventions focused on disadvantaged or at-risk populations in which theremay not
be equity outcomes but that may provide evidence about reducing inequities; and

3) interventions aimed at reducing social gradients across populations or among sub-
groups of the population.

Trials often exclude populations that are disadvantaged or those above or below a
certain age. The exclusion of these populations may influence the applicability of
results beyond the trial settings. Review authors should report on the characteristics
of the populations according to relevant PROGRESS-Plus factors as well as whether
there are population subgroups with a higher risk of the condition or problem or if there
are differences in factors that influence access to care. Such factors include values, pre-
ferences, affordability and feasibility from the patient/public perspective and conscious
or unconscious bias by practitioners. Wait times for total joint arthroplasty provide an
example of practitioner bias and gender differences in access to care (Pederson and
Armstrong 2015). These factors may vary according to context.
It is usually not feasible to assess all PROGRESS-Plus characteristics. Thus, in choos-

ing characteristics to assess, review authors should consider the perspective of the
intended beneficiaries of the interventions and the intended users of the evidence.
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16.2 Formulation of the review

Five issues are important for formulating the review question: (i) defining health equity;
(ii) hypotheses related to equity and logic models; (iii) appropriate study designs;
(iv) appropriate outcomes; and (v) context.

16.2.1 Defining health equity

As health equity implies a judgement about fairness, the first step for review authors is
to define which populations experience health inequity with respect to the condition/
problem or intervention being assessed. For example, in a Cochrane Review of school
meals, socio-economic status, gender and rurality were considered important factors
associated with health inequity, but proxy measures were also used: baseline
nutritional status was used as a proxy measure for socio-economic disadvantage
(Kristjansson et al 2007). Justification for the use of proxies should be given, their
use should be transparent and their limitations should be clearly reported.
Review authors may need to consider specific populations separately, either within a

broader review or in a focused review, depending on the question and the intended reci-
pients of the intervention. For example, it may be important to consider a separate
review for indigenous peoples such as a review on family-centred interventions for indig-
enous childhood well-being (McCalman et al 2017). For interventions delivered to diverse
populations, review authors should assess the primary studies for transparent reporting
of participant demographics. It is also important to assess the need for sensitivity or sub-
group analyses to explore potential differences in effects. Equity reviews can consider
these differences across populations defined by one or more PROGRESS-Plus factors
(e.g. migrants, linguistic minorities, homeless); however, they likely cannot address all
PROGRESS-Plus factors. Thus, at the question formulation stage, review authors should
explicitly consider which factors are most important and how they will be addressed in
the methods of the review. Box 16.2.a provides information related to considerations for
deciding whether there may be differences in the relevance or appropriateness of an
intervention based on whether it is being implemented in low- and middle- and/or
high-income countries. Box 16.2.b provides resources that may be helpful when planning
systematic reviews of studies including children and youth.
Moreover, rather thanusingonecategory todescribepeople’sexperiences, intersection-

ality illuminates the complex ways a person experiences discrimination simultaneously –
across ageism, sexism, racism, and other forms of institutionalized discrimination
(Hankivsky 2014).
For example, a Cochrane Review of school feeding for improving the physical and

psychosocial health of disadvantaged students reported: “children were classified as
‘predominantly disadvantaged’ by …the following criteria: 1) Living in a rural area
or village; 2) Living in an urban area and described as socio-economically disadvan-
taged (e.g. poor or low-income) or from poor areas (e.g. slums); 3) if statistics were pre-
sented showing that 30% or more of the children in the sample were underweight, or
stunted (nutritionist judgement) or that the average weight, height, and Body Mass
Index (BMI) were low (nutritionist judgement) and 4) studies were implicitly or explicitly
aimed at disadvantaged children, and indicators of disadvantage were provided in the
paper.”(Kristjansson et al 2007)

16.2 Formulation of the review
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16.2.2 Logicmodelsandtheoriesofchangetoarticulatehypothesesaboutequity

Analytic frameworks such as logic models, causal chains and funnels of attrition are
increasingly being used in systematic reviews to identify key questions across the pop-
ulation, intervention, comparison group and outcomes (PICO) of interest (Chapter 2,
Section 2.4). Funnel-of-attrition or equity-effectiveness frameworks explain why effect
sizes decrease along the causal chain and allow for identification of the various factors

Box 16.2.a Low- and middle-income countries (LMICs)

It is important to consider whether the functioning of an intervention or its relevance
may differ among high-, middle- or low-income country settings and populations. For
example, health systems may vary in financing, regulation, organization, and
mechanisms of care delivery. There may also be differences in the wider context,
e.g. economy and geography, and the relative importance of health issues. It may
be appropriate to include only studies conducted in LMICs when:

1) the intervention(s) that the review addresses is highly relevant in LMICs and of little or
no relevance in high-income countries (HICs);

2) there are compelling reasons to believe that the problem or the intervention(s) are
different in LMICs;

3) the outcomes of interest are different;
4) the intervention(s) would be expected to function differently, so that the evidence

would be unlikely to be transferrable between LMICs and HICs; or
5) the researchers or review commissioners are particularly interested in evidence

from LMICs.

Focusing solely on LMICs because the intervention is uncommon in HICs is not suffi-
cient unless the problem or outcomes of interest are different in LMICs and HICs, and the
intervention is expected to function differently.

For reviews that include studies from all countries, and where the topic is particularly
important for LMICs but relevant for HICs, the Background of the review should address
why the same intervention might have different absolute and/or relative effects in LMICs
and HICs. Where appropriate, review authors should include subgroup analyses for
LMICs and HICs and consider the applicability of the evidence for LMICs and HICs in
the discussion.

For all reviews, review authors should consider (Oxman et al 2009):

• if LMIC populations are likely to be disadvantaged by the intervention delivered;

• whether there is evidence of differences in baseline conditions across LMIC and HICs,
or for groups within these settings, which would result in differences in the absolute
effectiveness of the intervention;

• whether there is evidence of differences in access to care or the quality of care across
LMIC and HICs; and

• the implications of these differences for implementing the intervention to ensure that
inequities are reduced if possible and they are not increased.

16 Equity and specific populations
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such as coverage and uptake that may impact the implementation of an intervention
(Tugwell et al 2008, White 2014). Logic models, which show the relationships between
inputs and results, can help identify the key questions that are relevant to assessing
effects on health equity by predicting likely differences in response, differences in base-
line risk, applicability and also factors that may mediate effects. These factors and dif-
ferences can guide themethods of the review. They can help scope the review question,
identify eligibility criteria, focus the search strategy, design a process evaluation and
consider relevance to policy and/or practice (Anderson et al 2011, O’Connor et al
2011). For example, a Cochrane Review of food supplementation for improving the
physical and psychosocial health of socio-economically disadvantaged children
included a logic model showing how socio-economic factors and family structure might
modify effectiveness of supplementary feeding (Kristjansson et al 2015).
Theories of change provide a comprehensive description and illustration of how and

why a desired change is expected to happen in a particular context (Mackinnon et al
2006, Kneale et al 2015). Pathways to change may be uncovered in the process of doing
the review, therefore, theories of change may need to be updated and revised during
the review process to incorporate discoveries about the processes and barriers and
facilitators to implementation.

16.2.3 Appropriate study designs to assess equity

Eligible study designs should be chosen according to their fitness for purpose (Tugwell
et al 2010), and the rationale should be clearly explained (see Chapter 3). Review
authors need to consider whether non-randomized studies may provide relevant
and meaningful evidence about the impact of the intervention in populations and set-
tings that they consider important (Tugwell et al 2010). These different study designs
need different assessment of potential bias (see Chapter 24).

Box 16.2.b Systematic reviews including children and youth

Differences between children and adults, and amongst children and youth of dispa-
rate ages, mean that questions often arise around defining the population and pla-
nning subgroup analyses. Tools from the STAR Child initiative can be useful in
planning a review (Sinha et al 2012, Williams et al 2012).

For reviews of conditions that are relevant to both children and adults, review authors
should be aware of and document potential differences in:

• the nature or course of the condition;

• the intervention when delivered to adults and children;

• the efficacy, effectiveness or safety profile of the intervention; and

• important outcomes, measurement of outcomes, and clinically important differences
(Sinha et al 2012, Williams et al 2012).

Note: Differences across sex/gender and other elements of PROGRESS-Plus may be rel-
evant to consider.
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16.2.4 Appropriate outcomes for equity

Outcomes need to be selected based on the stakeholder/user groups. A frameworkmay
be helpful in defining the relevant groups. For example, these could include the 9 ‘P’s:
patients, practitioners, the public, policy makers, press, product makers (e.g. drug and
devices manufacturers), payers (e.g. medical insurers), purchasers (e.g. employers, gov-
ernments) and principal investigators (Concannon et al 2012, Rader et al 2014). Out-
comes to be considered include benefits and harms (and their trade-off ): mortality
(general/condition specific), impact (symptoms, physical/emotional/social/spiritual
function, quality of life, utility, inconvenience, financial burden) and intermediate/
surrogate outcomes/biomarkers (Boers et al 2014). See Box 16.2.c for specific consid-
erations for outcomes of importance for children and youth and older adults.
The relative importance of health and social outcomes may differ for populations

who experience health inequity. For example, maternal employment, family income
and education are important outcomes in a Cochrane Review of day care for preschool
children of disadvantaged mothers (Zoritch et al 2000). These outcomes may be less
important for mothers with higher socio-economic status. A similar analysis of relative
importance could be applied to older adults with pension or other forms of social
security, in contrast to those without. The importance of outcomes for different set-
tings and populations needs to be rated when selecting outcomes for ‘Summary of

Box 16.2.c Outcomes for child health or ageing

There may be differences among children, adults, and older adults in disease path-
ogenesis, clinical features and natural history, physiological and psychological out-
comes, and contrasting roles within the contexts of families and society in general.
Across age groups, appropriate doses and likelihood of compliance will vary.

For children and youth:

• developmental outcomes and growth will be important;

• autonomy and independence may be important for youth; and

• outcomes for parents and carers can have direct relevance for children.

For older adults:

• appropriate outcomes should consider well-being, frailty, a continuum of abilities and
disabilities, physical and cognitive decline, social participation and low mood;

• outcomes are often measured in decades rather than years, in terms of trajectories
over the life course; and

• adverse effects are particularly common in later life, often presenting non-specifically,
for example falls, immobility, cognitive problems (delirium and dementia) and incon-
tinence. Other adverse events include loss of ability to live independently (e.g. requir-
ing home care, community services or a move to residential care home) and impacts
on informal carers (who may also be older adults), including caregiver stress and
depression) (Jull 2010).

Note: Differences across sex/gender and other elements of PROGRESS-Plus may be
relevant to consider.
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findings’ tables (Chapter 14, Section 14.1.2). Context should be considered in rating
importance of outcomes (Section 16.2.5). Additionally, inconvenience, burden (e.g.
out-of-pocket costs, travel time) and stigma need to be considered as potential out-
comes even if they are not commonly reported in primary studies since they may be
of utmost importance to the intended recipients of the intervention.

16.2.5 Context and equity

Review authors should consider the social, cultural and political contexts in which
interventions are planned and implemented (Marmot et al 2008). Primary research
on health and social interventions is conducted within particular temporal, cultural,
geographical, political and organizational settings (Pope et al 2007), and these may
influence intervention effectiveness (Hawe et al 2004).
‘Taking context into account’means understanding the important aspects of context,

how these may influence the intervention (e.g. implementation), and describing, stra-
tifying and exploring the extent to which they influence outcomes (Lewin et al 2017).
For example, for reviews including older adults, multimorbidity without integrated
care, and overall declines in capacities are an important contextual issue. One aspect
can be assessed with the number of prescribedmedicines and therefore review authors
may wish to report this indicator. Some tools have been developed to collect and
extract data on context, including the Context and Implementation of Complex Inter-
ventions (CICI) framework (Pfadenhauer et al 2017).
Review authors may wish to assess and document whether research procedures in

included studies meet international ethical standards, since populations experiencing
health inequities may be vulnerable in research and need additional protections (Welch
et al 2017a). Systematic reviews can reinforce ethical practices by identifying ethical
concerns in included studies.
Variations in context between studies can be assessed qualitatively and/or quantita-

tively. Context may be described in different sections of the primary studies or in
accompanying papers, reports, policies or historical documents; finding these descrip-
tions may need expert knowledge (Noyes et al 2013). Thus, the full team and advisory
board (if the review has one) or other key stakeholders should be involved in interpre-
tation to ensure that the review is useful, relevant and applicable. For example, a
Cochrane Review on environmental interventions to reduce the consumption of
sugar-sweetened beverages reported: “the context in which included studies were
done can therefore be essential for assessing the transferability and applicability of
their results… We will therefore extract contextual data, using the categories defined
by the CICI (Context and Implementation of Complex Interventions) framework.” (von
Philipsborn et al 2016).

16.3 Identification of evidence

Searches for equity-focused reviews should follow the general guidance (Chapter 4),
but should ensure there is enough coverage of populations of interest. Searches related
to health equity are likely to address perspectives beyond the biomedical lens. Thus,
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potentially relevant studies may be found in a wider range of literature sources and
may be unreliably categorized. This may influence the databases and search terms cho-
sen. A Cochrane Review of interventions for promoting reintegration and reducing
harmful behaviour and lifestyles in street-connected children and young people
searched a broad range of websites and grey literature sources (Coren et al 2016).

16.3.1 Databases to consider

Non-health databases may be relevant if the outcomes of interest include, for example,
labour productivity or educational, economic or social outcomes. The information
retrieval guidance of the Campbell Collaboration is an excellent resource for searches
related to social outcomes (Kugley et al 2017), while the Norwegian Satellite of the
Effective Practice and Organisation of Care (EPOC) Group maintains a list of databases
relevant for low- and middle-income countries (EPOC 2013). For example, a Cochrane
EPOC review of strategies to increase the ownership and use of insecticide-treated nets
to prevent malaria searched multiple databases in addition to MEDLINE and EMBASE,
including: CINAHL, Web of Science, Dissertations and Theses, African Index Medicus,
LILACS and WHOLIS (Augustincic Polec et al 2015).

16.3.2 Term selection and use of search filters for equity

Using standard search filters (i.e. those available in the search interface of a database)
for equity-related content carries significant risks, as many of the words describing
PROGRESS-Plus categories are not indexed in the major databases (MEDLINE/Pubmed
added a new MeSH term, ‘health equity’, in 2016). Paediatric studies are also often
poorly indexed. Authors of studies on children-specific conditions may fail to use pae-
diatric terms explicitly in the title, abstract, or even within the manuscript. Therefore,
when searching electronic databases, we recommend using a paediatric search filter
(a combination of the subject headings, age limits [if available], and free text terms)
rather than indexing or age limits alone. Searching for studies related to older people
may consider available search filters for relevance (van de Glind et al 2012). When vali-
dated filters are available, their use will save time in building the search and in reducing
the number of articles to screen. For example, validated search filters have been devel-
oped for sex and gender specific outcome data (Lorenzetti and Lin 2017) and for equity-
focused studies (Prady et al 2018) may be helpful in designing searches. Additional fil-
ters can be found on the ISSG search filters resource (ISSG 2018).

16.3.3 Practical advice

Appropriate retrieval strategies vary, depending on the research question and the spe-
cific populations and settings included. Practical suggestions include the following.

• Use expert advice on planning and executing the search strategy, given the antici-
pated complexity of the searches (Chapter 4). Experts might know of unpublished,
non-indexed or hard-to-locate evidence.
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• Identify validated filters, considering sensitivity and specificity, and trying to correct
known limitations. If the filter is not validated, consider carefully the risk of missing
vital information.

• Look beyond traditional databases: small and specific databases addressing the
research topic may be more relevant (Ogilvie et al 2005, Augustincic Polec et al 2015).

• Develop logic models to make explicit the decisions on the search strategy.

• Conduct iterative searches: language changes over time and varies by place.

16.4 Appraisal of evidence

For equity questions, baseline imbalance across PROGRESS-Plus factors may be impor-
tant to assess by checking for poor randomization. Further, equity factors may be con-
sidered as potential confounders in non-randomized studies. Authors should
document whether losses occurred differentially from specific populations defined
by PROGRESS-Plus. Otherwise, the critical appraisal of evidence is similar to other
reviews (discussed in Chapter 8 and Chapter 25).

16.5 Synthesis of evidence

Equity analysis involves three steps: first, identifying in the protocol which populations
are likely to experience health inequity; second, assessing whether the intervention
results in important improvement; and third, assessing whether the identified popula-
tions achieve the same improvement in both absolute and relative effects as other
populations. Methods for assessing gradients of effects and gaps in absolute and rel-
ative effects are described by Evans et al (2001).
A Cochrane Review on culturally appropriate health education for type 2 diabetes

mellitus in ethnic minority groups included equity considerations in the synthesis of
the data: “we anticipated the need to stratify participants in age groups, as it can
be an important effect modifier of outcomes; the effect of gender of participants,
matched with gender of educators, were also analysed; … we tried to explore differ-
ence between different literacy subgroups, ability to speak language of the majority
population and countries where the interventions take place; we stratified participants
by ethnic groups.” Differences by age, gender and education were not explored
because of insufficient data (Hawthorne et al 2008).

16.5.1 Subgroup analyses

For interventions provided to a broad population, equity may be considered through
subgroup analyses across one or more PROGRESS-Plus factors, as pre-specified in the
logic model and protocol (Chapter 2, Section 2.5.1).
Any subgroup analyses should be pre-specified and justified (Chapter 10,

Section 10.11). In the process of doing the review, other important factors influencing
outcomesmay be uncovered. Authors should be open to this and all post-hoc decisions
should be documented.
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Meta-regression (Chapter 10, Section 10.11.4) may also be feasible to assess the role
of explanatory variables such as population, context or process factors (Hollands
et al 2015).

16.5.2 ‘Summary of findings’ tables

Authors may want to consider one of five methods to incorporate findings about health
inequities in ‘Summary of findings’ tables (Welch et al 2017b):

1) include health equity as an outcome;
2) consider patient-important outcomes relevant to health equity;
3) present separate tables for populations who experience health inequity to highlight

important differences in relative effectiveness;
4) create different rows within a single table to highlight differences in baseline risk for

specific populations; and
5) assess indirectness of evidence for populations that are predefined as important

who experience health inequity.

16.6 Interpretation of evidence

Interpretation of evidence for specific populations defined across PROGRESS-Plus
should focus on those populations identified at the protocol stage as important reci-
pients of the intervention. Interpretation should consider the questions: Are findings
likely to be applicable in those populations, even if they did not make up a large pro-
portion of the participant populations in included studies? Why or why not? This
section should be transparent and rely on details in the ‘Summary of findings’ table
for specific populations. Any subgroup analyses should be interpreted with caution
(Chapter 10, Section 10.11.6). See Box 16.6.a for specific examples of issues with inter-
pretation for reviews including older adults.

Box 16.6.a Issues with interpretation for reviews including older adults

It is often difficult to determine applicability to all older people, including those who are
frail and dependent. Frailty is an important concept, but it is of limited use as there are no
widely adopted operational criteria. However, the following reported data can be useful:

• type of residence, for example the proportion of patients living long-term in a care
home (can be a proxy measure for those who are frail, disabled or have chronic cog-
nitive impairment or dementia);

• ability to perform basic activities of daily living (allows interpretation of whether
results are applicable to older people living with disability); and

• number and proportion of those with dementia, or whether dementia was a study
exclusion criterion (allows consideration of whether results are generalizable to older
people with major chronic cognitive impairment).

16 Equity and specific populations

444



16.7 Concluding remarks

We recommend that review authors explicitly consider the relevance of health equity to
their review at the title and protocol stages using tools such as the Equity Checklist
(Ueffing et al 2009), then design their methods accordingly to assess effects on health
equity and/or discuss generalizability and applicability. Checklists for review authors
are listed in Box 16.7.a.
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Intervention complexity
James Thomas, Mark Petticrew, Jane Noyes, Jacqueline Chandler, Eva Rehfuess,
Peter Tugwell, Vivian A Welch

KEY POINTS

• We refer to ‘intervention complexity’, rather than ‘complex intervention’, because no
intervention is simple, and many review authors will need to consider some aspects of
complexity.

• There are three ways of understanding intervention complexity:
i) in terms of the number of components in the intervention;
ii) in terms of interactions between intervention components or interactions between

the intervention and its context, or both; and
iii) in terms of the wider system within which the intervention is introduced.

• Of most relevance to Cochrane Review authors are (i) and (ii), and the chapter focuses
mainly on these understandings of intervention complexity.

17.1 Introduction

This chapter introduces how to conceptualize and consider intervention complexity
within systematic reviews. Advice available on this subject can appear contradictory
and there is a risk that accounting for intervention complexity can make the review
itself overly complex and less comprehensible to users. The key issue is how to identify
an approach that assists in a specific systematic review. The chapter aims to signpost
review authors to advice that helps themmake decisions on when and in which circum-
stances to apply that advice. It does not aim to cover all aspects of complexity but
advises review authors on how to frame review questions to address issues of interven-
tion complexity and directs them to other sources for further reference. Other parts of
this Handbook have been expanded to support considerations of intervention complex-
ity, and this chapter provides cross-references where appropriate. Most of the methods

This chapter should be cited as: Thomas J, Petticrew M, Noyes J, Chandler J, Rehfuess E, Tugwell P, Welch
VA. Chapter 17: Intervention complexity. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ,
Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK):
John Wiley & Sons, 2019: 451–478.
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discussed in this chapter have been thoroughly tested and published elsewhere. Some
are still relatively new and under development. These new and emerging methods are
flagged as such when they are discussed.

17.1.1 Conceptualizing intervention complexity

The terms ‘simple’ and ‘complex’ interventions are common in many texts addressing
intervention complexity. We will refer to intervention complexity specifically because
‘simplicity’ and ‘complexity’ are not physical properties that separate interventions into
simple and complex binary categories. Drugs – often characterized as simple – can
equally be conceptualized as ‘complex interventions’ if we analyse them in their wider
context (e.g. as part of the patient–clinician relationship, or as part of the health or
other system through which the drug is provided, or both). Even the apparently simple
intervention of taking a drug becomes complex if we consider the pharmacokinetics
and pharmacodynamics of the drug within the body. Considering complexity as a mul-
tidimensional continuum, where there may be higher or lower levels of complexity
across different aspects of the intervention and those involved in delivering or receiving
it, can help review authors to decide what aspects of complexity are most important to
focus on in their review.
There are three broad ways to think about intervention complexity, which offer alter-

native perspectives on the intervention and its wider context. The first two perspectives
are focused on the intervention in question: (i) on how the intervention itself may be
complex; and (ii) on how its implementation in specific situations may result in complex
interactions. The third perspective shifts the focus of analysis from an individual inter-
vention to (iii) the wider context within which it is implemented.
In the first, and simplest, understanding of intervention complexity, interventions

with more than one component are described as ‘complex’. This is because it can
be difficult to understand which components are most important, and which are
responsible for intervention effects (if any). Analysis methods are often based on the
assumption that multiple components act in an additive way.
The second perspective of intervention complexity focuses on interactions, which

may be between components of the intervention, between the intervention and study
participants, with the intervention context, or a combination of these aspects. Under-
standing complexity in these terms has two important implications: (1) considering
more complex interactions may require different methods of analysis (e.g. where the
dose or intensity of one component needs to reach a given threshold before another
is activated); and (2) while the intervention may appear quite ‘simple’ (e.g. in the pre-
scription of a single drug), complexity arises when other issues are considered, such as
patient adherence to treatment.
In the third perspective, the analysis can shift focus from the consideration of a spe-

cific intervention and outcome(s), towards the wider context (understood as a ‘system’)
within which the intervention is introduced. Here the analysis might examine the
impact of the intervention on the system, or the effect of the system on the interven-
tion. This approach attempts to address the bi-directional feedback that occurs in sys-
tems that can impact on the intervention’s effectiveness by either reducing or
enhancing its effect.
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This chapter focuses mainly on addressing the first two perspectives of intervention
complexity, rather than the systems perspective, because these are most commonly
used in Cochrane Reviews. The next section introduces the first two aspects of complex-
ity in more detail, and the following section outlines some implications when the anal-
ysis is focused on the wider system.

17.1.2 Perspectives 1 and 2: intervention complexity arising from multiple
components and/or interactions inside and outside the intervention

Systematic reviews often adopt an approach whereby effects of interventions, and
(combinations of) their components, are seen to be additive (which of course they often
are), without fully considering the implications of complexity. These reviews have
appraised the primary studies on their ability to isolate components of interventions
effectively from their context (see Section 17.2.4). However, intervention components
may often have synergistic (as opposed to additive) and dis-synergistic effects, and this
is one often-cited characteristic of intervention complexity (Pigott et al 2017).
The UK Medical Research Council has produced guidance which highlights specific

difficulties for evaluating “complex” interventions (as defined by the MRC):

There are specific difficulties in defining, developing, documenting, and reprodu-
cing complex interventions that are subject to more variation than a drug.
A typical example would be the design of a trial to evaluate the benefits of spe-
cialist stroke units. Such a trial would have to consider the expertise of various
health professionals as well as investigations, drugs, treatment guidelines, and
arrangements for discharge and follow up. Stroke units may also vary in terms of
organization, management, and skill mix. The active components of the stroke
unit may be difficult to specify, making it difficult to replicate the intervention.

(Campbell et al 2000)

Further elaboration describes key aspects of intervention complexity (Craig et al
2008, Petticrew et al 2019):

• whether there are multiple components within the experimental and control inter-
ventions, and whether they may interact with one another;

• the range of behaviours required by those delivering or receiving the intervention,
and how difficult or variable they may be;

• whether the intervention, or its components, result in non-linear effects;

• the number of groups or organizational levels targeted by the intervention;

• the number and variability of outcomes; and

• the degree of flexibility or tailoring of the intervention permitted.

17.1.2.1 Context, implementation and mechanisms of action
Context is usually described as a key concept in the complexity literature, but it is dif-
ficult to define in isolation, and is often combined with related issues concerning how
interventions are implemented and how they might work. Oxford Dictionaries define
‘context’ as:
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the circumstances that form the setting for an event, statement, or idea, and in
terms of which it can be fully understood.

When defined in these terms, knowing the context of an intervention, and thus, ‘fully
understanding’ how it gave rise to its outcomes, is both a highly desirable and an
extremely challenging objective for review authors.
A further challenge is that defining ‘context’ is itself a matter of judgement. The

ROBINS-I tool for appraisal of non-randomized studies (see Chapter 25) defines context
broadly as “characteristics of the healthcare setting (e.g. public outpatient versus hos-
pital outpatient), organizational service structure (e.g. managed care or publicly
funded program), geographical setting (e.g. rural vs urban), and cultural setting and
the legal environment where the intervention is implemented”.
Pfadenhauer and colleagues concur that the physical and social setting of the inter-

vention needs to be considered as part of the context but, in line with the guidance in
Section 17.1.1 on ‘conceptualizing intervention complexity’, expand this understanding
to acknowledge the potential for interactions between intervention, participants and
the setting within which the intervention is introduced:

Context reflects a set of characteristics and circumstances that consist of active
and unique factors, within which the implementation is embedded. As such, con-
text is not [just] a backdrop for implementation, but interacts, influences, modi-
fies and facilitates or constrains the intervention and its implementation.
Context is usually considered in relation to an intervention, with which it actively
interacts. It is an overarching concept, comprising not only a physical location
but also roles, interactions and relationships at multiple levels.

(Pfadenhauer et al 2017)

An intervention may be planned as a specific set of procedures to be followed, but
careful thought should also be given to implementation. Pfadenhauer and colleagues
define intervention implementation as:

an actively planned and deliberately initiated effort with the intention to bring a
given intervention into policy and practice within a particular setting. These
actions are undertaken by agents who either actively promote the use of the
intervention or adopt the newly appraised practices. Usually, a structured imple-
mentation process consisting of specific implementation strategies is used being
underpinned by an implementation theory.

(Pfadenhauer et al 2017)

Important aspects to consider include complexity in implementation (i.e. situations
in which we expect the effects of an intervention to be modified by variation in imple-
mentation processes from study to study) and complexity in participant responses (i.e.
situations in which we expect the effects of an intervention to be modified by variation
between the participants receiving an intervention from study to study) (Noyes et al
2013). Sometimes intervention adaptations occur for implementation in different con-
texts (Evans et al 2019). Some adaptations and their implementation will work and
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some will not; it may even be possible to compare these different intervention adapta-
tions and their implementations within the systematic review. To understand what has
happened, it will be necessary to unpack the intended ‘function’ of the intervention
that underlies variations in form.

With most (simple) interventions, integrity is defined as having the ‘dose’ deliv-
ered at an optimal level and in the same way in each site. Complex intervention
thinking defines integrity of interventions differently. The issue is to allow the
form to be adapted while standardising the process and function.

(Hawe et al 2004).

Separating what is meant by intervention form as opposed to its function is illus-
trated by a cluster-randomized trial of a whole-community educational intervention
to prevent depression. To maintain the ‘form’ of the intervention across clusters,
the evaluators might want to ensure that the same written information was being given
to every patient. On the other hand, to ensure that ‘function’ was consistent across
clusters, they might want to support each site in devising a way to communicate
the intervention which was tailored to “local literacy, language, culture and learning
styles” (Hawe et al 2004). In this example, it was necessary to adapt the ‘form’ of part
of the original intervention in order to ensure fidelity to its ‘function’ (or mechanism).
It can also be difficult to separate ‘context’ from ‘setting’ and ‘implementation’. For

example, variations to context may also be influenced by the types and characteristics
of participants receiving and delivering the intervention (and their responses), which
may subsequently alter the context or the intervention (Hawe et al 2004).

To understand and explain the anticipated mechanisms of action by which the
intervention is expected to work it is advised, when addressing intervention complexity,
to have an understanding of the theoretical basis of the intervention (Craig et al 2008).
In some situations, there is a relatively well-understood (or perhaps just well-accepted)
causal pathway between the intervention and its outcomes. This may derive from basic
science – for example, the physiological pathways between specific medical interven-
tions and changes in outcomes. For other more complex situations (such as those in
which the intervention interacts with and adapts to its context) such pathways may
be less well understood, less predictable and, crucially, non-linear (Petticrew et al
2019). Setting out the theoretical basis at the start of a review can help to clarify initial
assumptions (e.g. among evidence users, or among the review team) about how the
intervention is expected to work, and through what mechanisms. The results of the sys-
tematic review will inform and develop the intervention theory, as well as test its valid-
ity. The 2015 MRC guidance on designing complex intervention process evaluations is a
helpful resource to inform this stage (Moore et al 2015). Advice is also available on
appropriate use of mechanistic reasoning (Howick et al 2010), and on some of its lim-
itations (Howick et al 2013).
To understand how an intervention works requires identifying its individual compo-

nents and how these exert their effect, either separately or in combination. Further con-
sideration will also need to be given to the implementation context and the processes
involved in implementing an intervention (Campbell et al 2000, Craig et al 2008). The
implication of this is that the situations in which we expect the effects of an intervention
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to be modified by variation in the implementation processes may vary from study to
study in a review. Further, situations in which we expect the effects of an intervention to
be modified by variation between the participants receiving an intervention may also
vary from study to study (Noyes et al 2013). Logic models and the use of theory in sys-
tematic reviews (Noyes et al 2016a) are described in Section 17.2.1, and elsewhere in
the Handbook (see also Chapter 2, Section 2.5.1, Chapter 3, Section 3.2 and Chapter 21,
Section 21.6.1.)

Example review An exemplar multicomponent Cochrane Review of school-based self-
management interventions for asthma in children and adolescents is used throughout
this chapter to illustrate aspects of complexity and its management in a systematic
review (see Box 17.1.a). This review was interested in addressing both intervention
effectiveness and understanding how the intervention was implemented, and whether
implementation in different groups might explain differences in observed impact.

Box 17.1.a A published example of a Cochrane Review assessing a multi-component
intervention and how the interpretation of the effectiveness data is enhanced by an
additional analysis (Harris et al 2018). Reproduced with permission of John
Wiley & Sons

School-based self-management interventions for asthma in children and
adolescents: a mixed methods systematic review

The problem Asthma is a common chronic respiratory condition
in children characterized by symptoms including
wheeze, shortness of breath, chest tightness and
cough. Improving the inhaler technique of children
with asthma in response to recognizing their
worsening symptoms may enable children to
manage their condition more effectively. Schools
are an opportunity to engage with these children
to improve self-management of their asthma care
because:

• they offer a potentially supportive environment;

• the educational environment aligns with skill and
knowledge acquisition; and

• they may reach children who do not regularly
engage with primary care.

Self-management interventions have multiple
components, which vary across studies, so the
review needs to consider the combination of
intervention components that are associated with
successful delivery of the intervention with in the
school context.
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Participant School aged children and young people (5 to
18 years) with asthma who participated in an
intervention in their school

Intervention School-based asthma self-management
programmes

Comparison Usual care

Outcome (primary) Asthma symptoms or exacerbations leading to
admission to hospital

Review questions 1) To identify the intervention components and pro-
cesses that are aligned with successful school-
based asthma self-management intervention
implementation.

2) To assess the effectiveness of school-based
interventions for improvement of asthma self-
management on children’s outcomes.

Types of data 1) Studies thatmeasuredprocesselements (mechan-
isms,context, implementation)usingqualitativeor
quantitative methods.

2) Individual or cluster randomized parallel-group
designs.

Review design and methods
used

1) Implementation success was measured through
process evaluation reports of attrition, interven-
tion dosage and adherence, irrespective of the
effect of the intervention. To identify intervention
features that lead to successful implementation
of asthma self-management interventions quali-
tative comparative analysis (QCA) (Thomas et al
2014) was used.

2) Tomeasure the effects of interventions, data from
eligible studies were combined using meta-
analysis and meta-regression. Review author cer-
tainty in the evidence was rated with GRADE.

Intervention description and
dimensions of complexity

Self-management is the process of educating and
enabling patients to control their asthma
symptoms to prevent acute episodes warranting
medical intervention. These might include the
following intervention, implementation and
context aspects:

More than one active component included in the
intervention delivered across included studies,
such as
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• Materials to deliver information techniques for
self-management: face-to-face lessons or groups.
Video and other media, computer programs,
training manuals, breathing techniques.

• Practitioners to deliver the information and
instruction on the techniques, e.g. promote:

◦ regular lung function monitoring and instruc-
tion on inhaler technique;

◦ appropriate use of reliever therapies; and
◦ regular contact with health practitioners; and

tackle risky behaviour e.g. smoking.

Usual care: Standard asthma education

Behaviour or actions of intervention recipients or
participants to which the intervention is directed:
good inhaler technique, being able to recognize
and respond to asthma symptoms.

Organizational levels in the school context targeted
by the intervention: disseminating self-
management education through schools to
improve school attendance. Health care is
managed through the education system, from
health policy to school policy on asthma
management.

The degree of intervention adaption expected, or
flexibility permitted, within the studies across
schools applying or implementing the intervention.

The level of skill required by those delivering the
intervention in order to meet the intervention
objectives, such as the knowledge to instruct
children in self-management of asthma (e.g.
teacher, healthcare practitioner).

The level of skill required for the targeted behaviour
when entering the included studies by those
receiving the intervention, in order to meet the
intervention objectives: the child’s capacity to
learn.

Intervention mechanisms How the intervention might work is outlined in the
pre-analysis logic model (see Figure 17.2.a) to
theorize the causal chain necessary to lead to
outcomes of interest from school-based self-
management interventions.

17 Intervention complexity

458



There is a socio-economic gradient in educational impacts due to asthma, with children
from lower socio-economic groups and ethnic minorities being more likely than others
to report asthma-related hospitalization. One of the reasons for this may be differential
effects in school-based self-management interventions. Given that socio-economic
inequalities are manifest in the environment, these issues cannot be understood purely

The post-analysis logic model presents the
components of the actual interventions modelled
where evidence or impact was observed in the data
and where it was not. The model maps moderators,
intermediate outcomes, proximal and distal
outcomes and notes review gaps.

Results Thirty-three studies provided information for the
QCA analysis and 33 randomized trials measured
the effects of interventions. In summary, the review
authors concluded school-based asthma self-
management interventions probably reduce
hospital admission and may slightly reduce
children’s emergency department attendance,
although their impact on school attendance could
not be measured reliably. They probably reduce the
number of days where children experience asthma
symptoms, but their effects on asthma-related
quality of life are small. Interventions that had a
theoretical framework, engaged parents and were
run outside of children’s free time were associated
with successful implementation. QCA results
highlighted the importance of an intervention being
theory-driven along with additional factors, such as
parental involvement, child satisfaction and
running the intervention outside of children’s own
time as being drivers of successful implementation.
School-based self-management interventions were
shown to be likely to reduce mean hospitalizations,
reduce unplanned visits to hospitals or primary
care, reduce the number of days of restricted
activity by just under half a day over a two-week
period and may reduce the number of children who
visit emergency departments. However, there is
insufficient evidence to determine whether
requirement of reliever medications is affected by
these interventions. See study for further details on
results.
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in terms of individual participant characteristics, and the review needed to take
account of the external context and school characteristics. It did not, however, attempt
a ‘full systems’ perspective on the intervention as outlined in Section 17.1.1.

17.1.3 Perspective 3: interventions within complex (adaptive) systems

The systems perspective sees the intervention not as an isolated event or as a package
of components, but as a part of, or an ‘event’ within, an interconnected system (Hawe
et al 2009). Thus, the intervention interacts with and within a pre-existing system and
the review aims to understand the intervention within this wider context, examining
how it changes the system, how the system affects the intervention, or both. When
doing a review using this perspective, authors not only need to consider the compo-
nents of the intervention (as in Section 17.1.2), but will also need to define the system
within which the intervention is introduced. For example, the introduction of a new vac-
cine (including its precise timing) in a low- or middle-income country needs to take
many factors into account including: supplies of the vaccine (possibly including agree-
ments between governments and international companies); maintenance of the cold
chain by upgrading healthcare facilities (e.g. fridges); training of health workers; and
delivery of the vaccine through the normal health system as opposed to parallel vac-
cination systems (e.g. to deliver standard childhood vaccinations). This may have pos-
itive or negative impacts on the system as a whole, by using synergies and investing in
better infrastructure or human capacities or by over-burdening an already over-
stretched health system and affecting other services and interventions in unintended
(and sometimes unanticipated) ways.
In a systems perspective, complexity arises not only from interactions between com-

ponents, but also from the relationships and interactions between a system’s agents
(e.g. people, or groups that interact with each other and their environment), and its
context (Section 17.2.4) (Petticrew et al 2019). One of the implications for systematic
reviews is that the intervention itself may be defined very broadly: as a change in a
system, or a set of processes, compared to a package of interacting components, or
both. Also, reviews taking a systems perspective may aim to answer a wide range of
questions about the functioning of the system and how it changes over time, and about
the contribution of interventions to those system changes (Garside et al 2010, Petticrew
2015). A full description is beyond the scope of this chapter and the role of complex
systems perspectives in systematic reviews is still evolving.
Review authors should refer to Petticrew and colleagues (Petticrew et al 2019) when

deciding whether a systems perspective will add value to a review. The following ques-
tions should be considered when deciding whether a systems perspective might be
helpful.

• What domy review users want to know about? The intervention, the system, or both?

• At what level is the intervention delivered? Is the intervention likely to have antici-
pated effects of interest to users at levels above the individual level? If the implemen-
tation and effects spill over into the family, community, or beyond, then taking a
systems perspective may be helpful.

• Is the intervention: (i) a discrete, identifiable intervention, or package of interven-
tions; or (ii) a more diffuse change within an existing system?
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Review authors should also take account of the resources available to conduct the
review. A large scale, theoretically informed review of an intervention within its wider
system may be time-consuming, expensive and require a large multidisciplinary team.
It may also produce complex answers that are beyond the needs of many users.

17.1.4 Summary of main points in this section

There are three ways of understanding intervention complexity: (i) in terms of the num-
ber of components in the intervention; (ii) in terms of interactions between intervention
components or interactions between the intervention and its context, or both; and
(iii) in terms of the wider system within which the intervention is introduced. When con-
sidering intervention complexity review authors may need to pay particular attention
to the intervention’s mechanisms of action, the contexts(s) within which it is intro-
duced, and issues relating to implementation.
A review team should consider which perspective on complexity might be relevant to

their review:

• Is the review dealing with interventions comprising multiple components?

• Are interventions of interest likely to interact with the context in which they are
implemented, and is intervention adaptation likely to be taking place?

• Which analytical methods will need to be used (e.g. those suitable for modelling
interactions and/or non-linear effects)?

• How are the core concepts of mechanisms of action, context and implementation
defined?

e.g. For further information on logic models and defining interventions see Chapter 2
(Section 2.5.1), Chapter 3 (Section 3.2) and Chapter 21 (Section 21.6.1). See the follow-
ing for key references on the topics discussed in this section. On understanding inter-
vention complexity: Campbell et al (2000), Craig et al (2008), Kelly et al (2017), Petticrew
et al (2019); on mechanisms of action: Howick et al (2010), Fletcher et al (2016), Noyes
et al (2016a); on context and implementation: Hawe et al (2009), Noyes et al (2013),
Moore et al (2015), Pfadenhauer et al (2017).

17.2 Formulation of the review

Addressing complexity in a review frequently involves asking questions about issues
other than effectiveness, such as the following.

• Under what circumstances does the intervention work (Thomas et al 2004, Squires
et al 2013)?

• What is the relative importance of, and synergy between, different components of
multicomponent interventions?

• What are the mechanisms of action by which the intervention achieves an effect?

• What are the factors that impact on implementation and participant responses?

• What is the feasibility and acceptability of the intervention in different contexts?

• What are the dynamics of the wider system?
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Broadly, therefore, systematic reviews can consider complexity in terms of the inter-
vention (e.g. how the components of the intervention interact), and also in terms of
how it is implemented. In this situation, systematic reviews can use the concept of com-
plexity to help develop theories of implementation, and inform strategies to improve
implementation (Nilsen 2015).
As Chapters 2 and 3 outline, addressing broader review questions has implications for

the search strategy, the types of evidence, the eligibility criteria, the evidence appraisal,
and the review design and synthesis methods (Squires et al 2013). Sometimes more
than one type of study design may be required to address the questions of interest,
the products of which might subsequently be integrated in a third synthesis (see
Chapter 21 and Glenton et al 2013, Harris et al 2018).

17.2.1 The role of theory and logic models

As outlined in Chapter 2, review authors should set out in their protocol how they
expect the intervention of interest to work. When the causal pathways are well
accepted, as they are in many reviews, this can be a relatively straightforward process
which simply references the appropriate literature. In reviews where there is a lot of
complexity or diversity between interventions, logic models are used to provide sche-
matic representations of causal pathways that illustrate the potential mechanisms of
action – and their mediators andmoderators – underlying interventions (Anderson et al
2011), as discussed in Chapter 2 (Section 2.5.1).
The example Cochrane Review in Box 17.1.a illustrates the benefits of using a logic

model with both pre- and post-synthesis versions (Harris et al 2018). Figure 17.2.a pre-
sents the pre-synthesis version of the review logic model that starts to model the inter-
ventions’ core elements and expected outcomes in changes of behaviour on delivery of
the intervention. The model also identifies contextual and individual participant
aspects that might modify intervention delivery. The model also introduces the iden-
tification of process measures to inform the expected function of the intervention.

17.2.2 Formulating questions to address intervention complexity

We emphasize the importance of having a clear objective when starting a review, obser-
ving that it is often more useful to address questions that seek to identify the circum-
stances where particular approaches to intervention might be more appropriate than
others, rather than simply asking ‘does this intervention work?’ (Higgins et al 2019).
Chapter 2 outlines the issues that should be considered when formulating review ques-
tions and Petticrew and colleagues outline how to refine review questions through
drawing on existing theoretical models, emphasizing it is important to prioritize which
contextual factors to examine (Booth et al 2019b, Petticrew et al 2019). In situations of
greater intervention complexity, review authors should consider how consumers and
other stakeholders might help identify which contextual factors might need detailed
examination in the review. It is possible that different groups of people will have quite
diverse needs and taking them all into account in a single review may be impossible.
Detailed advice is available, however, on ways to engage interested parties in the devel-
opment of review questions, including formal methods for question prioritization. (See
Chapter 2, Section 2.4, and Oliver et al 2017, Booth et al 2019b for further information
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School-based self-management educational interventions for asthma in children and adolescents: Of chronic disease in children, asthma accounts
for most school absences, emergency admissions, and disproportionately impacts upon children from lower socio-economic backgrounds. The school
environment, offers an environment to develop self-care strategies among adolescents and children.

External context and school
characteristics

• Health policies and frameworks
• Health systems and funding
• Setting and characteristics of school
  (primary vs secondary etc)

Accompanying potential
school-level outputs:

Outputs:

Child’s knowledge, behaviour and skills

• School policies around
  asthma

• Knowledge of asthma and asthma management

Family knowledge
• Knowledge about asthma and how to assist management

Teachers’ knowledge and skills
• Knowledge about asthma symptoms and management

• Self-efficacy
• Adherence to agreed medical regime
• Avoidance of risky behaviours/situations (e.g. smoking)

Intervention inputs

Resources
• Teachers/instructors

Theory and aims
• Theoretical basis

• Training for teachers/instructors

Modifiable design characteristics

Child-level moderators:

Core elements of intervention
(some/all)

Process metrics:

Action Change

• Co-design/engagement strategies

Proximal outcomes:

Health/medical
• Severity of asthma

Health and well-being
• Emergency admissions for
  asthma

Child-level distal
outcomes

• Indicators of
  improved educational
  outcomes

• Indicators of
  improved health and
  mental well-being

Macro-level distal
outcomes

• Presentation at emergency
  department for asthma
• Days of restricted activity
 •Quality of life

Intermediate outcomes:

Education
• School attendance

• Night-time and
• Day-time symptoms
• Lung function
• Use of reliever
  medicine

• Involvement of health professionals/
  Alliances developed
• Delivery to all children or those with
  asthma alone
• Family involvement in intervention
• Pedagogical techniques used
• Teacher or instructor led
• Integration into educational day/curriculum
• Assessment
• Individual or group delivery

• Severity of asthma
• Age/gender
• Presence of comorbidity

• Quality of intervention provided
• Relevance
• Acceptability
• Dose
• Adherence/fidelity

1.

2.

3.

4.
5.

6.

7.

8.

Reinforcement of regular lung
function monitoring
Emphasis on self-management
practice and behaviour
Reinforcement of regular dialogue
with health practitioners
Instruction in inhaler techniques
Reinforcement/provision of asthma
management plan
Emphasis on appropriate use of
reliever therapies
Emphasis on appropriate use of
regular preventer therapies
Non-pharmacological self-
management strategies

• Intensity
• Attrition
• Recruitment and representativeness

• Socio-economic and socio-
  demographic factors

• Materials provided to deliver
  intervention

Figure 17.2.a Logic model of school-based asthma interventions (Harris et al 2018). Reproduced with permission of John Wiley & Sons
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on consumer and stakeholder involvement in formulating review questions.) Review
authors may find guidance given in Chapter 3 helpful to prioritize which comparisons
to examine and, thus, which questions to answer. Sometimes review authors may find
that they need to undertake a formal scoping review in order to understand fully how
the intervention is defined in the literature (Squires et al 2013).
When considering which aspects of the intervention or its implementation and wider

context might be important, review authors should remember that some variation is
often inevitable and investigating every conceivable difference will be impossible. In
particular, not all aspects of intervention complexity should be detailed in the review
question; it may be sufficient to consider these within the logic model and any sub-
groups identified for synthesis. The review question simply specifies which sources of var-
iation in outcomes will be investigated. In the review example detailed in Box 17.1.a,
there were two overall objectives: (1) to identify the intervention features that are aligned
with successful intervention implementation; and (2) to assess the effectiveness of
school-based interventions for improvement of asthma self-management on children’s
outcomes. The ways in which these objectives shaped the review’s eligibility criteria and
analytical methods will be described in the following sections.

17.2.3 PICO and complexity

The PICO framework (population, intervention, comparator(s) and outcomes, see
Chapter 3) is widely used by systematic review authors to help think through the fram-
ing of research questions. The PICO elements may become more complex in reviews
where significant intervention complexity is anticipated.
The population considered in a review is commonly described in terms of aspects of a

health condition (e.g. patients with osteoporosis) or behaviour (e.g. adolescents who
smoke) as well as relevant demographic factors and features of the setting of the study.
In complex health and social research that focuses on changes in populations, the def-
inition of a population may be contested. Crucially, populations are not just aggregates
of individual characteristics, but social (and physical) relations may also shape popu-
lation health distributions, as shown in analysis of the spread of obesity through social
networks (Christakis and Fowler 2007, Krieger 2012). Review authors are often inter-
ested in both the population as a whole, and how the intervention differentially affects
different groups within the population (see also Chapter 16 on equity).
With respect to the intervention, the key challenge lies in defining the intervention,

for reasons described in detail in the previous sections. When considering intervention
complexity, review authors should consider the wide range of ways in which an inter-
ventionmay be implemented and be wary of excluding primary evaluations of the inter-
vention simply because the form appears different, even if the function is similar (see
Section 17.1.2).
The comparisons in the review may require careful consideration. Identifying a suit-

able comparator can be difficult, particularly where structural interventions, such as
taxation, regulation or environmental change, are being evaluated (Blankenship
et al 2006), or where each intervention arm is complex. Review authors should be par-
ticularly mindful of possible confounding due to systems effects, where wider contex-
tual factors might reduce, or enhance, the effects of an intervention in particular
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circumstances (see Sections 17.1.1 and 17.1.3). For a detailed discussion of planning
comparisons for synthesis, see Chapters 3 and 9.
Outcomes of interest are likely to include a range of intended and unintended health

and non-health effects of interest to review users. The choice of outcomes to prioritize
is a matter of judgement and perspective, and the rationale for selection decisions
should be explicitly reported. Review authors should note that the prioritization of out-
comes varies culturally, and according to the perspective of those directly affected by
an intervention (e.g. patients, an at-risk population), those delivering the intervention
(e.g. clinicians, staff working for healthcare or public health institutions), or policy
makers or others deciding on or financing an intervention and the general public. How-
ever, the answer is not simply to include any plausible outcome: a plausible theoretical
case can probably be made for most outcomes, but that does not mean they are mean-
ingful. Worse, including a wide range of speculative outcomes raises the risk of data
dredging and vastly increases the complexity of the analysis and interpretation (see
Chapter 9, Section 9.3.3 on multiplicity of outcomes and Chapter 3, Section 3.4.4). Again,
an understanding of the intervention theory can help select the outcomes for which the
strongest plausible a priori case can bemade for inclusion – perhaps those outcomes for
which there is prior evidence of an important association with the intervention. As the
illustrative logic model (Figure 17.2.a) shows, there can be numerous intermediate out-
comes between the intervention and the final outcome of interest. Guidance is available
on how to select the most important outcomes from the list of all plausible outcomes
(Chapter 3, Section 2.4.4 and Guyatt et al 2011). It will also be important to determine
the availability of core outcome sets within the review context (see www.comet-initia-
tive.org). Core outcome sets are now becoming available for more complex interventions
and may help to guide outcome selection (e.g. see Kaufman et al 2017).

17.2.4 Addressing context and implementation

One key aspect of intervention complexity is that intervention effects are often strongly
context-dependent, with context acting as a moderator of the effect (i.e. influencing its
strength or direction) as well as a mediator of the effect (i.e. explaining why an effect is
observed). This has implications for judging the wider applicability of review findings
when applying GRADE assessment (see Chapter 14). One of the most common chal-
lenges is that interventions have different effects in different contexts, and so the
review authors will need to take a view (in consultation with review stakeholders
and review users) about whether it is more meaningful to restrict the review’s focus
to one particular context or setting (e.g. studies carried out in schools, or studies con-
ducted in specific geographical areas), or to include evidence from a range of contexts
(a variant of the ‘lumping’ and ‘splitting’ argument (Chapter 2, Section 2.3.2)). For some
reviews, understanding how the intervention and its effects change across different
contexts is often a key reason for doing the review, and in such cases review authors
will need to take account of context in planning and conducting their review. Booth and
colleagues provide guidance on how to do this, noting that there are a range of con-
texts to be considered, including: (i) the context of the review question; (ii) the contexts
of the included studies; and (iii) the implementation context into which the findings or
recommendations arising from the review are to be introduced (Booth et al 2019a).
Note, however, that Cochrane Reviews are rarely written with a specific context in mind
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although some systematic reviews may be undertaken for a specific setting (see
Pantoja et al 2017 for an example of an overview of reviews which examines specifically
issues from a low-income country perspective). When a review aims to inform decisions
in a specific situation, consideration should be given to the ‘directness’ of the evidence
(the extent to which the participants, interventions and outcome measures are similar
to those of interest); this is a core feature of GRADE assessment, discussed in Chapter 14
(GRADE Working Group 2004).
The TIDieR framework (Hoffman et al 2014) refers to “the type(s) of location(s) where

the intervention occurred, including any necessary infrastructure or relevant features”,
and the iCAT_SR tool notes that “the effects of an intervention may be dependent on
the societal, political, economic, health systems or environmental context in which the
intervention is delivered” (Lewin et al 2017). Finally, the PRECIS-2 tool, while written
to support the design of trials, also contains useful information for review authors when
considering how to address issues relating to context and implementation (Loudon
et al 2015).
These are important considerations because for social and public health (and per-

haps any intervention), the political context is often an important determinant of
whether interventions can be implemented or not; regulatory interventions (e.g. alco-
hol or tobacco control policies) may be less politically acceptable within certain juris-
dictions, even if such interventions are likely to be effective. Historical and cultural
contexts are also often important moderators of the effects and acceptability of public
health interventions (Craig et al 2018). It is therefore impossible (and probably mislead-
ing) to attempt to specify what ‘is’ or ‘isn’t’ context, as this depends on the intervention
and the review question, as well as how the intervention and its effects are theorized
(implicitly or explicitly) by the review authors. Booth and colleagues suggest that a sup-
plementary framework (e.g. the Context and Implementation of Complex Interventions
(CICI) Framework (Pfadenhauer et al 2017); see Section 17.1.2.1) can help to understand
and explore contextual issues: for example, helping to decide whether to ‘lump’ or
‘split’ studies by context, and how to frame the review question and subsequent stages
of the review (Booth et al 2019a).

17.2.5 Which types of study address intervention complexity?

As always, the decision about which study designs to include should be led by the
review questions, and the ‘fitness for purpose’ of those studies for answering the review
question(s) (Tugwell et al 2010). As Chapter 3, Section 3.3 outlines, most Cochrane
Reviews focus on synthesizing the results from randomized trials, because of the
strength of this study design in establishing a causal relationship between an interven-
tion and its outcome(s). However, as it is not always feasible to conduct randomized
trials of all types of intervention (e.g. the ‘structural’ interventions mentioned in
Section 17.2.3), it is also accepted that evidence about the effects of interventions,
and interactions between components of interventions, may be derived from rando-
mized, quasi-experimental or non-randomized designs (see also Chapter 24). Large-
scale and policy-based interventions (such as area-based regeneration programmes)
may not be able to use closely comparable control populations, or may not use sep-
arate control groups at all, and may use uncontrolled before and after or interrupted
time series designs or a range of quasi-experimental approaches. Excluding non-
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randomized and uncontrolled studies may mean excluding the few evaluations that
exist, and in some cases such designs can provide adequate evidence of effect
(Craig et al 2012). For example, when evaluating the impact of a smoking ban on hos-
pital admissions for coronary heart disease, Khuder and colleagues employed a quasi-
experimental design with interrupted time series (Khuder et al 2007).
As outlined in Section 17.2.2, the questions asked in systematic reviews that address

complexity often go beyond asking whether a given intervention works, to ask how it
might work, in which circumstances and for whom. Addressing these questions can
require the inclusion of a range of different research designs. In particular, when evi-
dence about the processes by which an intervention influences intermediate and final
outcomes, as well as evidence on intervention acceptability and implementation, qual-
itative evidence is often included. Qualitative evidence can also identify evidence of
unintended adverse effects which may not be reported in the main quantitative eval-
uation studies (Thomas and Harden 2008). Petticrew and colleagues’ Table 1 sum-
marizes each aspect of complexity and suggests which types of evidence might be
most useful to address each issue. For example, when aiming to understand interac-
tions between intervention and context, multicentre trials with stratified reporting,
observational studies which provide evidence of mediators and moderators, and qual-
itative studies which observe behaviours and ask people about their understandings
and experiences are suggested as being helpful study designs to include (Petticrew
et al 2019). See also Noyes et al (2019) and Rehfuess et al (2019) for further information
on matching study designs to research questions to address intervention complexity.

17.2.6 Summary of main points in this section

In systematic reviews addressing intervention complexity it may be more useful to
address questions that seek to identify the circumstances where particular approaches
to intervention might be more appropriate, effective and feasible than others, rather
than simply asking ‘does this intervention work?’
Logic models represent graphically the way that the intervention is thought to result

in its outcomes and the range of interactions between it and its context.
Definitions of population, intervention and outcomes (i.e. the review and comparison

PICOs) are sometimes quite broad, and need to consider how interventions and their
effects can change across contexts.
Review authors need to consider whether and how to review evidence across multi-

ple contexts, and in particular whether it makes sense, scientifically and practically (in
terms of value to decision makers), to integrate them within the same review.
A range of different types of study may be relevant in systematic reviews addressing

intervention complexity. Review authors should specify their questions in detail, iden-
tifying which types of study are needed for different aspects of their question(s).

For example, Chapter 3 contains detailed information on specifying review and com-
parison PICOs that is essential reading for review authors addressing intervention com-
plexity. The illustration of a logic model in Figure 17.2.a should be read alongside the
introduction to logic models in Chapter 2, Section 2.5.1. See also Chapter 2, Section 2.3
for discussion about breadth and depth in review questions. See the following for key
references on the topics discussed in this section. On theory and logic models:
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Anderson et al (2011), Kneale et al (2015), Rohwer et al (2017); on question formulation:
Squires et al (2013), Higgins et al (2019), Petticrew et al (2019); on the TIDieR framework:
Hoffman et al (2014); on the iCAT_SR tool: Lewin et al (2017); on the PRECIS-2 tool: Lou-
don et al (2015); on the CICI framework: Pfadenhauer et al (2017); on which types of
study to include: Noyes et al (2019), Petticrew et al (2019), Rehfuess et al (2019).

17.3 Identification of evidence

There is relatively little detailed guidance on searching for evidence to include in
reviews that focus on exploring intervention complexity (though see Chapter 4 and
associated supplementary information (Noyes et al 2019)). A key challenge is that,
as outlined in Sections 17.2.5 and 17.5, such reviews may include a wide range of qual-
itative and quantitative evidence to answer a range of questions. Searches for informa-
tion on theory, context, processes and mechanisms (see Section 17.1.2) by which
interventions are implemented and outcomes achieved may also be needed.
This requires some consideration of the location of such data sources (e.g. including

sources outside the standard health literature), likely study designs, and the role of the-
ory in guiding the review searches and methodological decisions. Policy documents,
qualitative data, sources outside the standard health literature and discussion with
a knowledgeable advisory group may also provide useful information. Kelly and collea-
gues outline in more detail the scoping and refining stages that are required for reviews
that need to encompass intervention complexity (Kelly et al 2017). Indeed, including a
separate ‘mapping’ phase within a systematic review, where a broader search is carried
out to understand the extent of research activity, can be a highly valuable additional
phase to add into the review process (Gough et al 2012). Some preparatory examina-
tion of this evidence may help to determine what form the intervention takes, what
levels or structures it is aimed at changing, what its objectives are and how it is
expected to bring about change (in effect, what is the underlying logic model). The
iCAT_SR tool, which can help with characterizing the main dimensions of intervention
complexity can also help here to determine what type of evidence needs to be located
(see Box 17.1.a; Lewin et al 2017).
Booth and colleagues provide useful pointers on the value of ‘cluster searching’,

which they define as a “systematic attempt, using a variety of search techniques, to
identify papers or other research outputs that relate to a single study” (Booth et al
2013; p. 4). This means that a cluster of studies both directly and indirectly related
to a ‘core’ effectiveness study are located to inform, for example, context, acceptability,
feasibility and the processes by which the intervention influences the outcomes of
interest (Booth et al 2013). Consideration of these issues is often critical for understand-
ing intervention complexity, so review authors need to take account of all relevant
information about included studies, even though it may be scattered between multiple
publications. Beyond cluster searching, a wider search for qualitative and process eval-
uation studies that are unrelated to the included trials of interventions may help to
create a bigger pool of evidence to synthesize, enabling review authors to address
broader aspects such as intervention implementation (Noyes et al 2016b).
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While this kind of search can inform the design and framing of the review, a compre-
hensive search is required to identify as much as possible of the body of evidence rel-
evant to the review (see Chapter 4). As for any review, the search should be led by the
review question, a detailed understanding of the PICO elements, and the review’s eli-
gibility criteria (Chapter 3).

17.3.1 Summary of main points in this section

Addressing intervention complexity in systematic reviewsmay involve searching for evi-
dence on a range of issues other than effectiveness; it may involve searching for evi-
dence on processes, mechanisms and theory.
The identification of relevant evidence should be driven by the review questions, and

should consider the ‘fitness for purpose’ of different types of qualitative and quantita-
tive evidence for answering those questions.

For further information see Chapter 4 and also the supplementary information associ-
ated with Noyes et al (2019). Table 1 in Petticrew et al (2019) also describes the rela-
tionship between different types of review questions, and the sort of evidence that
might be sought to answer them. See the following for key references on the topics
discussed in this section: Booth et al (2013), Brunton et al (2017).

17.4 Appraisal of evidence

It was noted in Section 17.2.5 that reviews addressing intervention complexity need to
be focused on the concept of ‘fitness for purpose’ of evidence – that is, they need to
consider what type of evidence is best suited to answer the research question(s). As
previously described, these include questions about the implementation, feasibility
and acceptability of interventions, and questions about the processes andmechanisms
by which interventions bring about change. This has implications for the appraisal of
evidence in a systematic review, and appropriate tools should be used for each type of
evidence included, assessing the risk of bias for the way in which it is used in each
review. When appraising studies that evaluate the effectiveness of an intervention,
the Cochrane risk-of-bias tool should be used for trials (Chapter 8) and the ROBINS-I
tool for non-randomized study designs (Chapter 25). Chapter 21 contains guidance
on evaluating qualitative and implementation evidence.

17.5 Synthesis of evidence

Many useful sources provide further guidance on how to choose an analytic approach
that takes account of intervention complexity. This section highlights texts for further
reading in terms of which types of questions different methods might enable review
authors to answer.
Higgins and colleagues separate synthesis methods into three levels: (i) those that

are essentially descriptive, and help to compare and contrast studies and interventions
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with one another; (ii) those that might be considered ‘standard’ methods of meta-
analysis – including meta-regression (see Chapter 10) – which enable review authors
to examine possible moderators of effect at the study level; and (iii) more advanced
methods, which include network meta-analysis (see Chapter 11), but go beyond this
and encompass methods that enable review authors to examine intervention compo-
nents, mechanisms of action, and complexities of the system into which the interven-
tion is introduced (Higgins et al 2019).
At the outset, even when a statistical synthesis is planned, it is usually useful to begin

the synthesis using non-quantitative methods, understanding the characteristics of the
populations and interventions included in the review, and reviewing the outcome data
from the available studies in a structured way. Informative tables and graphical tools
can play an important role in this regard, assisting review authors to visualize and
explore complexity. These include harvest plots, box-and-whisker plots, bubble plots,
network diagrams and forest plots. See Chapters 9 and 12 for further discussion of
these approaches.
Standard meta-analytic methods may not always be appropriate, since they

do depend on reasonable comparability of both interventions and comparators –
something that may not apply when synthesizing evidence with high heterogeneity.
Chapter 3 considers in detail how to think about the comparability of, and categories
within, interventions, populations and outcomes. However, where interventions and
populations are judged sufficiently similar to answer questions which aggregate the
findings from similar studies, then approaches such as standard meta-analysis,
meta-regression or network meta-analysis may be appropriate, particularly when
the mechanism of action is clearly understood (Viswanathana et al 2017).
Questions concerning the circumstances in which the intervention might work and

the relative importance of different components of interventions require methods that
explore between-study heterogeneity. Subgroup analysis and meta-regression enable
review authors to investigate effect moderators with the usual caveats that pertain to
such observational analyses (see Chapter 10). Caldwell and Welton describe alternative
quantitative approaches to synthesis, which include ‘component-based’meta-analysis
where individual intervention components (or meaningful combinations of compo-
nents) are modelled explicitly, thus enabling review authors to identify those compo-
nents most (or least) associated with intervention success (Caldwell and Welton 2016).
When the review questions ask review authors to consider how interventions achieve

their effect, other types of evidence, other than randomized trials, are vital to provide
theory that identifies causal connections between intervention(s) and outcome(s).
Logic models (see Section 17.2.1 and Chapter 2) can provide some rationale for the
selection of factors to include in analysis, but the reviewmay require an additional syn-
thesis of qualitative evidence to elucidate the complexity adequately. This is especially
the case when understanding differential intervention effects that require review
authors to consider the perspectives and experiences of those receiving the interven-
tion. See Chapter 21 for a detailed exploration of the methods available. While logic
models aim to summarize how the interactions between intervention, participant
and context may produce outcomes, specific causal pathways may be identified for
testing. Causal chain analysis encompasses a range of methods that help review
authors to do this (Kneale et al 2018), including meta-analytic path analysis and struc-
tural equation modelling (Tanner-Smith and Grant 2018), and model-based meta-
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analysis (Becker 2009). These types of analyses are rare in Cochrane Reviews, as meth-
ods are still developing and require relatively large datasets.
Integrating different types of data within the same analysis can be a challenging but

powerful approach, often enabling the theories generated in synthesis of qualitative
literature to be used to explore and explain heterogeneity between quantitative studies
(Thomas et al 2004). Reviews with multiple components and analyses can address dif-
ferent questions relating to complexity often in a sequential way, with each component
building on the findings of the previous one. Methods used include: mixed-methods
synthesis (involving qualitative thematic synthesis, meta-analysis and cross-study syn-
thesis); Bayesian synthesis (where qualitative studies are used to generate informative
priors); and qualitative comparative analysis (QCA: a set-based method which uses
Boolean algebra to juxtapose intervention components in configurational patterns;
see Chapter 21 (Section 21.13) and (Thomas et al 2014)). Such analyses are explanatory
analyses, to identify differential intervention effect, and also to explain why it occurs
(Cook et al 1994). The example review given in Box 17.1.a is a multi-component review,
which integrates different types of data in order better to understand differential inter-
vention effects. It uses qualitative data from process evaluations to identify which inter-
vention features were associated with successful implementation. It then uses the
inferences generated in this analysis to explore heterogeneity between the results of
randomized trials, using what might be considered ‘standard’ meta-analytic and
meta-regression methods. It is important to bear in mind that the review question
always comes first in these multi-component reviews: the decision to use process eval-
uation data in this way was driven by an understanding of the context within which
these interventions are implemented. A different mix of data will be appropriate in dif-
ferent situations.
Finally, review authors may want to synthesize research to reach a better under-

standing of the dynamics of the wider system in which the intervention is introduced.
Analytical methods can include some of those already mentioned – for combining
diverse types of data – but may also include methods developed in systems science
such as systems dynamics models and agent-based modelling (Luke and Stamata-
kis 2012).

17.5.1 Summary of main points in this section

Methods of synthesis can be understood at three levels: (i) those that help review
authors describe studies and understand their similarities and differences; (ii) those
that can be used to combine study findings in fairly standard ways; and (iii) more
advanced approaches that include network meta-analysis for combining results across
different interventions, but also enable review authors to examine intervention compo-
nents, mechanisms of action and complexities of the system within which the interven-
tion is introduced.

For further information about steps to follow before results are combined, review
authors should consider the guidance in Chapter 9 to summarize studies and prepare
for synthesis. Standard meta-analytical methods are outlined in Chapter 10, with
Section 10.10 on investigating heterogeneity particularly relevant. Methods for under-
taking network meta-analysis are outlined in Chapter 11.
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17.6 Interpretation of evidence

As with other systematic reviews, reviews with a complexity focus are also aimed at
helping decision makers. They therefore need a clear statement of findings and clear
conclusions, taking account of the quality of the body of evidence. In this, it is impor-
tant to refer to Chapters 14 and 15 and (Montgomery et al 2019) for further guidance on
the use of GRADE when assessing intervention effects, and Chapter 21 when using
CERQual to consider the confidence in synthesized qualitative findings.
For any review, consideration of how the review findings might apply in different con-

texts and settings is also important, and probably even more so when addressing inter-
vention complexity. As noted in Section 17.1.3, the effects of an intervention may be
significantlymoderated by its context, and a review authormay be able to describewhich
are the key aspects of context that the decision maker needs to consider, when deciding
whether and how to implement the intervention in their setting. This can be done explic-
itly in the review by describing different scenarios (see Chapter 3) and by clearly describ-
ing the reasons for heterogeneity in results across the studies. One potential risk for
reviews with a significant focus on complexity is that every implemention of every inter-
vention can look different (although see the discussion on intervention function and form
in Section 17.1.2.1); it is easy for a decision maker to conclude that, because there is no
identical intervention or setting to the one in which they are interested, there is no evi-
dence at all. However, as for any other review, it will be helpful to think about whether
there are compelling reasons that the evidence from the review cannot be used to inform
a new decision. In short, because of complexity (in interventions, and in their implemen-
tation) there will always be contextual differences, but this does not render the evidence
unusable. Rather, review authors need to consider how this review-level evidence (about
the effects of the intervention across different contexts) can be used to inform a new
decision. For example, the review can show the range of effect size estimates, or how
the types of anticipated and unanticipated outcomes vary, across settings in previous
studies, thus giving the decision maker an idea of the range of responses that may be
possible, as well as the possible moderating factors, in future implementations.

17.6.1 Reporting guidelines and systematic reviews

Systematic reviews that consider intervention complexity are themselves complex,
integrating a wide range of different types of evidence using a range of methods. An
extension of the PRISMA reporting guideline for systematic reviews has been developed
with specific guidance for reporting the methods and results of ‘complex interventions’
(Guise et al 2017b, Guise et al 2017a), known as PRISMA-CI, which primarily focuses on
quantitative evidence and complementing the TIDieR checklist for describing interven-
tions (Hoffman et al 2014). The relevant extended items relate to clearly identifying the
review as one covering ‘complex interventions’, providing justification for the specific
elements of complexity under consideration in the review, and describing aspects of
the complexity of the intervention or its context. The ENTREQ and eMERGe reporting
guidelines are for reporting qualitative evidence syntheses and meta-ethnography
(Tong et al 2012, France et al 2019). For mixed-method reviews no guidelines currently
exist, but Flemming and colleagues suggest a ‘pick and mix’ approach to incorporate
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the appropriate reporting criteria from existing quantitative and qualitative reporting
guidelines (see Chapter 21 for further details) (Flemming et al 2018). One of the chal-
lenges that review authors may meet when addressing complexity through incorporat-
ing a range of study designs beyond randomized trials is that GRADE assessments of
evidence can generally turn out to be ‘low’, offering little assistance to readers in terms
of understanding the relative confidence in the different studies included. See Mont-
gomery et al (2019) for practical advice in this situation.
Increasing the quantity and range of evidence synthesized in a systematic review can

make reports quite challenging (and lengthy) to read. Preparing a report that is suffi-
ciently clear in its conclusions can take many rounds of redrafting, and it is also useful
to obtain feedback from consumers and other stakeholders involved in the review
(Chapter 1, Section 1.3.1). Intervention complexity can thus increase the resources
needed at this phase of the review too, and it is essential to plan for this if the reporting
of the review is to be sufficiently clear for it to be used to inform decisions. (See also
Chapter 15 and online Chapter III.)

17.6.2 Summary of main points in this section

Synopsis It is important (as with any review) to consider decision makers’ needs when
conducting a reviewwith a complexity focus. In practice, this means ensuring that there
is a clear summary of how the findings vary across different contexts, and setting out
the potential implications for decision making.
Involving users in the review process – particularly at the stage of defining the review

question(s) – will help with producing a review that meets their needs.
Relevant reporting guidelines should be consulted to ensure that the methods and

findings are accurately and transparently reported.

Further information in this Handbook Chapter 2 on question formulation; Chapters 14
and 15 on completing ‘Summary of findings’ tables, and drawing conclusions. See also
Section 17.2.2 of this chapter for information on engagement with key users of the
review in formulating its questions.
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Patient-reported outcomes
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Carrasco-Labra, Robin Christensen, Bruno R da Costa, Regina El Dib, Anne Lyddiatt,
Raymond W Ostelo, Beverley Shea, Jasvinder Singh, Caroline B Terwee, Paula R
Williamson, Joel J Gagnier, Peter Tugwell, Gordon H Guyatt

KEY POINTS

• Summary data on patient-reported outcomes (PROs) are important to ensure health-
care decision makers are informed about the outcomes most meaningful to patients.

• Authors of systematic reviews that include PROs should have a good understanding of
how patient-reported outcome measures (PROMs) are developed, including the con-
structs they are intended to measure, their reliability, validity and responsiveness.

• Authors should pre-specify at the protocol stage a hierarchy of preferred PROMs to
measure the outcomes of interest.

18.1 Introduction to patient-reported outcomes

18.1.1 What are patient-reported outcomes?

A patient-reported outcome (PRO) is “any report of the status of a patient’s health
condition that comes directly from the patient without interpretation of the patient’s
response by a clinician or anyone else” (FDA 2009). PROs are one of several clinical
outcome assessment methods that complement biomarkers, measures of morbidity
(e.g. stroke, myocardial infarction), burden (e.g. hospitalization), and survival used
and reported in clinical trials and non-randomized studies (FDA 2018).
Patient-reported outcome measures (PROMs) are instruments that are used to

measure the PROs, most often self-report questionnaires. Although investigators
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479–492.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

479



may address patient-relevant outcomes via proxy reports or observations from care-
givers, health professionals, or parents and guardians, these are not PROMs but rather
clinician-reported or observer-reported outcomes (Powers et al 2017).
PROs provide crucial information for patients and clinicians facing choices in health care.

Conducting systematic reviews and meta-analyses including PROMs and interpreting their
results is not straightforward, andguidance canhelp reviewauthors address thechallenges.
The objectives of this chapter are to: (i) describe the category of outcomes known as

PROs and their importance for healthcare decision making; (ii) illustrate the key issues
related to reliability, validity and responsiveness that systematic review authors should
consider when including PROs; and (iii) address the structure and content (domains,
items) of PROs and provide guidance for combining information from different PROs.
This chapter outlines a step-by-step approach to addressing each of these elements in
the systematic review process. The focus is on the use of PROs in randomized trials, and
what is crucial in this context when selecting PROs to include in a meta-analysis. The
principles also apply to systematic reviews of non-randomized studies addressing PROs
(e.g. dealing with adverse drug reactions).

18.1.2 Why patient-reported outcomes?

PROs provide patients’ perspectives regarding treatment benefit and harm, directly
measure treatment benefit and harm beyond survival, major morbid events and
biomarkers, and are often the outcomes of most importance to patients and families.
Self-reported outcomes often correlate poorly with physiological and other out-

comes such as performance-related outcomes, clinician-reported outcomes, or bio-
markers. In asthma, Yohannes and colleagues (Yohannes et al 1998) found that
variability in exercise capacity contributed to only 3% of the variability in breathing pro-
blems on a patient self-report questionnaire. In chronic obstructive pulmonary disease
(COPD), the reported correlations between forced expiratory volume (FEV1) and quality
of life (QoL) are weak (r = 0.14 to 0.41) (Jones 2001). In peripheral arterial occlusive dis-
ease, correlations between haemodynamic variables and QoL are low (e.g. r = –0.17 for
QoL pain subscale and Doppler sonographic ankle/brachial pressure index) (Müller-
Bühl et al 2003). In osteoarthritis, there is discordance between radiographic arthritis
and patient-reported pain (Hannan et al 2000). These findings emphasize the often
important limitations of biomarkers for informing the impact of interventions on the
patient experience or the patient’s perspective of disease (Bucher et al 2014).
PROs are essential when externally observable patient-important outcomes are rare or

unavailable. They provide the only reasonable strategy for evaluating treatment impact
of many conditions including pain syndromes, fatigue, disorders such as irritable bowel
syndrome, sexual dysfunction, and emotional function and adverse effects such as nau-
sea and anxiety for which physiological measurements are limited or unavailable.

18.2 Formulation of the review

In this section we describe PROMs in more detail and discuss some issues to consider
when deciding which PROMs to address in a review.
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A common term used in the health status measurement literature is construct. Con-
struct refers to what PROMs are trying to measure, the concept that defines the PROM
such as pain, physical function or depressive mood. Constructs are the postulated attri-
butes of the person that investigators hope to capture with the PROM (Cronbach and
Meehl 1955).
Many different ways exist to label and classify PROMs and the constructs they meas-

ure. For instance, reports from patients include signs (observable manifestations of a
condition), sensations (most commonly classified as symptoms that may be attribut-
able to disease and/or treatment), behaviours and abilities (commonly classified as
functional status), general perceptions or feelings of well-being, general health, satis-
faction with treatment, reports of adverse effects, adherence to treatment, and partic-
ipation in social or community events and health-related quality of life (HRQoL).
Investigators can use different approaches to capture patient perspectives, including

interviews, self-completed questionnaires, diaries, and via different interfaces such as
hand-held devices or computers. Review authors must identify the postulated con-
structs that are important to patients, and then determine the extent to which the
PROMs used and reported in the trials address those constructs, the characteristics
(measurement properties) of the PROMs used, and communicate this information to
the reader (Calvert et al 2013).
Focusing now on HRQoL, an important PRO, some approaches attempt to cover the

full range of health-related patient experience – including, for instance, self-care, and
physical, emotional and social function – and thus enable comparisons between the
impact of treatments on HRQoL across diseases or conditions. Authors often call these
approaches generic instruments (Guyatt et al 1989, Patrick and Deyo 1989). These
include utility measures such as the EuroQol five dimensions questionnaire (EQ-5D)
or the Health Utilities Index (HUI). They also include health profiles such as the Short
Form 36-item (SF-36) or the SF-12; these have come to dominate the field of health pro-
files (Tarlov et al 1989, Ware et al 1995, Ware et al 1996). An alternative approach to
measuring PROs is to focus on much more specific constructs: PROMs may be specific
to function (e.g. sleep, sexual function), to a disease (e.g. asthma, heart failure), to a
population (e.g. the frail elderly) or to a symptom (pain, fatigue) (Guyatt et al 1989,
Patrick and Deyo 1989). Another domain-specific measurement system now receiving
attention is Patient-Reported Outcomes Measurement Instruments System (PROMIS).
PROMIS is a National Institutes of Health funded PROM programme using computer-
ized adaptive testing from large item banks for over 70 domains (e.g. anxiety, depres-
sion, pain, social function) relevant to wide variety of chronic diseases (Cella et al 2007,
Witter 2016, PROMIS 2018).
Authors often use the terms ‘quality of life’, ‘health status’, ‘functional status’,

‘HRQoL’ and ‘well-being’ loosely and interchangeably. Systematic review authors must
therefore consider carefully the constructs that the PROMs have actually measured. To
do so, they may need to examine the items or questions included in a PROM.
Another issue to consider is whether and how the individual items of instruments are

weighted. A number of approaches can be used to arrive at weights (Wainer 1976). Util-
ity instruments designed for economic analysis put greater emphasis on item weight-
ing, attempting ultimately to present HRQoL as a continuum anchored between death
and full health. Many PROMsweight items equally in the calculation of the overall score,
a reasonable approach. Readers can refer to a helpful overview of classical test theory
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and item response theory to understand better the merits and limitations of weighting
(Cappelleri et al 2014).
Table 18.2.a presents a framework for considering and reporting PROMs in clinical

trials, including their constructs and how they were measured. A good understanding
of the PROMs identified in the included studies for a review is essential to appropriate
analysis of outcomes across studies, and appraisal of the certainty of the evidence.

18.3 Appraisal of evidence

18.3.1 Measurement of PROs: single versus multiple time-points

To be useful, instruments must be able to distinguish between situations of interest
(Boers et al 1998). When results are available for only one time-point (e.g. for classifi-
cation), the key issue for PROMs is to be able to distinguish individuals with more desir-
able scores from those whose scores are less desirable. The key measurement issues in
such contexts are reliability and cross-sectional construct validity (Kirshner and Guyatt
1985, Beaton et al 2016).
In longitudinal studies such as randomized trials, investigators usually obtain mea-

surements at multiple time-points, for example at the beginning of the trial and again
following administration of the interventions. In this context, PROMs must be able to
distinguish those who have experienced positive changes over time from those who
have experienced negative changes, those who experienced less positive change, or
those who experienced no change at all, and to estimate accurately the magnitude
of those changes. The key measurement issues in these contexts – sometimes referred

Table 18.2.a Checklist for describing and assessing PROMs in clinical trials. Adapted from Guyatt
et al (1997)

1) What were the PROMs assessing?
1.1. What concepts or constructs were the PROMs used in the study assessing?
1.2. What rationale (if any) for selection of concepts or constructs did the authors provide?
1.3. Were patients involved in the development (e.g. focus groups, surveys) of PROMs?

2) Omissions
2.1. Were there any important aspects of patient’s health (e.g. symptoms, function, perceptions) or

quality of life (e.g. overall evaluation, satisfaction with life) that were not reported in this study?
A search for ‘Core Outcome Sets’ for condition would be helpful (see Section 18.4.1).

3) What were the measurement strategies?
3.1. Did investigators use instruments that yield a single indicator or index number, or a profile, or a

battery of instruments?
3.2. Did investigators use specific or generic measures, or both?

4) Did the instruments work in the way they were supposed to work – validity?
4.1. Was evidence of prior validation for use in the current population presented?

5) Did the instruments work in the way they were supposed to work – responsiveness?
5.1 Are the PROMs able to detect important change in patient status, even if those changes

are small?
6) Can you make the magnitude of effect (if any) understandable to readers – interpretability?

6.1 If the intervention has had an apparent impact on a PROM, can you provide users with a sense
of whether that effect is trivial, small but important, moderate, or large?
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to as evaluative – are responsiveness and longitudinal construct validity (Kirshner and
Guyatt 1985, Beaton et al 2016).

18.3.2 Reliability

Intuitively, many think of reliability as obtaining the same scores on repeated admin-
istration of an instrument in stable respondents. That stability (or lack of measurement
error) is important, but not sufficient. Satisfactory instruments must be able to distin-
guish between individuals despite measurement error.
Reliability statistics therefore look at the ratio of the variability between respondents

(typically the numerator of a reliability statistic) and the total variability (the variability
between respondents and the variability within respondents). The most commonly
used statistics to measure reliability is a kappa coefficient for categorical data, a
weighted kappa coefficient for ordered categorical data, and an intraclass correlation
coefficient for continuous data (de Vet et al 2011).
Limitations in reliability will be of most concern for the review author when rando-

mized trials have failed to establish the superiority of an experimental intervention over
a comparator intervention. The reason is that lack of reliability cannot create interven-
tion effects that are not present, but can obscure true intervention effects as a result of
random error. When a systematic review does not find evidence that an intervention
affects a PROM, review authors should consider whether this may be due to poor reli-
ability (e.g. if reliability coefficients are less than 0.7) rather than lack of an effect.

18.3.3 Validity

Validity has to do with whether the instrument is measuring what it is intended to
measure. Content validity assessment involves patient and clinician evaluation of
the relevance and comprehensiveness of the content contained in the measures, usu-
ally obtained through qualitative research with patients and families (Johnston et al
2012). Guidance is available on the assessment of content validity for PROMs used
in clinical trials (Patrick et al 2011a, Patrick et al 2011b).
Construct validity involves examining the logical relationships that should exist

between assessment measures. For example, in patients with COPD, we would expect
that patients with lower treadmill exercise capacity generally will have more dyspnoea
(shortness of breath) in daily life than those with higher exercise capacity, and we
would expect to see substantial correlations between a new measure of emotional
function and existing emotional function questionnaires.
When we are interested in evaluating change over time – that is, in the context of eval-

uation when measures are available both before and after an intervention – we examine
correlations of change scores. For example, patients with COPD who deteriorate in their
treadmill exercise capacity should, in general, show increases in dyspnea, while those
whose exercise capacity improves should experience less dyspnea. Similarly, a new emo-
tional function instrument should show concurrent improvement in patients who
improve on existing measures of emotional function. The technical term for this process
is testing an instrument’s longitudinal construct validity. Review authors should look for
evidence of the validity of PROMs used in clinical studies. Unfortunately, reports of ran-
domized trials using PROMs seldom review or report evidence of the validity of the
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instruments they use, but when these are available review authors can gain some reas-
surance from statements (backed by citations) that the questionnaires have been previ-
ously validated, or could seek additional published information on named PROMs.
Ideally, review authors should look for systematic reviews of themeasurement properties
of the instruments in question. The Consensus-based standards for the selection of
health measurement instruments (COSMIN) website offers a database of such reviews
(COSMIN Database of Systematic Reviews). In addition, the Patient-Reported Outcomes
and Quality of Life Instruments Database (PROQOLID) provides documentation of the
measurement properties for over 1000 PROs.
If the validity of the PROMs used in a systematic review remains unclear, review

authors should consider whether the PROM is an appropriate measure of the review’s
planned outcomes, or whether it should be excluded (ideally, this would be considered
at the protocol stage), and any included results should be interpreted with appropriate
caution. For instance, in a review of flavonoids for haemorrhoids, authors of primary
trials used PROMs to ascertain patients’ experience with pain and bleeding (Alonso-
Coello et al 2006). Although the wording of these PROMs was simple and made intuitive
sense, the absence of formal validation raises concerns over whether these measures
can give meaningful data to distinguish between the intervention and its comparators.
A final concern about validity arises if the measurement instrument is used with a

different population, or in a culturally and linguistically different environment from
the one in which it was developed. Ideally, PROMs should be re-validated in each study,
but systematic review authors should be careful not to be too critical on this
basis alone.

18.3.4 Responsiveness

In the evaluative context, randomized trial participant measurements are typically
available before and after the intervention. PROMs must therefore be able to distin-
guish among patients who remain the same, improve or deteriorate over the course
of the trial (Guyatt et al 1987, Revicki et al 2008). Authors often refer to this measure-
ment property as responsiveness; alternatives are sensitivity to change or ability to
detect change.
As with reliability, responsiveness becomes an issue when a meta-analysis suggests

no evidence of a difference between an intervention and control. An instrument with a
poor ability to measure change can result in false-negative results, in which the inter-
vention improves how patients feel, yet the instrument fails to detect the improvement.
This problem may be particularly salient for generic questionnaires that have the
advantage of covering all relevant areas of HRQoL, but the disadvantage of covering
each area superficially or without the detail required for the particular context of
use (Wiebe et al 2003, Johnston et al 2016a). Thus, in studies that show no difference
in PROMs between intervention and control, lack of instrument responsiveness is one
possible reason. Review authors should look for published evidence of responsiveness.
If there is an absence of prior evidence of responsiveness, this represents a potential
reason for being less certain about evidence from a series of randomized trials. For
instance, a systematic review of respiratory muscle training in COPD found no effect
on patients’ function. However, two of the four studies that assessed a PROM used
instruments without established responsiveness (Smith et al 1992).
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18.3.5 Reporting bias

Studies focusing on PROs often use a number of PROMs to measure the same or similar
constructs. This situation creates a risk of selective outcome reporting bias, in which
trial authors select for publication a subset of the PROMs on the basis of the results;
that is, those that indicate larger intervention effects or statistically significant
P values (Kirkham et al 2010). Further detailed discussion of selective outcome report-
ing is presented in Chapter 7 (Section 7.2.3.3); see also Chapter 8 (Section 8.7).
Systematic reviews focusing on PROs should be alert to this problem. When only a

small number of eligible studies have reported results for a particular PROM, particu-
larly if the PROM is mentioned in a study protocol or methods section, or if it is a salient
outcome that one would expect conscientious investigators tomeasure, review authors
should note the possibility of reporting bias and consider rating down certainty in evi-
dence as part of their GRADE assessment (see Chapter 14) (Guyatt et al 2011). For
instance, authors of a systematic review evaluating the responsiveness of PROs among
patients with rare lysosomal storage diseases encountered eligible studies in which the
use of a PRO was described in the methods, but there were either no data or limited
PRO data in the results. When authors did present some information about results, the
reports sometimes included only interim or end-of-study results. Such instances are
likely to be an indication of selective outcome reporting bias: it seems implausible that,
if results showed apparent benefit on PROs, investigators would mention a PRO in the
methods and subsequently fail to report results (Johnston et al 2016b).

18.4 Synthesis and interpretation of evidence

18.4.1 Selecting from multiple PROMs

The definition of a particular PROmay vary between studies, and this may justify use of
different instruments (i.e. different PROMs). Even if the definitions are similar (or if, as
happens more commonly, the investigators do not define the PRO), the investigators
may choose different instruments to measure the PROs, especially if there is a lack of
consensus on which instrument to use (Prinsen et al 2016).
When trials report results for more than one instrument, authors should – independ-

ent of knowledge of the results and ideally at the protocol stage – create a hierarchy
based on reported measurement properties of PROMs (Tendal et al 2011, Christensen
et al 2015), considering a detailed understanding of what each PROM measures (see
Table 18.2.a), and its demonstrated reliability, validity, responsiveness and interpreta-
bility (see Section 18.3). This will allow authors to decide which instruments will be used
for data extraction and synthesis. For example, the following instruments are all vali-
dated, patient-reported pain instruments that an investigator may use in a primary
study to assess an intervention’s usefulness for treating pain:

• 7-item Integrated Pain Score;

• 10-point Visual Analogue Scale for Pain;

• 20-item McGill Pain Questionnaire; and

• 56-item Brief Pain Inventory (PROQOLID 2018).
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In some clinical fields core outcome sets are available to guide the use of appropriate
PROs (COMET 2018). Only rarely do these include specific guidance on which PROMs are
preferable, although methods have been proposed for this (Prinsen et al 2016). Within
the field of rheumatology, the Outcome Measures in Rheumatology (OMERACT) initia-
tive has developed a conceptual framework known as OMERACT Filter 2.0 to identify
both core domain sets (what outcome should be measured) and core outcome meas-
urement sets (how the outcome should be measured, i.e. which PROM to use) (Boers
et al 2014). This is a generic framework and applicable to those developing core out-
come sets outside the field of rheumatology.
As an example of a pre-defined hierarchy, for knee osteoarthritis, OMERACT has used

a published hierarchy based on responsiveness for extraction of PROMs evaluating pain
and physical function for performing systematic reviews (Juhl et al 2012).
Authors should decide in advance whether to exclude PROMs not included in the hierar-

chy, or to include additionalmeasureswhere noneof thepreferredmeasures are available.

18.4.2 Synthesizing data from multiple PROMs

While a hierarchy can be helpful in identifying the review authors’ preferred measures,
and excluding some measures considered inappropriate, it remains likely that authors
will encounter studies using several different PROMs to measure a given construct,
either within one study or across multiple studies. Authors must then decide how to
approach synthesis of multiple measures, and among them, consider which measures
to include in a single meta-analysis on a particular construct (Tendal et al 2011,
Christensen et al 2015).
When deciding if statistical synthesis is appropriate, review authors will often find

themselves reading between the lines to try and get a precise notion of the underlying
construct for the PROMs used. They may have to consult the articles that describe the
development and prior use of PROMs included in the primary studies, or look at the
instruments to understand the concepts being measured.
For example, authors of a Cochrane Review of cognitive behavioural therapy (CBT)

for tinnitus included HRQoL as a PRO (Martinez-Devesa et al 2007), assessed with dif-
ferent PROMs: four trials using the Tinnitus Handicap Questionnaire; one trial the Tin-
nitus Questionnaire; and one trial the Tinnitus Reaction Questionnaire. Review authors
compared the content of the PROMs and concluded that statistical pooling was
appropriate.
The most compelling evidence regarding the appropriateness of including different

PROMs in the same meta-analysis would come from a finding of substantial correlations
between the instruments. For example, the two major instruments used to measure
HRQoL in patients with COPD are the Chronic Respiratory Questionnaire (CRQ) and the
St. George’s Respiratory Questionnaire (SGRQ). Correlations between the two question-
naires in individual studies have varied from0.3 to 0.6 in both cross-sectional (correlations
at a point in time) and longitudinal (correlations of change) comparisons (Rutten-van
Mölken et al 1999, Singh et al 2001, Schünemann et al 2003, Schünemann et al 2005). In
one study, investigators examined the correlations between group mean changes in
the CRQ and SGRQ in 15 studies including 23 patient groups and found a correlation of
0.88 (Puhan et al 2006).
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Ideally, the decision to combine scores from different PROMs would be based not
only on their measuring similar constructs but also on their satisfactory validity,
and, depending on whether before and after intervention or only after intervention
measurements were available, and on their responsiveness or reliability. For example,
extensive evidence of validity is available for both CRQ and the SGRQ. The CRQ has,
however, proved more responsive than the SGRQ: in an investigation that included
15 studies using both instruments, standardized response means of the CRQ (median
0.51, interquartile range (IQR) 0.19 to 0.98) were significantly higher (P < 0.001) than
those associated with the SGRQ (median 0.26, IQR −0.03 to 0.40) (Puhan et al 2006).
As a result, pooling results from trials using these two instruments could lead to under-
estimates of intervention effect in studies using the SGRQ (Puhan et al 2006, Johnston
et al 2010). This can be tested using a sensitivity analysis of studies using the more
responsive versus less responsive instrument.
Usually, detailed data such as those described above will be unavailable. Investigators

must then fall back on intuitive decisions about the extent to which different instruments
aremeasuring the sameunderlyingconcept. Forexample, theauthorsof ameta-analysisof
psychosocial interventions in the treatment of pre-menstrual syndrome faced a profusion
of outcomemeasures, with 25 PROMs used in their nine eligible studies (Busse et al 2009).

Table 18.4.a Examples of potentially combinable PROMs measuring similar constructs from a review
of psychosocial interventions in the treatment of pre-menstrual syndrome (Busse et al 2009).
Reproduced with permission of Karger

Anxiety

Beck Anxiety Inventory

Menstrual Symptom Diary-Anxiety domain

State and Trait Anxiety Scale-State Anxiety domain

Behavioural Changes

Menstrual Distress Questionnaire-Behavioural Changes domain

Pre-Menstrual Assessment Form-Social Withdrawal domain

Depression

Beck Depression Inventory

Depression Adjective Checklist State-Depression domain

General Contentment Scale-Depression and Well-being domain

Menstrual Symptom Diary-Depression domain

Menstrual Distress Questionnaire-Negative Affect domain

Interference

Global Rating of Interference Daily Record of Menstrual Complaints-Interference domain

Sexual Relations

Martial Satisfaction Inventory-Sexual Dissatisfaction domain

Social Adjustment Scale-Sexual Relationship domain

Water Retention and Oedema

Menstrual Distress Questionnaire-Water Retention domain

Menstrual Symptom Diary-Oedema domain
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They dealt with this problem by having two experienced clinical researchers, knowledge-
able to the study area and not otherwise involved in the review, independently examine
each instrument– includingalldomains–andgroup16PROMs intosixdiscreteconceptual
categories. Any discrepancies were resolved by discussion to achieve consensus.
Table 18.4.a details the categories and the included instruments within each category.
Authors should follow the guidance elsewhere in thisHandbook on appropriatemeth-

ods of synthesizing different outcome measures in a single analysis (Chapter 10) and
interpreting these results in a way that is most meaningful for decision makers
(Chapter 15).
Having decided which PROs and subsequently PROMs to include in a meta-analysis,

review authors face the challenge of ensuring the results they present are interpretable
to their target audiences. For instance, if told that the mean difference between reha-
bilitation and standard care in a series of randomized trials using the CRQ was 1.0
(95% CI 0.6 to 1.5), many readers would be uncertain whether this represents a trivial,
small but important, moderate, or large effect (Guyatt et al 1998, Brozek et al 2006,
Schünemann et al 2006). Similarly, the interpretation of a standardized mean differ-
ence is challenging for most (Johnston et al 2016b). Chapter 15 summarizes the various
statistical presentation approaches that can be used to improve the interpretability of
summary estimates. Further, for those interested in additional guidance, the GRADE
working group summarizes five presentation approaches to enhancing the interpreta-
bility of pooled estimates of PROs when preparing ‘Summary of findings’ tables
(Thorlund et al 2011, Guyatt et al 2013, Johnston et al 2013).
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Adverse effects
Guy Peryer, Su Golder, Daniela R Junqueira, Sunita Vohra, Yoon Kong Loke; on behalf
of the Cochrane Adverse Effects Methods Group

KEY POINTS

• To achieve a balanced perspective, all reviews should try to consider adverse aspects
of interventions.

• A detailed analysis of adverse effects is particularly relevant when evidence on the
potential for harm has a major influence on treatment or policy decisions.

• There are major challenges in specifying relevant outcomes and study designs for sys-
tematic reviews evaluating adverse effects. This is due to high diversity in the number
and type of possible adverse effects, as well as variation in their definition, methods of
ascertainment, incidence and time-course.

• Review authors should pre-specify their approach to reviewing studies of adverse
effects within the review protocol. The approach may be confirmatory (focused on
particular adverse effects of interest), exploratory (opportunistic capture of any
adverse effects that happen to be reported), or a hybrid (combination of both).

• Depending on the approach used and outcomes of interest to the review, identifica-
tion of relevant adverse effects data may require a bespoke search process that
includes a wider selection of sources than that required to identify data on beneficial
outcomes.

• Because adverse effects data are often handled with less rigour than the primary ben-
eficial outcomes of a study, review authors must recognize the possibility of poor case
definition, inadequate monitoring and incomplete reporting when synthesizing data.

19.1 Introduction to issues in addressing adverse effects

Every healthcare intervention comes with the risk, great or small, of harmful or adverse
effects. A Cochrane Review that considers only the favourable outcomes of the inter-
ventions that it examines, without also assessing the adverse effects, will lack balance

This chapter should be cited as: Peryer G, Golder S, Junqueira D, Vohra S, Loke YK. Chapter 19: Adverse
effects. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane
Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019:
493–506.
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and may make the intervention look more favourable than it should. All reviews should
try to consider the adverse aspects of interventions.
This chapter addresses special issues about adverse effects in Cochrane Reviews. It

focuses on methodological differences when assessing adverse effects compared with
other outcomes.

19.1.1 Terminology and definitions

Poor standardization and usage of adverse effects terminology in study reports can
produce challenges for review authors. Common, and closely related, terms include
adverse event, adverse effect, serious adverse event, serious adverse effects, adverse
drug reaction, side effect, complications and harms (Zorzela et al 2016). In this chapter
we use the term adverse event for an unfavourable or harmful outcome that occurs
during, or after, the use of a drug or other intervention, but is not necessarily caused by
it, and an adverse effect (or harm) as an adverse event for which the causal relation
between the intervention and the event is at least a reasonable possibility.

19.1.2 Special issues for addressing adverse effects

In this section we discuss some of the particular challenges when addressing adverse
effects. First, there can be wide diversity across studies in how adverse events are
defined, ascertained, analysed and reported. Second, adverse effects may not be
known when studies were planned, so data collection processes and analytic strategies
may not be in place. Third, many adverse events are too uncommon or too long-term to
be observed within randomized trials.

19.1.2.1 Diversity in defining and monitoring of adverse events
A huge range of adverse events can occur in a research study, and there are multiple
ways in which adverse effects can be ascertained and categorized by study investiga-
tors (Smith et al 2015). There are two broad strategies for collecting information on
adverse events. Study investigators may use active monitoring or surveillance, which
directs enquiry towards pre-defined adverse events of interest, usually following pro-
tocol-defined procedures for data collection, case definitions and adjudication. For
example, if the event of interest is myocardial infarction, the study protocol might
require collection of laboratory and electrocardiogram data for suspected events.
These results might then be referred to an independent panel which adjudicates or
ascertains the occurrence of an event. Such active monitoring usually relates to sets
of potential adverse events that are either known or suspected to be associated with
an intervention.
Although prospective collection of adverse event data is desirable, many adverse

effects cannot be pre-specified because they are not yet known or suspected to be
associated with an intervention. Thus, spontaneous report monitoring may occur,
which involves recording all adverse events (pre-defined or not) throughout the dura-
tion of the study. Both participants and researchers recognizing any adverse event can
file a report at any time. This may uncover new or unexpected adverse effects not pre-
viously associated with the intervention. For regulated products (e.g. drugs, biologics,
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vaccines), spontaneously reported adverse events are usually coded, grouped and
categorized following established dictionaries for analysis and presentation.
Whichever monitoring method is used to collect information about adverse events,

study investigators may combine adverse events into global or composite measures,
which are often reported as total number of serious adverse events, or number of with-
drawals due to adverse events, or total number of adverse events in an anatomic or
organ system (e.g. gastrointestinal, cardiovascular). However, these composite mea-
sures do not give information on what exactly the events were, and so it is usually nec-
essary to drill down for details of distinct or individual adverse events, such as nausea
or rash.
Ideally, the definition and ascertainment of adverse events should be as uniform as

possible across the included studies in the review. The lack of systematic monitoring or
follow-up, coupled with divergent methods of seeking, verifying and classifying adverse
events, can introduce heterogeneity in effect estimates among studies. Review authors
will therefore need to pay close attention to outcome definition and method of mon-
itoring when interpreting or comparing frequencies, rates and risk estimates for
adverse effects.

19.1.2.2 Inconsistent and poor reporting of adverse effects
Inconsistent outcome definition and poor ascertainment are problematic for reviews
that rely exclusively on published data. Information taken from published reports
may be incomplete or lack specificity. Across multiple investigations of published ver-
sus unpublished studies, Golder and colleagues found a median of 43% of published
studies reported adverse events data, compared with a median of 83% of unpublished
studies (Golder et al 2016). A wider range of specific adverse events was found in
sources other than published journal articles. In addition, when published and unpub-
lished reports of the same study were compared, it was shown that the unpublished
version was more likely to contain adverse effects data (median 95%) compared with
the published version (median 46%). Similarly, a study of an obesity drug (orlistat or
Xenical) by Schroll and colleagues compared study documents (protocol, clinical study
report (CSR), and published report), and identified important inconsistencies (Schroll
et al 2016). For example, adverse events in published studies were coded to appear less
severe, with reduced incidence, compared with events reported in the unpublished
CSRs. Of the total number of adverse events reported by trial investigators in CSRs,
between 3% and 33%were subsequently reported in the corresponding published jour-
nal articles.

19.1.2.3 Different study designs to measure adverse events
Some adverse effects occur rarely or may only become apparent long after the start of
intervention. This contrasts with adverse effects that have a higher incidence and occur
soon after the intervention is delivered. A small randomized trial with only short-term
follow-up may be able to capture common, immediately apparent adverse effects (e.g.
skin reaction after injection) adequately. However, rare or long-term adverse effects
may only be observed in non-randomized studies such as large cohort studies or
case-control studies. Therefore, depending on the type of adverse outcome of interest,
review authors may need to consider evidence extending beyond the time frame of ran-
domized trials.

19.1 Introduction

495



19.2 Formulation of the review

A starting point for assessing adverse effects of an intervention is to consider whether a
review will evaluate both beneficial and adverse effects of an intervention, or just the
adverse effects. Although most Cochrane Reviews look at both beneficial and adverse
effects, review authors may decide to conduct a separate review of only the adverse
effects of an intervention (see Box 19.2.a). Whichever strategy is taken, review authors
will need to decide whether to focus only on a pre-specified set of adverse events (a ‘con-
firmatory’ approach), or analyse data on adverse events identified during the conduct of
the review (an ‘exploratory’ approach). In practice, some review authors will use a hybrid
of these two approaches. Consideration will also be needed of whether the same sources
of evidence will be used to look at beneficial and adverse effects, or whether additional
types of evidence will be sought to examine the adverse effects. Finally, the specific selec-
tion and definition of adverse effects will need to be considered. In this section we tackle
these key considerations for formulating a review to look at adverse effects.

19.2.1 Which adverse events to look at

19.2.1.1 Confirmatory approach
In a confirmatory approach, review authors list one or more adverse effects as out-
comes of interest in their review protocol. Golder and colleagues found that

Box 19.2.a Reviews of adverse effects alone

For an intervention that is given for a variety of diseases or conditions, yet whose adverse
effect profile might be expected to be similar in different populations and settings, it may
be reasonable to examine adverse effects regardless of the condition for which the inter-
vention was delivered. This can be achieved in a stand-alone Cochrane Review focusing
only on adverse effects.

For example, aspirin is used for many conditions, such as in patients after a stroke,
with peripheral vascular disease, and with coronary artery disease. The main effects
of aspirin on outcomes relevant to these different conditions would typically be
addressed in separate Cochrane Reviews. However, the mechanism of harm and suscep-
tibility to adverse effects (such as bleeding into the brain or gut) are sufficiently similar
across the different disease groups that an independent review might address them
together. Indeed, if trials exist on combined populations, such a question would be dif-
ficult to address in any other way.

Similarly, there may be limited adverse effects data for an intervention in a subpopu-
lation. Analysing all available data for this subpopulation – such as adverse effects of
selective serotonin reuptake inhibitors in children –may be worthwhile, even if the trials
were aimed at different disease conditions.

Reviews of adverse effects alone should provide adequate cross-referencing to related
reviews of intended effects of the intervention. If new safety concerns are identified
when an efficacy review is updated, then the adverse effects review should be updated
as soon as possible.
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approximately 80% of systematic reviews of adverse effects published between 1994
and 2011 used this approach, selecting particular events, or categories of events, as
their main interest (Golder et al 2013).
When adopting the confirmatory approach, review authors should aim to pre-specify

adverse effects that are anticipated or already recognized to be associated with the
intervention, and assumed to be measured regularly and consistently in studies. Selec-
tion of adverse effects of interest can be based on biological, physiological or psycho-
logical plausibility. For example, in a review of a surgical intervention it is plausible to
pre-specify ‘wound infection’ as an adverse outcome of interest. Similarly, a systematic
review of drug therapy that affects platelets or clotting would be justified in pre-
specifying bleeding as an adverse outcome of interest. In some cases, it may be rea-
sonable to select adverse effects for review based on previously established observa-
tion or association, although the plausible mechanism of effect has not yet been
established.
A key limitation of the confirmatory approach is the inability to handle unanticipated

adverse effects that are reported in the included studies.

19.2.1.2 Exploratory approach
An exploratory approach to reviewing adverse effects does not include pre-
specification of any particular adverse outcomes of interest. Rather, it typically involves
extracting any, or all, of the adverse event data found within the included studies. Only
about 20% of reviews of adverse effects specify this as their main approach (Golder
et al 2013).
The exploratory approach can identify unanticipated and rare adverse effects of an

intervention. This may inform which outcomes are investigated in future reviews of pre-
specified adverse events that use the confirmatory approach. In addition, the explor-
atory approach may provide data on possible associations between an intervention
and a list of observed adverse events, which can be used to generate new signals to
add to existing safety profiles.
A limitation of the exploratory approach is that the specific adverse effects reported

may have been selectively analysed and reported because of the nature of the findings
(e.g. based on statistical significance rather than clinical importance). Also, post-hoc or
arbitrary analytic decisions regarding data extraction and analysis are often required
when review authors encounter long lists of adverse events. Processes for selection and
synthesis of such data need consideration in the review protocol, even if the outcomes
of interest are not fully specified.

19.2.1.3 Hybrid approach
The hybrid approach combines elements of both confirmatory and exploratory
approaches to capture anticipated and previously unrecognized adverse effects of
an intervention. Reviews based on this approach might list a small number of adverse
outcomes of interest in the protocol, whilst allowing post-hoc exploratory analyses to
capture adverse events data available from the studies identified. An example is pro-
vided in Box 19.2.b.
Regardless of the approach adopted, review authors should be mindful of the poten-

tial for problems related to definition and ascertainment of adverse events when
reviews are based solely on published data.
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19.2.2 Strategies for assessing beneficial and adverse effects
in the same review

When conducting a review of both beneficial and adverse effects of interventions,
review authors may:

1) use the same eligibility criteria to assess intended (beneficial) and unintended
(adverse) effects, in terms of types of studies, types of participant and types of inter-
ventions; or

2) use different eligibility criteria for selecting studies that address unintended
(adverse) effects compared with studies that address intended (beneficial) effects.

Using the same eligibility criteria to gather data on both types of outcome makes the
review easier to conduct, not least because a single search can usually be undertaken if
outcome terms are not stipulated in the search string. It also may allow for a direct
comparison between beneficial and adverse effects, because the data are derived from
the same types of studies (although it will not necessarily be the case that exactly the
same studies report data on both beneficial and adverse effects). Two disadvantages of
using the same eligibility criteria are (i) that the types of studies that are most appro-
priate to address the beneficial effects – typically randomized trials –may not be large
enough or long enough to capture important adverse effects; and (ii) that it may lead to
omission of relevant data on adverse effects if the adverse effects are also observed
when the intervention is given for other conditions (see also Box 19.2.a).
Thus, review authors may apply different eligibility criteria when attempting to iden-

tify adverse effects data. The twomain aspects of eligibility that may differ are the types
of study design and the types of participants. It is also possible that studies performed
for a different purpose may be eligible for the adverse effects component of the review.

• Different study designs To address adverse effects it may be necessary to seek
non-randomized studies, because the effects are unlikely to be seen in randomized
trials due to their size, duration or restricted eligibility for participants: see
Section 19.2.3.

• Different types of participants Adverse effects data might be obtained from ran-
domized trials evaluating the same or similar intervention but conducted in different
populations or diseases (see also Box 19.2.a).

• Different purposes Theremaybe randomized trialswithadverseeffectsdataonpar-
ticipants of interest to the review, but which did not measure the beneficial outcomes

Box 19.2.b Illustration of three approaches to reviewing the adverse effects of a
particular intervention: acupuncture

Confirmatory approach Review authors aim to synthesize data on the pre-specified
adverse events of skin infection and pain on needle insertion.
Exploratory approach Review authors aim to synthesize data on all or any adverse
effects that are mentioned in the included studies.
Hybrid approach Review authors aim to synthesize data on pre-specified outcomes of
skin infection and total number of withdrawals due to adverse events, along with any
other adverse effects found in the included studies.
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relevant to the review (e.g. a pharmacokinetic study assessing drug concentrations in
patients with the disease).

When different eligibility criteria are used to address beneficial and adverse effects, it
will often be necessary to conduct a separate search for the two (or more) sets of stud-
ies (see Section 19.3), and it may be necessary to plan different methods in other
aspects such as assessing risk of bias (see Section 19.4).

19.2.3 Selecting types of study design

Cochrane Reviews typically include randomized trials because randomization should
distribute both known and unknown confounding variables equally across intervention
groups (see Chapter 3, Section 3.3.1). However, the duration of follow-up in a rando-
mized trial may not be sufficient to capture long-term adverse effects, and criteria
for selecting participants into randomized trials may exclude participants at increased
risk of harm (such as people with comorbidities or older adults living with frailty). Also,
randomized crossover trials (see Chapter 22, Section 23.2) may not be appropriate for
investigating some adverse effects, particularly if exposure to an intervention in one
period results in an adverse event occurring in a later period. Non-randomized studies
of interventions such as cohort studies (assembled from disease or drug/device regis-
tries) and case-control studies may be more likely than randomized trials to provide
data on some types of adverse effects. However, non-randomized studies tend to be
at greater risk of bias (see Chapter 24).
Spontaneous case reports or case series may assist in signalling rare and previously

unknown events. However, for most Cochrane Reviews, these data sources should be
used for scoping purposes only (particularly as they do not have denominator data to
allow estimation of risks or rates). These spontaneous reports may guide drafting of the
protocol when there is a need to choose relevant or important adverse effects as out-
comes of interest.

19.2.4 Selecting adverse effects of interest

Review authors may define outcomes of interest based on severity, timing or the type of
adverse effects that could occur based on the known mode of action of the interven-
tion. Different sources may be used to inform pre-specification of adverse effects of
interest. These sources include clinicians’ observations in case reports, patients’
reports on internet forums, scoping reviews, regulatory approved product information
leaflets (e.g. from the US Food and Drug Administration) or other sources (e.g. British
National Formulary, Meyler’s Side Effects of Drugs).
Composite adverse outcomes are often reported by trials. Common examples include

‘total number of participants with adverse events’, or ‘numbers of withdrawals due to
adverse events’. Review authors should recognize major difficulties in interpreting com-
posite adverse outcomes that are potentially constructed from hundreds of diverse
events, because an important signal of rare serious adverse events could be masked
by common, trivial adverse events. Also, review authors should hesitate to interpret
data on withdrawals as surrogate markers for safety or tolerability, for the following
reasons.
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• The attribution of reason(s) for discontinuation is complex and may be due to mild
but irritating side effects, toxicity, lack of efficacy, non-medical reasons, or a combi-
nation of causes.

• The pressures on patients and investigators under trial conditions to reduce number
of withdrawals and dropouts can result in rates that do not reflect the experience of
adverse events within the wider population.

• Unblinding of intervention assignment often precedes the decision to withdraw.
This can lead to an over-estimate of the intervention’s effect on patient withdrawal.
For example, symptoms of patients in the placebo arm are less likely to lead to
discontinuation. Conversely, patients in the active intervention group who com-
plained of symptoms suggesting adverse effects may have been more readily
withdrawn.

19.3 Identification of evidence

19.3.1 Search methods for adverse effects data

When considering the search process, review authors may decide to perform a single
search to retrieve studies evaluating both benefits and harms. If so, the search strategy
should be designed to take account of the selected approach, either confirmatory,
exploratory or hybrid, and any differences in eligibility criteria for addressing beneficial
and adverse effects. A single search may be reasonable if it is sufficiently broad (e.g. if it
captures all studies containing a specific drug name or intervention) without being lim-
ited to specific study designs or types of participants.
In general, we recommend consideration of a separate bespoke search for data on

adverse effects, particularly if the study designs that evaluate adverse effects of interest
are different from those that report efficacy. It is unlikely that a single search that is
focused on efficacy or effectiveness studies will be sufficient to identify evidence on
all adverse effects in a comprehensive manner.

19.3.2 Allocating resources for the search

Despite significant improvements in reporting of adverse effects in primary studies,
specific terms relating to adverse effects may not feature in the title, abstract, keywords
or bibliographic database indexing systems. To determine the necessary work and
resources involved, careful scoping when drafting the review question is recom-
mended. This may need to account for the inclusion of unpublished data (see
Section 19.3.4 and Chapter 4) and non-randomized studies (see Chapter 24).

19.3.3 Sources to search

Due to the variable content and indexing techniques of healthcare databases, it is
important not to restrict adverse effect review searches to a single source, nor to a lim-
ited combination of the primary clinical research databases. Performing a search in
MEDLINE alone is not recommended.
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A case study reviewing adverse effects of thiazolidinedione use in patients diagnosed
with type 2 diabetes mellitus tested over 60 sources (Golder and Loke 2012).The results
indicated that the minimum combination of sources required to identify all relevant
references included 11 sources: the pharmaceutical company website, Science Citation
Index, Embase, BIOSIS Previews, British Library Direct, Medscape DrugInfo, American
Hospital Formulary Service (AHFS First), Thomson Reuters Integrity, Conference Papers
Index, hand searching and reference checking. In this specific example, just searching
MEDLINE failed to retrieve 66% of relevant references. A search strategy conducted in
MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL)
failed to retrieve 57% of relevant references. This example illustrates the breadth of
sources needed to ensure identification of relevant data. Authors will need to consider
sources most relevant to their clinical question; the list above is an illustration only.
Identifying adverse effects of pharmacological interventions often requires search

methods that are different from those required for reviews of non-pharmacological
interventions, or medical devices. Further guidance for sourcing adverse effects data
is given in the online Technical Supplement to Chapter 4.

19.3.4 Including unpublished sources

Review authors should search for unpublished sources of data on adverse effects. We
consider unpublished sources to be those outside of a peer-reviewed journal. This
includes: clinical study reports (CSR), trials registers and regulatory agency websites.
Tang and colleagues showed the value of searching ClinicalTrials.gov for data on seri-
ous adverse events (Tang et al 2015). Among 300 trials with serious adverse events men-
tioned in ClinicalTrials.gov, 78 (26%) did not have a corresponding publication, and for
the remaining 202 trials, 26 (13%) published articles did not mention serious adverse
events. Limiting search strategies to published reports may therefore not produce a
balanced review, leading to underestimates of harm.
Mandatory changes applied to trials regulated by the Food and Drug Administration

(FDA) regarding the submission of adverse events data to ClinicalTrials.gov, and the
legislated publication of clinical data by the European Medicines Agency (EMA), means
that previous accessibility limitations are steadily improving. Although accessibility is
likely to continue to improve, the logistics and feasibility of routinely using such data
sources for adverse effects reviews has yet to be established. Review authors should
therefore report on the number of unpublished studies identified and instances where
data on adverse effects were inaccessible.

19.3.5 Search methods: specific and generic outcome terms

Searching for specific adverse effects outcomes is similar to searching for specific ben-
efit outcomes, so that search terms for the particular adverse effects outcome(s) are
included in the search string. Examples of specific adverse effects terms are: ‘head-
ache’, ‘blood loss’ or ‘dysphagia’. However, it is likely that this method will lack sensi-
tivity due to variation in reporting and indexing.
A possible option for the larger databases is to use a broad search involving two com-

ponents at the same time: generic index terms combined with specific free-text
searches using the ‘OR’ Boolean function. Both specific and generic search techniques
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have strengths and limitations, but the strengths are increased and limitations reduced
when they are combined. It is therefore advisable to combine index terms and free-text
searching (where possible) to increase search sensitivity and reduce the possibility of
missing relevant material. More details are provided in the online Technical Supple-
ment to Chapter 4.

19.4 Appraisal of evidence

19.4.1 Challenges in assessing risk of bias for adverse effects data

Assessing risk of bias for pre-specified adverse effects that are actively monitored in
included studies is generally the same as for the pre-specified beneficial effects. How-
ever, adverse effects are seldom specified as primary outcomes, and often are not
pre-specified at all, so there is often lack of clarity in the methods used to obtain
adverse effects data. Thus, different susceptibilities to bias can arise for adverse
effects due to the way in which they are measured, recorded and reported. It is impor-
tant that the outcome measure is appropriate for detection of the adverse effect, and
that the outcomes are measured or ascertained using a method that is comparable
across intervention groups (see Chapter 8, Section 8.7). Study participants prema-
turely stopping assigned intervention or withdrawing from the study (due to adverse
events) can result in dissimilar observation times for ascertaining future adverse
events. When assessing the risk of bias for missing outcome data, it is important
to consider the possibility of differential follow-up and informative censoring.
A particular challenge when assessing risk of bias for adverse effects data is that
of selective reporting. Results based on spontaneously reported adverse outcomes
may lead to concerns that these were selected post hoc based on the finding being
noteworthy. Similarly, unusual composite outcomes may be reported to hide or
emphasize particular findings.

19.4.2 Recommended tools for assessing risk of bias in adverse effects data

Review authors should use the currently recommended risk-of-bias tools, the RoB 2
tool for randomized trials (see Chapter 8), and the ROBINS-I tool for non-randomized
studies (see Chapter 25). Although these tools are most easily directed at outcomes
that have been pre-specified by the review team, they are suitable for any type of quan-
titative outcome analysed in a review. Where adverse effects are extracted post hoc
from included trials in an exploratory approach, it may not be possible to list important
co-interventions or confounding variables in the review protocol, as would usually be
expected for using the ROBINS-I tool.
Particular issues in assessing risk of bias for adverse effects data include outcome

definition and methods of monitoring adverse effects. These warrant special attention
when there are significant concerns over bias towards the null stemming from poor
definition, ascertainment or reporting of harms. This is particularly important for
new or unexpected adverse events that have not been pre-specified as outcomes of
interest in the trials, and where monitoring and reporting may be potentially inade-
quate. Additional resources such as the McHarm tool (Chou et al 2010) and the Agency
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for Healthcare Research and Quality (AHRQ) assessment tool (Chou et al 2007,
Viswanathan and Berkman 2012) provide further discussion of these issues.

19.4.3 Selective outcome reporting bias of adverse effects data

Selective outcome reporting refers to authors reporting a subset of variables, based on
the results, from among all the outcomes originally analysed (see Chapter 7). Selective
outcome reporting distorts the body of available evidence on which to conduct data
synthesis and can lead to a high risk of bias (Kicinski et al 2015). Missing or partially
reported adverse effects data are common in systematic reviews evaluating adverse
effects (Saini et al 2014).
There is evidence that Cochrane Reviews may suffer from reporting bias. Kicinski and

colleagues explored the potential impact of reporting bias on meta-analyses in
Cochrane Reviews published between 1990 and 2005 (Kicinski et al 2015). They applied
hypothesized mechanisms of reporting bias to 802 meta-analyses of efficacy and 304
meta-analyses of safety that each combined at least 10 individual estimates. The
results from their model indicated that statistically significant results favouring treat-
ment were more likely to be included in meta-analyses of efficacy than non-significant
results. In contrast, results showing no evidence of adverse effect had greater proba-
bility of inclusion in a meta-analysis of safety than statistically significant results of
adverse effects. Reporting bias therefore, may lead to the erroneous conclusion that
an intervention is safe or relatively free from adverse effects.

19.5 Synthesis and interpretation of evidence

19.5.1 Estimating intervention effects from adverse effects

Review authors can have greater confidence in their interpretation of adverse effects
data when outcomes are defined, monitored and reported as pre-specified outcomes in
the research studies. In contrast, where the adverse effects are unexpected or ascer-
tained ad hoc through spontaneous reporting, review authors will have to make more
cautious interpretations regarding perceived safety or lack of harm, unless there is evi-
dence that monitoring and reporting were sufficiently robust to have accurately cap-
tured any events of concern (Loke and Mattishent 2015).
It is important to evaluate the consistency and similarity of case definitions and

methods of ascertainment for harms outcomes from the various included studies
before comparing or synthesizing adverse effects data across studies. An important
source of potential heterogeneity in effect estimates for adverse effects is variation
in outcome definition and measurement. Review authors should ask study authors
to resolve any ambiguity by providing additional data, or disaggregated data, which
can be reanalysed more consistently.
Important analytical challenges relating to imprecision of estimates and rare events

are covered in Chapter 10 (Section 10.4.4); see also Section 19.5.2 for particular chal-
lenges of determining whether there were zero adverse events.
Grouping adverse effects together in a composite measure (e.g. total number of

adverse effects) can only give a broad impression, and may lead to genuine differences
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between the interventions in individual adverse effects being obscured. Owing to dif-
ferences in coding and categorization of adverse effects between studies, review
authors should avoid trying to increase numbers of events available for analysis by con-
structing composite categories that have not been reported in the primary studies.
Conversely, review authors should be alert to situations in which the coding of adverse
effects splits data unnecessarily (e.g. pain in leg, pain in arm), which may dilute the
signal of a more global effect (e.g. all patients affected by pain).
Review authors should include at least one adverse effect outcome in the ‘Summary

of findings’ table. If the review did not focus on detailed evaluation of any adverse
effects, then the review authors should make an explicit statement that harms were
not assessed, rather than say (or imply) the intervention appears to be safe.

19.5.2 Synthesizing and interpreting ‘zero events’

It can be difficult, or unwise, to determine that there were no adverse events of a spe-
cific type. Although trial reports may provide tables detailing withdrawals (and rea-
sons) or serious adverse effects, they will not necessarily include all events of
interest to the review authors. New or unexpected adverse events may have been
missed if ascertainment relied solely on spontaneous reporting. Furthermore, trials
may report statements such as “no serious harms were found” without specifying their
definition of serious harms, or that “there was no evidence of significant adverse
effects”, without giving the numbers of events on which such a conclusion is based.
If a serious adverse event of interest, such as heart failure, was not explicitly men-

tioned in the text or the serious adverse effects tables, the question then arises as
to whether it is reasonable to interpret this as zero heart failure events. We generally
recommend against extracting data as ‘zero’ unless it is clearly listed as such in the
study report. Even where heart failure is explicitly reported as ‘zero’, we suggest that
review authors carefully check the methods section of the included study for details on
the rigour of monitoring for the adverse outcome (e.g. specific active surveillance for
heart failure, versus reliance only on spontaneous reports that are prone to under-
reporting). Ambiguity frequently crops up in the extraction and interpretation of
absence of harms, so review authors should record how they reached a decision of
‘zero events’.
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KEY POINTS

• Economics is the study of the optimal allocation of limited resources for the produc-
tion of benefit to society and is therefore relevant to any healthcare decision.

• Optimal decisions also require best evidence on cost-effectiveness.

• This chapter describes methods for incorporating an economics view on the review
question and evidence into Cochrane Reviews.

• Incorporating an economics view on the review question and evidence into Cochrane
Reviews can enhance their usefulness and applicability for healthcare decision-
making and new economic analyses.

20.1 Introduction

Economics is the study of the optimal allocation of limited resources for the production
of benefit to society. Resources include human time and skills, equipment, buildings,
energy and any other inputs used to achieve a specified course of action. These courses
of action might relate, for example, to a clinical decision to refer a patient for a health-
care intervention (including management of complications and follow-up care), or a
policy decision to implement a public health intervention.
In the face of limited resource availability, decisionmakers often need to consider not

only the beneficial and adverse health effects of interventions, but the impacts on the
use of healthcare resources, costs associated with use of those resources, and
ultimately their value – decision makers also need information on efficiency. The need
for evidence on both effectiveness and efficiency are closely aligned in healthcare
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decision making. For these reasons, incorporating economic perspectives and evidence
into Cochrane Reviews – alongside (and informed by) the evidence for beneficial and
adverse effects – can make the findings of the review more useful for decision making
(MacLehose et al 2012, Niessen et al 2012).
The focus of this this chapter is on methods to incorporate a health economics per-

spective into a Cochrane Review. Decisions about whether to include an economic per-
spective in a Cochrane Review should be included in the planning stage. Further
support with this stage is available from the Economics Methods Group and can be
found in other chapters of this Handbook.
A number of economics terms are used in this chapter but it is not expected that the

reader will be familiar with economics terminology. Where a brief definition is possible it
is provided but where a fuller definition is needed please see the glossary and supplemen-
tarymaterial, availableon theCampbell andCochraneEconomicsMethodsGroupwebsite.

20.1.1 Economic perspectives and economic evidence

Incorporating an economic perspective into a Cochrane Review involves the relatively
straightforward task of placing an ‘economics lens’ on the health condition (population),
intervention(s) and effectiveness question(s) under investigation, in order to highlight
economic issues of potential importance to end-users such as the importance of a par-
ticular research question or the burden of a health condition on a society or specific
group. An economic perspective might provide information about whether a more costly
intervention is worth any additional benefits and whether the information could change
a policy decision. In comparison, incorporating economic evidence into a Cochrane
Review requires the application of specialized methods and procedures to include esti-
mates of the cost or other economic effects of the interventions in the review.
In this chapter we restrict the term economic evidence to information on resource

use, or costs or cost-effectiveness data taken from studies that draw comparisons
for patient populations that match those of the Cochrane Review. The type of studies
that we are interested in are economic evaluations. These are full economic evalua-
tions that compare the costs and effects of two or more interventions. Partial economic
evaluations are also possible and these compare only costs or effects but not both.
Relevant partial economic evaluations that compare only effects would already be
included in the review (under this definition a trial comparing the effects and harms
of an intervention is a form of a partial economic evaluation). Partial economic evalua-
tions that consider costs only are called cost-analyses. It is not currently recommended
to include these andmethodological research is needed to assess the value of including
them. Further information describing how full and partial economic evaluations are
defined is provided in the glossary and supplementary material, which are available
on the Campbell and Cochrane Economics Methods Group website.
Two optional methodological frameworks have therefore been developed for incor-

porating economic evidence into reviews. The methodological and practical implica-
tions of each approach should be considered carefully at an early stage of planning
the protocol for a systematic review. The two methodological frameworks are:

1) integrated full systematic review of economic evidence; and
2) brief economic commentary.
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The integrated full systematic review of economic evidence is covered only briefly in
this chapter. A detailed definition and description can be found on the Campbell and
Cochrane Economics Methods Group website. This approach is substantially more
resource intensive when implemented in full than the brief economic commentary. This
is because it requires additional ‘economic’ methods procedures to be integrated into
each stage of the main systematic review of intervention effects. Conducting an inte-
grated full systematic review of economic evidence will also require specialist input to
the author team from a health economist, with experience (or support from someone
with experience) of applying the framework, at all stages of the process.
The brief economic commentary framework is less intensive but also less rigorous,

and most of this chapter focuses on this approach. This framework is specifically
designed to support the inclusion of economic evidence in Cochrane Reviews without
requiring specialist input from health economists (beyond initial guidance and training
in the method and procedures), and without placing a major additional workload bur-
den on author teams or editorial bases. This framework can be viewed as a ‘minimal
framework’ for incorporating economic evidence, with inherent limitations that will
require appropriate caveats in the commentary.

20.1.2 Core principles for the methods for the review of economic evidence

Three core principles underpin both frameworks.

1) Economics evidence should not be presented alone

Full reviews or brief economic commentaries developed with the aim of summarizing
evidence on the costs and/or cost-effectiveness of interventions should not in general
be conducted as a standalone exercise. They must place the relevant economic evi-
dence (in this case the impacts on resource use, costs and/or cost-effectiveness) into
the context of reliable evidence for intervention effects on health and related out-
comes. Failure to do so can lead to a biased summary of the evidence and a distorted
assembly of data from primary studies, because data on the evidence of effects used in
identified economic evaluations are highly likely to be (at best) only a subset of the data
used to provide the summary of evidence of effects (including assessment of the quality
of that evidence). The evidence of effects produced by a Cochrane Review will be the
most up-to-date synthesis and any published economic evaluation can, at best, be
based on only a subset of the data that were available at some earlier time point.
Furthermore, economic evaluations may be susceptible to a specific source of pub-

lication bias (or indeed conduct bias). For example, audits of some clinical areas have
shown that clinical effect sizes in randomized trials published with a concurrent eco-
nomic evaluation are systematically larger than those in randomized trials without.
This may reflect the difficulty in publishing planned economic evaluations conducted
alongside ‘inconclusive’ trials. Also, decisions made whilst planning a trial may mean
that an economic evaluation is excluded (e.g. because it is felt implausible that an
effective intervention could be anything other than cost-saving). However, such rea-
soning may not be reflected in published trial protocols or final study reports. Both of
these issues compound the issue of reporting biases in randomized trials (see
Chapter 13).
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2) Consider contributors to economic outcomes rather than specific resources or
settings

Given the international audience of end-users of Cochrane Reviews, any assumptions in
the review about the setting for decisionmaking (such as the availability of resources or
the structure of the health system), and any specific resource estimates may not be
appropriate. The primary aim of economics components of reviews should be to
explain how interventions affected incremental resource use, costs, health outcomes
and cost-effectiveness when implemented at specific times in specific settings (i.e. a
focus on ‘what happens?’ (Petticrew 2015)) and what drives variation in estimates of
economic and health outcomes between studies and settings. This will help end-users
understand key economic trade-offs between alternatives that could be used in prac-
tice in their own setting.

3) Consider how economics evidence may inform future research

A key secondary aim of economics components of reviews should be to present health
and economic outcome data outputs from Cochrane Reviews in formats that facilitate
the reuse of these data as inputs to the subsequent, or parallel, development of new
model-based economic evaluations.

20.1.3 Criteria for prioritizing inclusion of economic evidence
in a Cochrane Review

20.1.3.1 Rationale and principles
Whilst all reviews could have an economic component, an economic component might
not always be necessary. In general, it is more likely to be important to incorporate
economic evidence into a review when important differences are expected between
the intervention(s) and comparator(s) being compared in terms of their impacts on
resource use and associated costs. In addition, pragmatic factors, such as the availa-
bility of specialist expertise and research resources available, may also impact on the
final decision.
Some commissioners of systematic reviews have found it useful to develop decision

algorithms, such as the one shown in Table 20.1.a, to help prioritize systematic reviews
of the effects of health interventions for inclusion of economic evidence (Frick et al 2012).
Table 20.2.a provides three criteria to help prioritize reviews for inclusion of eco-

nomic evidence:

1) the expected incremental effect of an intervention (i.e. how large is the difference in
effect between intervention options likely to be? The smallest meaningful effect
might correspond to the minimally important difference, or the difference in effect
likely to be meaningful to patients);

2) the expected incremental cost of the intervention (i.e. what are the key elements of
resource use likely to be affected, and how large is the difference likely to be in cost
between intervention options? How important might this difference be to decision
makers?); and

3) the likelihood that economic evidence could change potential decisions about use
of an intervention (this may take into consideration other contextual factors, such as
prevalence of a condition or health system factors).
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20.1.3.2 Making judgements about the criteria
Each of these criteria is dichotomized for simplicity: large or small incremental effect,
high or low incremental cost, and a high or low probability that economic evidence will
affect potential decisions concerning the adoption of the intervention.
It can be challenging to judge the likely size of incremental effects and costs in these

broad, dichotomized terms, in advance of conducting the research. However, this is an
essential first step in planning any study of intervention effects or economic evaluation,
just as it is in planning systematic reviews of such studies. In practice, it may be easier
to apply this algorithm when planning an update of an already published Cochrane
Review. This is because the results of the current, published version may indicate
potential sources of important differences in resource use and costs between the
intervention(s) and comparator(s). For example, a summary effect size that shows
an increased/decreased risk of a revisional procedure being required following a
surgical intervention implies a difference in resource use and costs associated with
performing additional/fewer revisional procedures (including those associated with
management of any complications and follow-up care).
Prior to conducting the review the expected probability that economic evidence

could change adoption decisions is largely a subjective judgement. This judgement
is again challenging to make given the intended international audience of end-users
of Cochrane Reviews. Authors are therefore encouraged to consult a health economist
who can provide specialist advice to about what factors would be worth considering
when making a judgement.

20.1.3.3 Using the criteria for prioritizing inclusion of economic evidence
in a Cochrane Review
There are two rows in Table 20.2.a forwhich thedecision tode-prioritize orprioritize incor-
poration of economic evidence is relatively clear. The first scenario is characterized by a
large incremental beneficial effect, a low incremental cost, and a low probability of the
economic evidence changing the decision. In this scenario, a very low priority is placed

Table 20.1.a Decision algorithm to help prioritize reviews for inclusion of economic evidence
(reproduced from Frick et al (2012))

Expected
incremental
effect

Expected
incremental
cost

Probability economic evidence could
change potential adoption decisions

Priority for
incorporating
economic evidence

Small Low Low probability Low priority

Small Low High probability Medium priority

Large Low Low probability Very low priority

Large Low High probability Low priority

Small High Low probability Medium priority

Small High High probability High priority

Large High Low probability Low priority

Large High High probability Medium priority
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on the incorporation of economic evidence into review. This is because with a large ben-
eficial effect on health (which is likely to translate into lower subsequent use of health ser-
vices and lower associated healthcare costs) and small input costs, the intervention is
likely to be cost-effective (possibly cost-saving) overall. It would, however, be important
to state this reasoning in the Background section of a protocol and review.
Conversely, if the expected incremental beneficial effect is small, the expected incre-

mental costs are high, and the economic evidence has a high probability of changing
the decision, then this algorithm places a high priority on the incorporation of eco-
nomic evidence.
The other rows of Table 20.2.a represent six further scenarios that fall between these

two extremes. For example, the second row represents a scenario in which the incre-
mental beneficial effect is small, the incremental cost is low, and the economic evi-
dence has a high probability of changing the decision. This scenario may occur
when, for example, the expected cost impact of the intervention is small but the health
condition targeted by the intervention has a very high prevalence, such that the cumu-
lative impact of small changes in costs across a large number of treated patients adds
up to a large overall change in costs at the level of a region or a country, so affordability
may be very important to a decision maker.
The decision algorithm in Table 20.2.a excludes scenarios in which the intervention is

expected to be associated with negative incremental cost (i.e. net savings) and a pos-
itive incremental effect relative to the comparator (and vice versa); in other words,
situations in which decisions to adopt or reject are expected to be straightforward
because the intervention is clearly better or clearly worse than the comparator (i.e.
it dominates, or is dominated by the comparator).
It is important to understand that if the decision algorithm shown in Table 20.2.a sug-

gests that low (or very low) priority should be placed on incorporating economic evi-
dence, this does not necessarily imply that doing so would provide no useful
information for decision makers. Rather, it implies that a low (or very low) priority
might be assigned to devoting limited research time and resources to conducting
the economics component of a review.

20.2 Formulation of the review

20.2.1 Planning the economic component of the review

Regardless of which of the two methodological frameworks will be applied, authors of
Cochrane Reviews aiming to incorporate economic evidence will need to plan the eco-
nomics component from the very first stages. Further guidance and information on the
planning can be accessed through the Campbell and Cochrane Economics Methods
Group website.
The concise details of methods and procedures that will be used to develop the brief

economic commentary should be planned at the protocol stage, and can be described in
the ‘Methods’ section under a separate subheading, ‘Incorporating economic evidence’.
Once a decision to include economic evidence has been taken, it is advisable to con-

sult with a health economist with experience of Cochrane Review methods as soon as
possible.
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20.2.2 Formulating the objective

The economic question can be formulated with close reference to the question(s) that
frame the systematic review of intervention effects. The research questions to be
addressed by Cochrane Reviews of intervention effects are conventionally formulated
as objectives, for example:

To assess the effects of aspirin [intervention] versus placebo [comparator] for pri-
mary prevention of heart attacks [condition and primary health outcome] among
adults aged > 50 years [population].

The questions for a brief economic commentary need to be expressed in the form of
an objective, usually a secondary objective for the review. However, themost important
objective in this case is to summarize the availability and principal findings in terms of
costs and cost-effectiveness of eligible economic evaluations.

20.2.3 Introducing the economic perspective on the decision problem in the
Background section

20.2.3.1 Purpose of introducing the economic perspective in the Background
section
The aim of incorporating an economic perspective into the review is to place an ‘eco-
nomic lens’ on the health condition (population) being addressed and the interventions
being investigated in the review. This should be discussed in the Background to the
review, to highlight the relevance of economic issues and context to the questions that
the review will address.
Three distinct economic issues to consider highlighting in the Background section of

a review are:

1) the economic burden of the health condition (i.e. the ‘cost of illness’);
2) potential impacts of intervention(s) on resource use (costs); and
3) general issues of intervention costs and cost-effectiveness that are relevant for the

readers of the review to consider.

To address the first point, the ‘Description of the condition’ section of the Back-
ground can be expanded to include a discussion of the economic burden, or cost of
illness of the condition being addressed. A brief literature search will be required to
identify source material for this section, and guidance for this is presented in
Section 20.2.3.2. The second and third points should be reported in the Background
section on ‘How the interventionmight work’ and ‘Why is it important to do this review’.
For the second and third points supplementary searches to identify source material are
not required. Instead, the review should consider of the potential impacts of the inter-
vention on resource use and their importance to decision making (as considered in the
early planning stages and framing of the question, described in Section 20.2.2).
Depending on the scope of the cost-of-illness studies found, the commentary in the

‘Description of the condition’ section should include:

• a brief, general statement of the scale of economic burden/cost-of-illness to health-
care systems, patients and/or their families and/or society as a whole; and
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• monetized estimates of the economic burden of disease to healthcare systems,
patients and/or their families and/or to societies.

We further recommend that any monetized estimates presented should include details
of the country, currency and price year, if reported, in which the source studies were
conducted.
An example commentary of how to summarize information on the economic burden of

disease ispresented inBox 20.2.ausingexample text extracted fromapublishedCochrane
Review of surgery for faecal incontinence in adults (Brown et al 2013). Box 20.2.b and
Box 20.2.c provide example text for potential impacts of intervention(s) on resource use
(costs); andcost-effectiveness,whichare taken fromapublishedCochraneReviewofbone
morphogenetic protein (BMP) for fracture healing in adults (Garrison et al 2010).

Box 20.2.a Example commentary on economic burden of the health condition
(cost of illness)

Faecal incontinence…can be a debilitating problem with medical, social and economic
implications… In the United States the average annual cost of treating a patient with
mixed urinary and faecal incontinence in an outpatient setting was estimated at USD
17,166 (Mellgren et al 1999). During 1999 the direct costs of pads, appliances and other
prescription items throughout hospitals and long-term care settings in the UK for incon-
tinence in general was estimated at GBP 82.5 million (Integrated continence service
2000). With the rise in numbers of elderly people in the world, this condition will be
an increasing challenge to both healthcare services and home carers (Brown et al 2013).

Box 20.2.b Example commentary on potential impacts of intervention(s) on resource
use (costs)

From an economic perspective, it is possible that a proportion or all of the direct medical
costs of fracture treatment using BMP may be offset by reductions in the subsequent
direct medical costs associated with complications and/or secondary interventions
and also by earlier return to productive activity. Use of BMP also has the potential to
improve patients’ health-related quality of life and function by avoiding donor site pain
and dissatisfaction with donor site appearance associated with alternative treatments
that involve bone grafts (Garrison et al 2010).

Box 20.2.c Example commentary on the general issue of intervention costs and
cost-effectiveness

Given the economic impact of acute and non-union fractures and their treatment, and
the need for economic decisions on the added value of adopting BMP in clinical practice,
it is also important to critically evaluate and summarize current evidence on the costs
(resource use) and estimated cost-effectiveness associated with use of BMP as an
adjunct to, or replacement for, current standard treatments (Garrison et al 2010).
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20.2.3.2 Identifying cost-of-illness studies for the Background section
The target type of health economics study (source material) needed to inform this brief
commentary in the ‘Description of the condition’ section of the Background is the cost-
of-illness study. A cost-of-illness study is a form of economic analysis that aims to
describe, measure and value the total resources used in the management of a specific
health condition, or within a specific patient population (Abdelhamid and Shemilt
2010) (see also the training resources on the Campbell and Cochrane Economics Meth-
ods Group website).
The objective of this search is to locate the few most useful articles that report infor-

mation on the economic burden of the condition being addressed (cost-of-illness). It is
not to conduct a comprehensive search of the literature and identify all relevant studies.
Rather, the focusmight be searching two ormore databases (see below) where it is most
likely a cost-of-illness study may be found. As noted above, the most useful sources of
this information are likely to be found in the one or two articles that report a recently
conducted cost-of-illness study, or a recently conducted review of cost-of-illness studies,
focused on international comparisons, and which includes estimates of the wider eco-
nomic burden not just in terms of the costs of management but also in terms of the costs
of ill-health itself to an individual and to a society. In commonwith othermaterial used in
the Background section, a formal assessment of the quality and risk of bias of the cost-
of–illness study is not conducted. However, it is still useful to know the key features that
affect the validity of cost-of-illness studies (Larg and Moss 2011).
This search should be conducted when preparing the protocol for the review or

when conducting an update of the review. Targeted search strategies to identify rel-
evant cost-of-illness studies should be based on keyword search terms designed to
capture ‘Population’ concepts, adapted from those ‘Population’ keyword terms used
in strategies designed to search for eligible studies of effects for the main review. This
set of keyword terms should be coupled (using the ‘AND’ operator) with a filter
designed to retrieve cost-of-illness studies and run in general biomedical electronic
literature databases, such as MEDLINE, EMBASE, CINAHL, PsycINFO or PubMed. We
recommend a search of at least MEDLINE and EMBASE, with further databases
searched if deemed relevant for the specific review topic. There are no specialist ter-
tiary health economics electronic literature databases that currently tag records of
cost-of-illness studies specifically, and no search filters designed specifically for
cost-of-illness studies have been evaluated and validated (Jenkins 2004). We suggest
using the search filters provided here. The search filters themselves have been piloted
in the development of brief economic commentaries to successfully identify relevant
cost of illness studies (Box 20.2.d, Box 20.2.e and Box 20.2.f shows the filter for
MEDLINE (OvidSP), EMBASE (OvidSP) and PsycINFO, respectively).

20.2.4 Formulating eligibility criteria

For a brief economic commentary it is not necessary to include separate eligibility cri-
teria describing the population, intervention(s), comparator(s) and outcomes (PICO) for
economics studies that will be sought to inform the review. The eligibility criteria
for studies that will be used to develop the commentary are the same as those set
for the main systematic review of intervention effects with respect to the PICO
elements.

20.2 Formulation of the review

515



Box 20.2.d MEDLINE (OvidSP) filter for cost-of-illness studies

1) (cost? adj2 (illness or disease or sickness)).tw.
2) (burden? adj2 (illness or disease? or condition? or economic∗)).tw.
3) ("quality-adjusted life years" or "quality adjusted life years" or QALY?).tw.
4) Quality-adjusted life years/
5) "cost of illness"/
6) Health expenditures/
7) (out-of-pocket adj2 (payment? or expenditure? or cost? or spending or

expense?)).tw.
8) (expenditure? adj3 (health or direct or indirect)).tw.
9) ((adjusted or quality-adjusted) adj2 year?).tw.
10) or/1-9

Box 20.2.e EMBASE (OvidSP) filter for cost-of-illness studies

1) (cost? adj2 (illness or disease or sickness)).tw.
2) (burden? adj2 (illness or disease? or condition? or economic∗)).tw.
3) ("quality-adjusted life years" or "quality adjusted life years" or QALY?).tw.
4) Quality-adjusted life years/
5) "cost of illness"/
6) Exp "health care cost"/
7) (out-of-pocket adj2 (payment? or expenditure? or cost? or spending or

expense?)).tw.
8) (expenditure? adj3 (health or direct or indirect)).tw.
9) ((adjusted or quality-adjusted) adj2 year?).tw.
10) or/1-9

Box 20.2.f PsycINFO filter for cost-of-illness studies

1) (cost? adj2 (illness or disease or sickness)).tw.
2) (burden? adj2 (illness or disease? or condition? or economic∗)).tw.
3) ("quality-adjusted life years" or "quality adjusted life years" or QALY?).tw.
4) Health Care Economics/
5) Costs and Cost Analysis/
6) Health care costs/
7) (out-of-pocket adj2 (payment? or expenditure? or cost? or spending or

expense?)).tw.
8) (expenditure? adj3 (health or direct or indirect)).tw.
9) ((adjusted or quality-adjusted) adj2 year?).tw.
10) or/1-9
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To reflect this it is recommended to add a section to the Methods called ‘Incorporat-
ing economic evidence’, to state this clearly. This section should then go on to state
supplementary criteria with respect to the type of economic evaluation study designs.
For example:

We will develop a brief economic commentary based on current methods guide-
lines (http://methods.cochrane.org/economics/) to summarize the availability
and principal findings of [trial-based and model-based] full economic evalua-
tions (cost-effectiveness analyses, cost-utility analyses, cost-benefit analyses)∗

that compare the use of aspirin versus placebo for primary prevention of heart
attacks among adults aged > 50 years. This commentary will focus on the extent
to which principal findings of eligible economic evaluations indicate that an
intervention might be judged favourably (or unfavourably) from an economic
perspective, when implemented in different settings.

∗ a definition of these terms can be found in the Glossary and a fuller explanation is
provided in the supplementary material on the Campbell and Cochrane Economics
Methods Group website.

20.3 Identification of evidence

Alongside the main search for studies for inclusion in the review, a separate
search strategy should be planned (at the protocol stage for a new review or
when planning an update of an existing review) and conducted during the review
stage for eligible health economic evaluations to inform development of a brief
economic commentary. The following elements are recommended for this supple-
mentary search:

1) checking reference lists and conduct forward citation tracking from eligible studies
of effects identified for inclusion in the main review;

2) conducting a search of NHS Economic Evaluation Database (NHS EED) using key-
word terms based on intervention (and possibly comparator) concepts; and

3) applying specialist search filters to sets of records retrieved by searches of one or
two selected general electronic biomedical literature databases searched for the
main review of intervention effects. Examples of relevant search filters can be
obtained from the Economics Methods Group.

The primary rationale for incorporating using specialist search filters is the need to
identify reports of eligible full economic evaluations published since NHS EED stopped
being updated at the end of 2014. If a brief economic commentary is restricted to full
economic evaluations only, then we recommend using specialist searches from
1 January 2014 as the NHS EED was based on rigorous and comprehensive searches
for full economic evaluations before that date.
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20.3.1 Selecting studies and collecting data

For a brief economic commentary, procedures for selecting eligible full economic
evaluations for inclusion are less onerous than required for an integrated full review.
This reflects both the intention to minimize the workload for author teams and
caveats for the discussion of the findings of identified economic evaluations (see
Section 20.5.1).
Identified economic evaluations will still need to be screened against eligibility cri-

teria relating to study population, intervention and comparator already defined for
the main systematic review of intervention effects. It is recommended that this task
needs to be undertaken by one review author only. One author will also need to classify
each economic evaluation using the general procedure described below (including
establishing any links with eligible trials included in the main review of intervention
effects).
Collecting data for a brief economic commentary requires the extraction of two types

of data: basic details of the characteristics of each identified economic evaluation; and
brief text extracts that summarize their principal findings.
Basic data collected on the characteristics of each economic evaluation should

include:

• the analytic framework (trial- or model-based) and type (cost-effectiveness analysis,
cost-utility analysis, cost-benefit analysis) of economic evaluation to be summarized
as a count of each type identified as part of the commentary (see also
Section 20.5.1);

• the analytic perspective (whose costs and benefits a decision maker views as impor-
tant) and time horizon (the duration over which costs and effects are assessed)
adopted for costs and (if applicable) effects in each analysis;

• the main cost items included in each analysis (e.g. costs that fall under the following
categories of health sector costs, other sector costs, patient and family costs and pro-
ductivity impacts hospital care costs, direct health care costs; indirect non-health
care costs); and

• the setting (i.e. country in which the study was performed), currency and price year
used in each analysis.

It is helpful to classify cost items into four categories: health sector costs, other sector
costs, patient and family costs, and productivity impacts (Drummond et al 2015)
(although not all economic evaluationswill follow this structure). The categories included
will be driven primarily by the analytic perspective of the study. Health sector costs
include the cost to the system or insurers of care provided (excluding costs directly paid
by patients) and can include items such as primary care physician contacts (e.g. face-to-
face visits or formal contacts via phone or via the internet, etc), prescribed medications,
inpatient and outpatient hospital contacts, as well as any specialist tertiary care contacts.
Other sector costs include costs borne by social services, education, local authorities, or
police and criminal justice services. Patient and family costs could include any direct pay-
ment or co-payments formedications or care, or out of pocket expenses such as travel or
arranging child or adult care while attending appointments. Productivity losses are the
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loss of output to the economy, and are usually measured in terms of time off work due to
accessing care as well as morbidity or premature mortality.
For principal findings, the following data should be collected:

• verbatim text on conclusions drawn by the authors of each economic evaluation
(with respect to what the study authors report as their main (base case) analysis; and

• text that summarizes uncertainty surrounding authors’ principal conclusions (i.e.
based on the results of any sensitivity analyses conducted).

For example, the following verbatim text was extracted from a report of a model-
based cost-utility analysis that compared two interventions for preventing heart
attacks and death in patients with non-ST-elevation myocardial infarction. This extract
was used in the development of an exemplar brief economic commentary based on a
Cochrane Review of factor Xa inhibitors for acute coronary syndromes (ACS) as part of a
pilot study (Shemilt et al 2011):

Our results suggest that the use of fondaparinux together with triple antiplatelet
therapy in NSTE-ACS patients submitted to early (non-urgent) invasive therapy is
cost saving. The strategy of fondaparinux was found to be dominant in almost all
the scenarios considered, and the highest cost-effectiveness of fondaparinux
was found in younger patients, patients at high risk of a cardiac event (high TIMI
score) and patients at the highest risk of bleeding.

(Latour-Perez and de Miguel Balsa 2009)

20.4 Appraisal of evidence

Abrief economic commentaryneednot include (or report) assessmentsofmethodological
quality of includedeconomic evaluations. This guidance reflectsboth the intention tomin-
imize theadditionalworkloadburdenplacedonauthor teamsandthe limitingcaveats that
will be placed on discussion of the principal findings of identified economic evaluations in
the review (see textat theendofSection20.3.1).However, it ismandatory for this limitation
to be explicitly described in the text of a brief economic commentary, for example:

It is important to highlight that we did not subject any of the [N] identified eco-
nomic evaluations to critical appraisal and we do not attempt to draw any firm
or general conclusions regarding the relative costs or efficiency of [‘Intervention
X’] compared with [‘Comparator Y’].

20.5 Synthesis and interpretation of evidence

20.5.1 Analysing and presenting results

An exemplar brief economic commentary is shown in Box 20.5.a (Shemilt et al 2011) and
further examples can be found in supplementary material and training materials on the
Campbell and Cochrane Economics Methods Group website.
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The findings of the brief economic commentary should be incorporated into the Dis-
cussion (and not the Results) section of a Cochrane Review. Themost appropriate place
for this material is where the results of the systematic review of effects are put into
context of other information and other reviews.
The overall aim of this element of the commentary is to summarize the availability

and principal findings of identified eligible economic evaluations, with appropriate
caveats, rather than to present the detailed results of a systematic search for evidence.

Box 20.5.a Example brief economic commentary

To supplement themain systematic review of efficacy and safety of factor Xa inhibitors in
the treatment of ACS, we sought to identify economic evaluations in which factor Xa inhi-
bitors are compared with other anticoagulant strategies. A supplementary search of the
NHS Economic Evaluation Database [insert other searchmethods as appropriate or refer
to ‘Incorporating economic evidence’ section of the methods] identified three economic
evaluations. Two cost-utility analyses (decision models) compared subcutaneous fonda-
parinux (2.5&thinsp;mg/day) with SC enoxaparin (1&thinsp;mg/kg 12 hourly) in patients
with non ST-elevation myocardial infarction, pre-treated with triple antiplatelet therapy
and early revascularization in Spain and the US respectively (Latour-Perez and de Miguel
Balsa 2009, Sculpher et al 2009). Both analyses used comparative effectiveness and
safety data collected from the OASIS-5 trial (Yusuf et al 2006). Both adopted a healthcare
provider perspective andmodelled costs and quality-adjusted life years (QALYs) over the
patients’ lifetimes. Both analyses found that fondaparinux dominated enoxaparin (i.e.
was both less costly and generated more QALYs) over the patients’ lifetime, in most sce-
narios considered, and across all levels of baseline risk.

A cost-effectiveness analysis (decisionmodel) compared four anticoagulation strategies
(UFH with a glycoprotein inhibitor; enoxaparin with a glycoprotein inhibitor; bivalirudin
alone; and fondaparinux with a glycoprotein inhibitor) in patients with non-ST-elevation
acute coronary syndrome (Maxwell et al 2009) in US secondary care. This analysis used
clinical evidence collected from three randomized trials, including the OASIS-5 trial
(Yusuf et al 2006). It adopted a healthcare provider perspective but the time horizon
was not reported. The analysis found that bivalirudin and fondaparinux were superior
in most scenarios considered and the authors concluded that bivalirudin was the least
costly anticoagulation therapy amongst those compared for early invasive treatment, with
fondaparinux preferred for patients undergoing conservative treatment.

We did not subject the three identified economic evaluations to critical appraisal
and we do not attempt to draw any firm or general conclusions regarding the relative
costs or efficiency of the anticoagulation strategies compared. However, evidence col-
lected from these economic evaluations indicates that, from an economic perspective,
use of fondaparinux is (at least) a promising strategy compared with other anticoagu-
lation strategies in patients with non-ST-elevation acute coronary syndrome. End
users of this review will need to assess the extent to which methods and results of iden-
tified economic evaluations may be applicable (or transferable) to their own setting.
(Shemilt et al 2011)
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This commentary should include a brief narrative summary of:

• the electronic health economics literature databases searched;

• the number of relevant economic evaluations identified for each eligible comparison
(each eligible intervention/comparison combination);

• the descriptive information collected from each study;

• principal conclusions as reported by the authors of each analysis (with respect to the
base case analysis); and

• principal sources of uncertainty regarding authors’ principal conclusions (based on
the results of any sensitivity analyses conducted).

In a Cochrane Review, all published reports of economic analyses and/or economic
evaluations used to inform the brief economic commentary should be cited as ‘Addi-
tional references’, not as ‘Included studies’, unless they are also eligible and included as
part of the main review of effects.

20.5.2 Interpreting results and drawing conclusions

Discussion points in a brief economic commentary can be concise and over-interpreta-
tion of the results of this relatively modest exercise must be avoided. Interpretation and
discussion points should focus on the extent to which it is judged clear, based on
consistency in principal findings between identified economic evaluations, that the
intervention(s) could be considered promising from an economic perspective (with
appropriate caveats). In the example brief economic commentary shown in Box 20.5.a,
the discussion points gave a qualified statement that one intervention (fondaparinux)
appeared to be cost-saving while not inferior in terms of effects compared to other inter-
ventions measured. In this specific example, the basis for this qualified inference was
evidence for consistent results favouring use of fondaparinux among full economic eva-
luations identified for inclusion in the brief economic commentary.
Example standard forms of words for potential use in different scenarios, depending

on the profile of included economic evaluations, are shown in Box 20.5.b. “End users of
this review will need to assess the extent to which methods and results of identified
economic evaluations may be applicable (or transferable) to their own setting” is a
recommended standard caveat for all brief economic commentaries.
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21

Qualitative evidence
Jane Noyes, Andrew Booth, Margaret Cargo, Kate Flemming, Angela Harden,
Janet Harris, Ruth Garside, Karin Hannes, Tomás Pantoja, James Thomas

KEY POINTS

• A qualitative evidence synthesis (commonly referred to as QES) can add value by provid-
ing decision makers with additional evidence to improve understanding of intervention
complexity, contextual variations, implementation, and stakeholder preferences and
experiences.

• A qualitative evidence synthesis can be undertaken and integrated with a correspond-
ing intervention review; or

• Undertaken using a mixed-method design that integrates a qualitative evidence
synthesis with an intervention review in a single protocol.

• Methods for qualitative evidence synthesis are complex and continue to develop.
Authors should always consult current methods guidance at methods.cochrane.
org/qi.

21.1 Introduction

The potential contribution of qualitative evidence to decision making is well-established
(Glenton et al 2016, Booth 2017, Carroll 2017). A synthesis of qualitative evidence can
inform understanding of how interventions work by:

• increasing understanding of a phenomenon of interest (e.g. women’s conceptualiza-
tion of what good antenatal care looks like);

• identifying associations between the broader environment within which people live
and the interventions that are implemented;

• increasing understanding of the values and attitudes toward, and experiences of,
health conditions and interventions by those who implement or receive them; and

This chapter should be cited as: Noyes J, Booth A, Cargo M, Flemming K, Harden A, Harris J, Garside R,
Hannes K, Pantoja T, Thomas J. Chapter 21: Qualitative evidence. In: Higgins JPT, Thomas J, Chandler J,
Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions.
2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 525–546.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

525



• providing a detailed understanding of the complexity of interventions and implemen-
tation, and their impacts and effects on different subgroups of people and the influ-
ence of individual and contextual characteristics within different contexts.

The aim of this chapter is to provide authors (who already have experience of under-
taking qualitative research and qualitative evidence synthesis) with additional guid-
ance on undertaking a qualitative evidence synthesis that is subsequently integrated
with an intervention review. This chapter draws upon guidance presented in a series
of six papers published in the Journal of Clinical Epidemiology (Cargo et al 2018,
Flemming et al 2018, Harden et al 2018, Harris et al 2018, Noyes et al 2018a, Noyes
et al 2018b) and from a further World Health Organization series of papers published
in BMJ Global Health, which extend guidance to qualitative evidence syntheses con-
ducted within a complex intervention and health systems and decision making context
(Booth et al 2019a, Booth et al 2019b, Flemming et al 2019, Noyes et al 2019, Petticrew
et al 2019).The qualitative evidence synthesis and integrationmethods described in this
chapter supplement Chapter 17 on methods for addressing intervention complexity.
Authors undertaking qualitative evidence syntheses should consult these papers and
chapters for more detailed guidance.

21.2 Designs for synthesizing and integrating qualitative
evidence with intervention reviews

There are two main designs for synthesizing qualitative evidence with evidence of the
effects of interventions:

1) Sequential reviews: where one or more existing intervention review(s) has been
published on a similar topic, it is possible to do a sequential qualitative evidence
synthesis and then integrate its findings with those of the intervention review to cre-
ate a mixed-method review. For example, Lewin and colleagues (Lewin et al 2010)
and Glenton and colleagues (Glenton et al 2013) undertook sequential reviews of lay
health worker programmes using separate protocols and then integrated the
findings.

2) Convergent mixed-methods review: where no pre-existing intervention review
exists, it is possible to do a full convergent ‘mixed-methods’ review where the trials
and qualitative evidence are synthesized separately, creating opportunities for them
to ‘speak’ to each other during development, and then integrated within a third syn-
thesis. For example, Hurley and colleagues (Hurley et al 2018) undertook an inter-
vention review and a qualitative evidence synthesis following a single protocol.

It is increasingly common for sequential and convergent reviews to be conducted by
some or all of the same authors; if not, it is critical that authors working on the qual-
itative evidence synthesis and intervention review work closely together to identify and
create sufficient points of integration to enable a third synthesis that integrates the two
reviews, or the conduct of a mixed-method review (Noyes et al 2018a) (see Figure 21.2.a).
This consideration also applies where an intervention review has already been published
and there is no prior relationship with the qualitative evidence synthesis authors. We
recommend that at least one joint author works across both reviews to facilitate
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development of the qualitative evidence synthesis protocol, conduct of the synthesis,
and subsequent integration of the qualitative evidence synthesis with the intervention
review within a mixed-methods review.

21.3 Defining qualitative evidence and studies

We use the term ‘qualitative evidence synthesis’ to acknowledge that other types of
qualitative evidence (or data) can potentially enrich a synthesis, such as narrative data
derived from qualitative components of mixed-method studies or free text from ques-
tionnaire surveys. Wewould not, however, consider a questionnaire survey to be a qual-
itative study and qualitative data from questionnaires should not usually be privileged
over relevant evidence from qualitative studies. When thinking about qualitative evi-
dence, specific terminology is used to describe the level of conceptual and contextual
detail. Qualitative evidence that includes higher or lower levels of conceptual detail is
described as ‘rich’ or ‘poor’. Associated terms ‘thick’ or ‘thin’ are best used to refer to
higher or lower levels of contextual detail. Review authors can potentially develop a
stronger synthesis using rich and thick qualitative evidence but, in reality, they will
identify diverse conceptually rich and poor and contextually thick and thin studies.
Developing a clear picture of the type and conceptual richness of available qualitative
evidence strongly influences the choice of methodology and subsequent methods. We
recommend that authors undertake scoping searches to determining the type and rich-
ness of available qualitative evidence before selecting their methodology andmethods.
A qualitative study is a research study that uses a qualitative method of data collec-

tion and analysis. Review authors should include the studies that enable them to
answer their review question. When selecting qualitative studies in a review about

Context of the
primary qualitative

study

Context of the
primary trial

Context of the
qualitative evidence

synthesis review
question

Context into which
the intervention is

implemented

Context of the
intervention effect
review question

External

validity/

relevance

Internal validity/relevance

Are there sufficient
complementary

contextual factors to
integrate the

quantitative and
qualitative evidence?

Figure 21.2.a Considering context and points of contextual integration with the intervention review or
within a mixed-method review
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intervention effects, two types of qualitative study are available: those that collect data
from the same participants as the included trials, known as ‘trial siblings’; and those
that address relevant issues about the intervention, but as separate items of research –
not connected to any included trials. Both can provide useful information, with trial
sibling studies obviously closer in terms of their precise contexts to the included trials
(Moore et al 2015), and non-sibling studies possibly contributing perspectives not present
in the trials (Noyes et al 2016b).

21.4 Planning a qualitative evidence synthesis linked to an
intervention review

The Cochrane Qualitative and Implementation Methods Group (QIMG) website provides
links to practical guidance and key steps for authors who are considering a qualitative
evidence synthesis (methods.cochrane.org/qi). The RETREAT framework outlines seven
key considerations that review authors should systematically work through when pla-
nning a review (Booth et al 2016, Booth et al 2018) (Box 21.4.a). Flemming and collea-
gues (Flemming et al 2019) further explain how to factor in such considerations when
undertaking a qualitative evidence synthesis within a complex intervention and deci-
sion making context when complexity is an important consideration.

Box 21.4.a RETREAT considerations when selecting an appropriate method for
qualitative synthesis

Review question – first, consider the complexity of the review question. Which elements
contribute most to complexity (e.g. the condition, the intervention or the context)?
Which elements should be prioritized as the focal point for attention? (Squires et al 2013,
Kelly et al 2017).

Epistemology – consider the philosophical foundations of the primary studies. Would it
be appropriate to favour a method such as thematic synthesis that it is less reliant on
epistemological considerations? (Barnett-Page and Thomas 2009).

Time frame – consider what type of qualitative evidence synthesis will be feasible and
manageable within the time frame available (Booth et al 2016).

Resources – consider whether the ambition of the review matches the available
resources. Will the extent of the scope and the sampling approach of the review need
to be limited? (Benoot et al 2016, Booth et al 2016).

Expertise – consider access to expertise, both within the review team and among a wider
group of advisors. Does the available expertise match the qualitative evidence synthesis
approach chosen? (Booth et al 2016).

Audience and purpose – consider the intended audience and purpose of the review. Does
the approach to question formulation, the scope of the review and the intended outputs
meet their needs? (Booth et al 2016).

Type of data – consider the type of data present in typical studies for inclusion. To what
extent are candidate studies conceptually rich and contextually thick in their detail?
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21.5 Question development

The review question is critical to development of the qualitative evidence synthesis
(Harris et al 2018). Question development affords a key point for integration with
the intervention review. Complementary guidance supports novel thinking about
question development, application of question development frameworks and
the types of questions to be addressed by a synthesis of qualitative evidence
(Cargo et al 2018, Harris et al 2018, Noyes et al 2018a, Booth et al 2019b, Flemming
et al 2019).
Research questions for quantitative reviews are often mapped using structures

such as PICO. Some qualitative reviews adopt this structure, or use an adapted
variation of such a structure (e.g. SPICE (Setting, Perspective, Intervention or
Phenomenon of Interest, Comparison, Evaluation) or SPIDER (Sample, Phenome-
non of Interest, Design, Evaluation, Research type); Cooke et al 2012). Booth
and colleagues (Booth et al 2019b) propose an extended question framework
(PerSPecTIF) to describe both wider context and immediate setting that is partic-
ularly suited to qualitative evidence synthesis and complex intervention reviews
(see Table 21.5.a).
Detailed attention to the question and specification of context at an early stage is

critical to many aspects of qualitative synthesis (see Petticrew et al 2019 and Booth
et al 2019a for a more detailed discussion). By specifying the context a review team
is able to identify opportunities for integration with the intervention review, or oppor-
tunities for maximizing use and interpretation of evidence as a mixed-method review
progresses (see Figure 21.2.a), and informs both the interpretation of the observed
effects and assessment of the strength of the evidence available in addressing the
review question (Noyes et al 2019). Subsequent application of GRADE CERQual
(Lewin et al 2015, Lewin et al 2018), an approach to assess the confidence in synthe-
sized qualitative findings, requires further specification of context in the review
question.

Table 21.5.a PerSPecTIF Question formulation framework for qualitative evidence syntheses
(Booth et al 2019b). Reproduced with permission of BMJ Publishing Group

Per S P E (C) Ti F

Perspective Setting Phenomenon
of interest/
Problem

Environment Comparison
(optional)

Time/
Timing

Findings

From the
perspective
of a
pregnant
woman

In the setting
of rural
communities

How does
facility-based
care

Within an
environment
of poor
transport
infrastructure
and distantly
located
facilities

Compare
with
traditional
birth
attendants
at home

Up to and
including
delivery

In relation to
the woman’s
perceptions
and
experiences?
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21.6 Questions exploring intervention implementation

Additional guidance is available on formulation of questions to understand and assess
intervention implementation (Cargo et al 2018). A strong understanding of how an inter-
vention is thought to work, and how it should be implemented in practice, will enable a
critical consideration of whether any observed lack of effect might be due to a poorly
conceptualized intervention (i.e. theory failure) or a poor intervention implementation
(i.e. implementation failure). Heterogeneity needs to be considered for both the under-
lying theory and the ways in which the interventionwas implemented. An a priori scoping
review (Levac et al 2010), concept analysis (Walker and Avant 2005), critical review (Grant
and Booth 2009) or textual narrative synthesis (Barnett-Page and Thomas 2009) can be
undertaken to classify interventions and/or to identify the programme theory, logic
model or implementation measures and processes. The intervention Complexity Assess-
ment Tool for Systematic Reviews iCAT_SR (Lewin et al 2017)may be helpful in classifying
complexity in interventions and developing associated questions.
An existing intervention model or framework may be used within a new topic or con-

text. The ‘best-fit framework’ approach to synthesis (Carroll et al 2013) can be used to
establish the degree to which the source context (from where the framework was
derived) resembles the new target context (see Figure 21.2.a). In the absence of an
explicit programme theory and detail of how implementation relates to outcomes,
an a priori realist review, meta-ethnography or meta-interpretive review can be under-
taken (Booth et al 2016). For example, Downe and colleagues (Downe et al 2016) under-
took an initial meta-ethnography review to develop an understanding of the outcomes
of importance to women receiving antenatal care.
However, these additional activities are very resource-intensive and are only recom-

mended when the review team has sufficient resources to supplement the planned
qualitative evidence syntheses with an additional explanatory review. Where resources
are less plentiful a review team could engage with key stakeholders to articulate and
develop programme theory (Kelly et al 2017, De Buck et al 2018).

21.6.1 Using logic models and theories to support question development

Review authors can develop amore comprehensive representation of question features
through use of logic models, programme theories, theories of change, templates and
pathways (Anderson et al 2011, Kneale et al 2015, Noyes et al 2016a) (see also
Chapter 17, Section 17.2.1 and Chapter 2, Section 2.5.1). These different forms of
social theory can be used to visualize and map the research question, its context,
components, influential factors and possible outcomes (Noyes et al 2016a, Rehfuess
et al 2018).

21.6.2 Stakeholder engagement

Finally, review authors need to engage stakeholders, including consumers affected by
the health issue and interventions, or likely users of the review from clinical or policy
contexts. From the preparatory stage, this consultation can ensure that the review
scope and question is appropriate and resulting products address implementation con-
cerns of decision makers (Kelly et al 2017, Harris et al 2018).
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21.7 Searching for qualitative evidence

In comparison with identification of quantitative studies (see also Chapter 4), proce-
dures for retrieval of qualitative research remain relatively under-developed. Particular
challenges in retrieval are associated with non-informative titles and abstracts, diffuse
terminology, poor indexing and the overwhelming prevalence of quantitative studies
within data sources (Booth et al 2016).
Principal considerations when planning a search for qualitative studies, and the evi-

dence that underpins them, have been characterized using a 7S framework from Sam-
pling and Sources through Structured questions, Search procedures, Strategies and
filters and Supplementary strategies to Standards for Reporting (Booth et al 2016).
A key decision, aligned to the purpose of the qualitative evidence synthesis is whether

to use the comprehensive, exhaustive approaches that characterize quantitative
searches or whether to use purposive sampling that is more sensitive to the qualitative
paradigm (Suri 2011). The latter, which is used when the intent is to generate an inter-
pretative understanding, for example, when generating theory, draws upon a versatile
toolkit that includes theoretical sampling, maximum variation sampling and intensity
sampling. Sources of qualitative evidence are more likely to include book chapters, the-
ses and grey literature reports than standard quantitative study reports, and so a
search strategy should place extra emphasis on these sources. Local databases may
be particularly valuable given the criticality of context (Stansfield et al 2012).
Another key decision is whether to use study filters or simply to conduct a topic-

based search where qualitative studies are identified at the study selection stage.
Search filters for qualitative studies lack the specificity of their quantitative counter-
parts. Nevertheless, filters may facilitate efficient retrieval by study type (e.g. qualita-
tive (Rogers et al 2017) or mixed methods (El Sherif et al 2016) or by perspective (e.g.
patient preferences (Selva et al 2017)) particularly where the quantitative literature is
overwhelmingly large and thus increases the number needed to retrieve. Poor indexing
of qualitative studies makes citation searching (forward and backward) and the
Related Articles features of electronic databases particularly useful (Cooper et al
2017). Further guidance on searching for qualitative evidence is available (Booth
et al 2016, Noyes et al 2018a). The CLUSTER method has been proposed as a specific
named method for tracking down associated or sibling reports (Booth et al 2013). The
BeHEMoTh approach has been developed for identifying explicit use of theory (Booth
and Carroll 2015).

21.7.1 Searching for process evaluations and implementation evidence

Four potential approaches are available to identify process evaluations.

1) Identify studies at the point of study selection rather than through tailored search
strategies. This involves conducting a sensitive topic search without any study
design filter (Harden et al 1999), and identifying all study designs of interest during
the screening process. This approach can be feasible when a review question
involves multiple publication types (e.g. randomized trial, qualitative research
and economic evaluations), which then do not require separate searches.

21.7 Searching for qualitative evidence
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2) Restrict included process evaluations to those conducted within randomized trials,
which can be identified using standard search filters (see Chapter 4, Section 4.4.7).
This method relies on reports of process evaluations also describing the surround-
ing randomized trial in enough detail to be identified by the search filter.

3) Use unevaluated filter terms (such as ‘process evaluation’, ‘program(me) evalua-
tion’, ‘feasibility study’, ‘implementation’ or ‘proof of concept’ etc) to retrieve proc-
ess evaluations or implementation data. Approaches using strings of terms
associated with the study type or purpose are considered experimental. There is
a need to develop and test such filters. It is likely that such filters may be derived
from the study type (process evaluation), the data type (process data) or the appli-
cation (implementation) (Robbins et al 2011).

4) Minimize reliance on topic-based searching and rely on citations-based approaches
to identify linked reports, published or unpublished, of a particular study (Booth
et al 2013) which may provide implementation or process data (Bonell et al 2013).

More detailed guidance is provided by Cargo and colleagues (Cargo et al 2018).

21.8 Assessing methodological strengths and limitations of
qualitative studies

Assessment of the methodological strengths and limitations of qualitative research
remains contested within the primary qualitative research community (Garside
2014). However, within systematic reviews and evidence syntheses it is considered
essential, even when studies are not to be excluded on the basis of quality (Carroll
et al 2013). One review found almost 100 appraisal tools for assessing primary quali-
tative studies (Munthe-Kaas et al 2019). Limitations included a focus on reporting
rather than conduct and the presence of items that are separate from, or tangential
to, consideration of study quality (e.g. ethical approval).
Authors should distinguish between assessment of study quality and assessment of

risk of bias by focusing on assessment of methodological strengths and limitations as a
marker of study rigour (what we term a ‘risk to rigour’ approach (Noyes et al 2019)). In
the absence of a definitive risk to rigour tool, we recommend that review authors select
from published, commonly used and validated tools that focus on the assessment of
the methodological strengths and limitations of qualitative studies (see Box 21.8.a).
Pragmatically, we consider a ‘validated’ tool as one that has been subjected to eval-
uation. Issues such as inter-rater reliability are afforded less importance given that
identification of complementary or conflicting perspectives on risk to rigour is consid-
ered more useful than achievement of consensus per se (Noyes et al 2019).
The CASP tool for qualitative research (as one example) maps onto the domains in

Box 21.8.a (CASP 2013). Tools not meeting the criterion of focusing on assessment of
methodological strengths and limitations include those that integrate assessment of
the quality of reporting (such as scoring of the title and abstract, etc) into an overall
assessment of methodological strengths and limitations. As with other risk of bias
assessment tools, we strongly recommend against the application of scores to domains
or calculation of total quality scores.We encourage reviewauthors to discuss the studies
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and their assessments of ‘risk to rigour’ for each paper and how the study’s methodo-
logical limitations may affect review findings (Noyes et al 2019). We further advise that
qualitative ‘sensitivity analysis’, exploring the robustness of the synthesis and its vulner-
ability tomethodologically limited studies, be routinely applied regardless of the review
authors’overall confidence in synthesized findings (Carroll et al 2013). Evidence suggests
that qualitative sensitivity analysis is equally advisable for mixed methods studies from
which the qualitative component is extracted (Verhage and Boels 2017).

21.8.1 Additional assessment of methodological strengths and limitations of
process evaluation and intervention implementation evidence

Few assessment tools explicitly address rigour in process evaluation or implementation
evidence. For qualitative primary studies, the 8-item process evaluation tool developed
by the EPPI-Centre (Rees et al 2009, Shepherd et al 2010) can be used to supplement
tools selected to assess methodological strengths and limitations and risks to rigour in
primary qualitative studies. One of these items, a question on usefulness (framed as
‘how well the intervention processes were described and whether or not the process data
could illuminate why or how the interventions worked or did not work’) offers a mech-
anism for exploring process mechanisms (Cargo et al 2018).

21.9 Selecting studies to synthesize

Decisions about inclusion or exclusion of studies can be more complex in qualitative
evidence syntheses compared to reviews of trials that aim to include all relevant stud-
ies. Decisions on whether to include all studies or to select a sample of studies depend

Box 21.8.a Example domains that provide an assessment ofmethodological strengths
and limitations to determine study rigour

Clear aims and research question
Congruence between the research aims/question and research design/method(s)
Rigour of case and or participant identification, sampling and data collection to address
the question
Appropriate application of the method
Richness/conceptual depth of findings
Exploration of deviant cases and alternative explanations
Reflexivity of the researchers*
∗Reflexivity encourages qualitative researchers and reviewers to consider the actual and potential
impacts of the researcher on the context, research participants and the interpretation and reporting of
data and findings (Newton et al 2012). Being reflexive entails making conflicts of interest transparent,
discussing the impact of the reviewers and their decisions on the review process and findings and
making transparent any issues discussed and subsequent decisions.

Adapted from Noyes et al (2019) and Alvesson and Sköldberg (2009)
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on a range of general and review specific criteria that Noyes and colleagues (Noyes et al
2019) outline in detail. The number of qualitative studies selected needs to be consist-
ent with a manageable synthesis, and the contexts of the included studies should ena-
ble integration with the trials in the effectiveness analysis (see Figure 21.2.a). The
guiding principle is transparency in the reporting of all decisions and their rationale.

21.10 Selecting a qualitative evidence synthesis and data
extraction method

Authors will typically find that they cannot select an appropriate synthesis method until
the pool of available qualitative evidence has been thoroughly scoped. Flexible options
concerning choice of method may need to be articulated in the protocol.
The INTEGRATE-HTA guidance on selecting methodology and methods for qualita-

tive evidence synthesis and health technology assessment offers a useful starting
point when selecting a method of synthesis (Booth et al 2016, Booth et al 2018). Some
methods are designed primarily to develop findings at a descriptive level and thus
directly feed into lines of action for policy and practice. Others hold the capacity
to develop new theory (e.g. meta-ethnography and theory building approaches to
thematic synthesis). Noyes and colleagues (Noyes et al 2019) and Flemming and col-
leagues (Flemming et al 2019) elaborate on key issues for consideration when select-
ing a method that is particularly suited to a Cochrane Review and decision making
context (see Table 21.10.a). Three qualitative evidence synthesis methods (thematic
synthesis, framework synthesis and meta-ethnography) are recommended to pro-
duce syntheses that can subsequently be integrated with an intervention review or
analysis.

21.11 Data extraction

Qualitative findings may take the form of quotations from participants, subthemes and
themes identified by the study’s authors, explanations, hypotheses or new theory, or
observational excerpts and author interpretations of these data (Sandelowski and
Barroso 2002). Findings may be presented as a narrative, or summarized and displayed
as tables, infographics or logic models and potentially located in any part of the paper
(Noyes et al 2019).
Methods for qualitative data extraction vary according to the synthesis method

selected. Data extraction is not sequential and linear; often, it involves moving back-
wards and forwards between review stages. Review teams will need regular meetings
to discuss and further interrogate the evidence and thereby achieve a shared under-
standing. It may be helpful to draw on a key stakeholder group to help in interpreting
the evidence and in formulating key findings. Additional approaches (such as subgroup
analysis) can be used to explore evidence from specific contexts further.
Irrespective of the review type and choice of synthesis method, we consider it best

practice to extract detailed contextual and methodological information on each study
and to report this information in a table of ‘Characteristics of included studies’ (see
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Table 21.11.a). The template for intervention description and replication TIDieR check-
list (Hoffmann et al 2014) and ICAT_SR tool may help with specifying key information
for extraction (Lewin et al 2017). Review authors must ensure that they preserve the
context of the primary study data during the extraction and synthesis process to pre-
vent misinterpretation of primary studies (Noyes et al 2019).

Table 21.10.a Recommended methods for undertaking a qualitative evidence synthesis for
subsequent integration with an intervention review, or as part of a mixed-method review (adapted
from an original source developed by convenors (Flemming et al 2019, Noyes et al 2019))

Methodology Explanation

Likely to be most suitable

Thematic synthesis
(Thomas and Harden
2008)

Pros: Most accessible form of synthesis. Clear approach, can be used
with ‘thin’ data to produce descriptive themes and with ‘thicker’ data
to develop descriptive themes in to more in-depth analytic themes.
Themes are then integrated within the quantitative synthesis.

Cons:May be limited in interpretive ‘power’ and risks over-simplistic use
and thus not truly informing decision making such as guidelines.
Complex synthesis process that requires an experienced team.
Theoretical findings may combine empirical evidence, expert opinion
and conjecture to form hypotheses. More work is needed on howGRADE
CERQual to assess confidence in synthesized qualitative findings (see
Section 21.12) can be applied to theoretical findings. May lack clarity on
how higher-level findings translate into actionable points.

Requires some caution in its use

Framework synthesis
(Oliver et al 2008,
Dixon-Woods 2011)
Best-fit framework
synthesis
(Carroll et al 2011)

Pros: Works well within reviews of complex interventions by
accommodating complexity within the framework, including
representation of theory. The framework allows a clear mechanism for
integration of qualitative and quantitative evidence in an aggregative
way – see Noyes et al (2018a). Works well where there is broad
agreement about the nature of interventions and their desired impacts.

Cons: Requires identification, selection and justification of framework.
A framework may be revealed as inappropriate only once extraction/
synthesis is underway. Risk of simplistically forcing data into a
framework for expedience.

Requires more caution in its use

Meta-ethnography
(Noblit and Hare 1988)

Pros: Primarily interpretive synthesis method leading to creation of
descriptive as well as new high order constructs. Descriptive and
theoretical findings can help inform decision making such as
guidelines. Explicit reporting standards have been developed.

Cons: Complex methodology and synthesis process that requires highly
experienced team. Can take more time and resources than other
methodologies. Theoretical findings may combine empirical evidence,
expert opinion and conjecture to form hypotheses. May not satisfy
requirements for an audit trail (although new reporting guidelines will
help overcome this (France et al 2019). More work is needed to determine
how CERQual can be applied to theoretical findings. May be unclear how
higher-level findings translate into actionable points.
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Noyes and colleagues (Noyes et al 2019) provide additional guidance and examples
of the various methods of data extraction. It is usual for review authors to select one
method. In summary, extraction methods can be grouped as follows.

• Using a bespoke universal, standardized or adapted data extraction template
Review authors can develop their own review-specific data extraction template, or
select a generic data extraction template by study type (e.g. templates developed
by the National Institute for Health and Clinical Excellence (National Institute for
Health Care Excellence 2012).

• Using an a priori theory or predetermined framework to extract data Framework
synthesis, and its subvariant ‘Best Fit’ Framework approach, involve extracting data
from primary studies against an a priori framework in order to better understand a
phenomenon of interest (Carroll et al 2011, Carroll et al 2013). For example, Glenton
and colleagues (Glenton et al (2013) extracted data against a modified SURE Frame-
work (2011) to synthesize factors affecting the implementation of lay health worker
interventions. The SURE framework enumerates possible factors that may influence
the implementation of health system interventions (The SURE (Supporting the Use of
Research Evidence) Collaboration 2011, Glenton et al 2013). Use of the ‘PROGRESS’
(place of residence, race/ethnicity/culture/language, occupation, gender/sex, reli-
gion, education, socioeconomic status, and social capital) framework also helps to
ensure that data extraction maintains an explicit equity focus (O’Neill et al 2014).
A logic model can also be used as a framework for data extraction.

• Using a software program to code original studies inductively A wide range of
software products have been developed by systematic review organizations (such as
EPPI-Reviewer (Thomas et al 2010)). Most software for the analysis of primary
qualitative data – such as NVivo (www.qsrinternational.com/nvivo/home) and others –
can be used to code studies in a systematic review (Houghton et al 2017). For example,
onemethod of data extraction and thematic synthesis involves coding the original stud-
ies using a software program to build inductive descriptive themes and a theoretical
explanation of phenomena of interest (Thomas and Harden 2008). Thomas and Harden
(2008) provide a worked example to demonstrate coding and developing a new under-
standing of children’s choices and motivations to eating fruit and vegetables from
included primary studies.

Table 21.11.a Contextual and methodological information for inclusion within a table of
‘Characteristics of included studies’. From Noyes et al (2019). Reproduced with permission of
BMJ Publishing Group

Data extraction field Information extracted

Context and
participants

Important elements of study context, relevant to addressing the review
question and locating the context of the primary study; for example, the
study setting, population characteristics, participants and participant
characteristics, the intervention delivered (if appropriate), etc.

Study design and
methods used

Methodological design and approach taken by the study; methods for
identifying the sample recruitment; the specific data collection and
analysis methods utilized; and any theoretical models used to interpret
or contextualize the findings.
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21.12 Assessing the confidence in qualitative
synthesized findings

The GRADE system has long featured in assessing the certainty of quantitative findings
and application of its qualitative counterpart, GRADE-CERQual, is recommended for
Cochrane qualitative evidence syntheses (Lewin et al 2015). CERQual has four compo-
nents (relevance, methodological limitations, adequacy and coherence) which are used
to formulate an overall assessment of confidence in the synthesized qualitative finding.
Guidance on its components and reporting requirements have been published in a
series in Implementation Science (Lewin et al 2018).

21.13 Methods for integrating the qualitative evidence
synthesis with an intervention review

A range of methods and tools is available for data integration or mixed-method syn-
thesis (Harden et al 2018, Noyes et al 2019). As noted at the beginning of this chapter,
review authors can integrate a qualitative evidence synthesis with an existing interven-
tion review published on a similar topic (sequential approach), or conduct a new inter-
vention review and qualitative evidence syntheses in parallel before integration
(convergent approach). Irrespective of whether the qualitative synthesis is sequential
or convergent to the intervention review, we recommend that qualitative and quanti-
tative evidence be synthesized separately using appropriate methods before integra-
tion (Harden et al 2018). The scope for integration can be more limited with a
pre-existing intervention review unless review authors have access to the data under-
lying the intervention review report.
Harden and colleagues and Noyes and colleagues outline the following methods and

tools for integration with an intervention review (Harden et al 2018, Noyes et al 2019):

• Juxtaposing findings in a matrix Juxtaposition is driven by the findings from the
qualitative evidence synthesis (e.g. intervention components related to the accept-
ability or feasibility of the interventions) and these findings form one side of the
matrix. Findings on intervention effects (e.g. improves outcome, no difference in out-
come, uncertain effects) form the other side of the matrix. Quantitative studies are
grouped according to findings on intervention effects and the presence or absence of
features specified by the hypotheses generated from the qualitative synthesis (Candy
et al 2011). Observed patterns in the matrix are used to explain differences in the
findings of the quantitative studies and to identify gaps in research (van Grootel
et al 2017). (See, for example, Ames et al 2017, Munabi-Babigumira et al 2017, Hurley
et al 2018.)

• Analysing programme theory Theories articulating how interventions are expected
to work are analysed. Findings from quantitative studies, testing the effects of inter-
ventions, and from qualitative and process evaluation evidence are used together to
examine how the theories work in practice (Greenhalgh et al 2007). The value of dif-
ferent theories is assessed or new/revised theory developed. Factors that enhance or
reduce intervention effectiveness are also identified.

21.13 Integrating qualitative evidence synthesis
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• Using logic models or other types of conceptual framework A logic model (Glenton
et al 2013) or other type of conceptual framework, which represents the processes by
which an intervention produces change provides a common scaffold for integrating
findings across different types of evidence (Booth and Carroll 2015). Frameworks can
be specified a priori from the literature or through stakeholder engagement or newly
developed during the review. Findings from quantitative studies testing the effects of
interventions and those from qualitative evidence are used to develop and/or further
refine the model.

• Testing hypotheses derived from syntheses of qualitative evidence Quantitative
studies are grouped according to the presence or absence of the proposition
specified by the hypotheses to be tested and subgroup analysis is used to explore
differential findings on the effects of interventions (Thomas et al 2004).

• Qualitative comparative analysis (QCA) Findings from a qualitative synthesis are
used to identify the range of features that are important for successful interven-
tions, and the mechanisms through which these features operate. A QCA then tests
whether or not the features are associated with effective interventions (Kahwati
et al 2016). The analysis unpicks multiple potential pathways to effectiveness
accommodating scenarios where the same intervention feature is associated both
with effective and less effective interventions, depending on context. QCA offers
potential for use in integration; unlike the other methods and tools presented here
it does not yet have sufficient methodological guidance available. However, exem-
plar reviews using QCA are available (Thomas et al 2014, Harris et al 2015, Kahwati
et al 2016).

Review authors can use the above methods in combination (e.g. patterns observed
through juxtaposing findings within a matrix can be tested using subgroup analysis or
QCA). Analysing programme theory, using logic models and QCA would require mem-
bers of the review team with specific skills in these methods. Using subgroup analysis
and QCA are not suitable when limited evidence is available (Harden et al 2018, Noyes
et al 2019). (See also Chapter 17 on intervention complexity.)

21.14 Reporting the protocol and qualitative
evidence synthesis

Reporting standards and tools designed for intervention reviews (such as Cochrane’s
MECIR standards (http://methods.cochrane.org/mecir) or the PRISMA Statement
(Liberati et al 2009), may not be appropriate for qualitative evidence syntheses or
an integrated mixed-method review. Additional guidance on how to choose, adapt
or create a hybrid reporting tool is provided as a 5-point ‘decision flowchart’
(Figure 21.14.a) (Flemming et al 2018). Review authors should consider whether: a
specific set of reporting guidance is available (e.g. eMERGe for meta-ethnographies
(France et al 2015)); whether generic guidance (e.g. ENTREQ (Tong et al 2012)) is suit-
able; or whether additional checklists or tools are appropriate for reporting a specific
aspect of the review.
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accumulating evidence
James Thomas, Lisa M Askie, Jesse A Berlin, Julian H Elliott, Davina Ghersi,
Mark Simmonds, Yemisi Takwoingi, Jayne F Tierney, Julian PT Higgins

KEY POINTS

• Cochrane Reviews should reflect the state of current knowledge, but maintaining their
currency is a challenge due to resource limitations. It is difficult to know when a given
reviewmight become out of date, but tools are available to assist in identifying when a
review might need updating.

• Living systematic reviews are systematic reviews that are continually updated, with
new evidence being incorporated as soon as it becomes available. They are useful
in rapidly evolving fields where research is published frequently. New technologies
and better processes for data storage and reuse are being developed to facilitate
the rapid identification and synthesis of new evidence.

• A prospective meta-analysis is a meta-analysis of studies (usually randomized trials)
that were identified or even collectively planned to be eligible for the meta-analysis
before the results of the studies became known. They are usually undertaken by a
collaborative group including authors of the studies to be included, and they usually
collect and analyse individual participant data.

• Formal sequential statistical methods are discouraged for standard updated meta-
analyses in most circumstances for Cochrane Reviews. They should not be used for
the main analyses, or to draw main conclusions. Sequential methods may, however,
be used in the context of a prospectively planned series of randomized trials.

22.1 Introduction

Iain Chalmers’ vision of “a library of trial overviews which will be updated when new
data become available” (Chalmers 1986), became the mission and founding purpose of
Cochrane. Thousands of systematic reviews are now published in the Cochrane Data-
base of Systematic Reviews, presenting critical summaries of the evidence. However,
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maintaining the currency of these reviews through periodic updates, consistent with
Chalmers’ vision, has been a challenge. Moreover, as the global community of research-
ers has begun to see research in a cumulative way, rather than in terms of individual
studies, the idea of ‘prospective’ meta-analyses has emerged. A prospective meta-
analysis (PMA) begins with the idea that future studies will be integrated within a sys-
tematic review and works backwards to plan a programme of trials with the explicit
purpose of their future integration.
The first part of this chapter covers methods for keeping abreast of the accumulating

evidence to help a review team understand when a systematic review might need
updating (see Section 22.2). This includes the processes that can be put into place
to monitor relevant publications, and algorithms that have been proposed to deter-
mine whether or when it is appropriate to revisit the review to incorporate new find-
ings. We outline a vision for regularly updated reviews, known as ‘living’ systematic
reviews, which are continually updated, with new evidence being identified and incor-
porated as soon as it becomes available.
While evidence surveillance and living systematic reviews may require some modifi-

cations to review processes, and can dramatically improve the delivery time and cur-
rency of updates, they are still essentially following a retrospective model of reviewing
the existing evidence base. The retrospective nature of most systematic reviews poses
an inevitable challenge, in that the selection of what types of evidence to include may
be influenced by authors’ knowledge of the context and findings of the available stud-
ies. This might introduce bias into any aspect of the review’s eligibility criteria including
the selection of a target population, the nature of the intervention(s), choice of com-
parator and the outcomes to be assessed. The best way to overcome this problem is to
identify evidence entirely prospectively, that is before the results of the studies are
known. Section 22.3 describes such prospectively planned meta-analyses.
Finally, Section 22.4 addresses concerns about the regular repeating of statistical tests

inmeta-analyses as they are updated over time. Cochrane actively discourages use of the
notion of statistical significance in favour of reporting estimates and confidence intervals,
so such concerns should not arise. Nevertheless, sequential approaches are an estab-
lishedmethod in randomized trials, andmay play a role in a prospectively planned series
of trials in a prospective meta-analysis.

22.2 Evidence surveillance: active monitoring of the
accumulating evidence

22.2.1 Maintaining the currency of systematic reviews

Cochrane Reviews were conceived with the vision that they be kept up to date. For
many years, a policy was in place of updating each Cochrane Review at least every
two years. This policy was not closely followed due to a range of issues including: a
lack of resources; the need to balance starting new reviews with maintaining older
ones; the rapidly growing volume of research in some areas of health care and the pau-
city of new evidence in others; and challenges in knowing at any given point in time
whether a systematic review was out of date and therefore possibly giving misleading,
and potentially harmful, advice.
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Maintaining the currency of systematic reviews by incorporating new evidence is
important in many cases. For example, one study suggested that while the conclusions
of most reviews might be valid for five or more years, the findings of 23% might be out
of date within two years, and 7% were outdated at the time of their publication
(Shojania et al 2007). Systematic reviews in rapidly evolving fields are particularly at
risk of becoming out of date, leading to the development of a range of methods for
identifying when a systematic review might need to be updated.

22.2.2 Signals for updating

Strategies for prioritizing updates, and for updating only reviews that warrant it, have
been developed (Martinez Garcia et al 2017) (see Chapter 2, Section 2.4.1). A multi-
component tool was proposed by Takwoingi and colleagues in 2013 (Takwoingi
et al 2013). Garner and colleagues have refined this tool and described a staged process
that starts by assessing the extent to which the review is up to date (including relevance
of the question, impact of the review and implementation of appropriate and up-to-
date methods), then examines whether relevant new evidence or new systematic
review methodology are available, and then assesses the potential impact of updating
the review in terms of whether the findings are likely to change (Garner et al 2016). For a
detailed discussion of updating Cochrane Reviews, see online Chapter IV.
Information about the availability of new (or newly identified) evidence may come

from a variety of sources and use a diverse range of approaches (Garner et al 2016),
including:

• re-running the full search strategies in the original review;

• using an abbreviated search strategy;

• using literature notification services;

• developing machine-learning algorithms based on study reports identified for the
original review;

• tracking studies in clinical trials (and other) registries;

• checking studies included in related systematic reviews; and

• other formal surveillance methods.

Searches of bibliographic databases may be streamlined by using literature notifica-
tion services (‘alerts’), whereby searches are run automatically at regular intervals, with
potentially relevant new research being provided (‘pushed’) to the review authors (see
Chapter 4, Section 4.4.9). Alternatively, it may be possible to run automated searches
via an application programming interface (API). Unfortunately, only some databases
offer notification services and, of those that do not, only some offer an open API that
allows review authors to set up their own automated searches. Thus, this approach is
most useful when the studies likely to be relevant to the review are those indexed in
systems that will work within a ‘push’ model (typically, large mainstream biomedical
databases such as MEDLINE). A further key challenge, which is lessening over time, is
that trials and other registries, websites and other unpublished sources typically
require manual searches, so it is inappropriate to rely entirely on ‘push’ services to
identify all new evidence. See Section 22.2.4 for further information on technological
approaches to ameliorate this.
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Statistical methods have been proposed to assess the extent to which new evidence
might affect the findings of a systematic review. Sample size calculations can incorpo-
rate the result of a current meta-analysis, thus providing information about how addi-
tional studies of a particular sample size could have an impact on the results of an
updated meta-analysis (Sutton et al 2007, Roloff et al 2013). These methods demon-
strate inmany cases that new evidence may have very little impact on a random-effects
meta-analysis if there is heterogeneity across studies, and they require assumptions
that the future studies will be similar to the existing studies. Their practical use in decid-
ing whether to update a systematic review may therefore be limited.
As part of their development of the aforementioned tool, Takwoingi and colleagues

created a prediction equation based on findings from a sample of 65 updated Cochrane
Reviews (Takwoingi et al 2013). They collated a list of numerical ‘signals’ as candidate
predictors of changing conclusions on updating (including, for example, heterogeneity
statistics in the original meta-analysis, presence of a large new study, and various
measures of the amount of information in the new studies versus the original meta-
analysis). Their prediction equation involved two of these signals: the ratio of statistical
information (inverse variance) in the new versus the original studies, and the number of
new studies. Further work is required to develop ways to operationalize this approach
efficiently, as it requires detailed knowledge of the new evidence; once this is in place,
much of the effort to perform the update has already been expended.

22.2.3 ‘Living’ systematic reviews

A ‘living’ systematic review (LSR) is a systematic review that is continually updated, with
new (or newly identified) evidence incorporated as soon as it becomes available (Elliott
et al 2014, Elliott et al 2017). Such regular and frequent updating has been suggested
for reviews of high priority to decisionmakers, when certainty in the existing evidence is
low or very low, and when there is likely to be new research evidence (Elliott et al 2017).
Continual surveillance for new research evidence is undertaken by frequent searches

(e.g. monthly), and new information is incorporated into the review in a timely manner
(e.g. within a month of its identification). Ongoing developments in technology, which
we overview in Section 22.2.4, can facilitate this (Thomas et al 2017). An important issue
when setting up an LSR is that the search methods and anticipated frequency of review
updates are made explicit in the review protocol. This transparency is helpful for end-
users, giving them the opportunity to plan downstream decisions around the expected
dates of new versions, and reducing the need for others to plan or undertake review
updates. The maintenance of LSRs offers the possibility for decision makers to update
their processes in line with evidence updates from the LSR; for example, facilitating
‘living’ guidelines (Akl et al 2017), although ongoing challenges include the clear com-
munication to authors, editors and users on what has changed when evidence is
updated, and how to implement frequently updated guidelines. Practical guidance
on initiating andmaintaining LSRs has been developed by the Living Evidence Network.

22.2.4 Technologies to support evidence surveillance

Moving towards more regular updates of reviews may yield benefits in terms of their
currency (Elliott et al 2014), but streamlining the necessary increase in searching is
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required if they are not to consume more resources than traditional approaches. For-
tunately, new developments in information and computer science offer some potential
for reductions in manual effort through automation. (For an overview of a range of
these technologies see Chapter 4, Section 4.6.6.2.)
New systems (such as the Epistemonikos database, which contains the results of reg-

ular searches of multiple datasets), offer potential reductions in the number of data-
bases that individuals need to search, as well as reducing duplication of effort across
review teams. In addition, the growth in interest of open access publications has led to
the creation of large datasets of open access bibliographic records, such as OpenCita-
tion, CrossRef and Microsoft Academic. As these datasets continue to grow to contain
all relevant records in their respective areas, they may also reduce the need for author
teams to search as many different sources as they currently need to.
Undertaking regular searches also requires the regular screening of records retrieved

for eligibility. Once the review has been set up and initial searches screened, subse-
quent updates can reduce manual screening effort using automation tools that ‘learn’
the review’s eligibility criteria based on previous screening decisions by the review
authors. Automation tools that are built on large numbers of records for more generic
use are also available, such as Cochrane’s RCT Classifier, which can be used to filter
studies that are unlikely to be randomized trials from a set of records (Thomas et al
2017). Cochrane has also developed Cochrane Crowd, which crowdsources decisions
classifying studies as randomized trials, (see Chapter 4, Section 4.6.6.2).
Later stages of the review process can also be assisted using new technologies. These

include risk-of-bias assessment, the extraction of structured data from tables in PDF files,
information extraction from reports (such as identifying the number of participants in a
study and characteristics of the intervention) and even the writing of review results.
These technologies are less well-advanced than those used for study identification.
These various tools aim to reduce manual effort at specific points in the standard

systematic review process. However, Cochrane is also setting up systems that aim
to change the study selection process quite substantially, as depicted in Figure 22.2.a.
These developments begin with the prospective identification of relevant evidence, out-
side of the context of any given review, including bibliographic and trial registry records,
through centralized routine searches of appropriate sources. These records flow through
a ‘pipeline’which classifies the records in detail using a combination of machine learning
and human effort (including Cochrane Crowd). First, the type of study is determined and,
if it is likely to be a randomized trial, then the record proceeds to be classified in terms of
its review topic and its PICO elements using terms from the Cochrane Linked Data ontol-
ogy. Finally, relevant data are extracted from the full text report. The viability of such a
system depends upon its accuracy, which is contingent on human decisions being con-
sistent and correct. For this reason, the early focus on randomized trials is appropriate, as
a clear and widely understood definition exists for this type of study. Overall, the accu-
racy of Cochrane Crowd for identification of randomized trials exceeds 99%; and the
machine learning system is similarly calibrated to achieve over 99% recall (Wallace
et al 2017, Marshall et al 2018).
Setting up such a system for centralized study discovery is yielding benefits through

economies of scale. For example, in the past the same decisions about the same studies
have been made multiple times across different reviews because previously there was
no way of sharing these decisions between reviews. Duplication in manual effort is
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being reduced substantially by ensuring that decisions made about a given record
(e.g. whether or not it describes a randomized trial) are only made once. These deci-
sions are then reflected in the inclusion of studies in the Cochrane Register of Studies,
which can then be searched more efficiently for future reviews. The system benefits
further from its scale by learning that if a record is relevant for one review, it is unlikely
to be relevant for reviews with quite different eligibility criteria. Ultimately, the aim is
for randomized trials to be identified for reviews through a single search of their PICO
classifications in the central database, with new studies for existing reviews being iden-
tified automatically.

22.3 Prospectively planned meta-analysis

22.3.1 What is a prospective meta-analysis?

A properly conducted systematic review defines the question to be addressed in
advance of the identification of potentially eligible trials. Systematic reviews are by
nature, however, retrospective because the trials included are usually identified after
the trials have been completed and the results reported. A prospective meta-analysis
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Figure 22.2.a Evidence Pipeline
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(PMA) is a systematic review and meta-analysis of studies that are identified, evaluated
and determined to be eligible for the meta-analysis before the relevant results of any of
those studies become known. Most experience of PMA comes from their application to
randomized trials. In this section we focus on PMAs of trials, although most of the same
considerations will also apply to systematic reviews of other types of studies.
PMA can help to overcome some of the problems of retrospective meta-analyses of

individual participant data or of aggregate data by enabling:

1) hypotheses to be specified without prior knowledge of the results of individual trials
(including hypotheses underlying subgroup analyses);

2) selection criteria to be applied to trials prospectively; and
3) analysismethods to be chosen before the results of individual trials are known, avoid-

ing potential difficulties in interpretation arising from data-dependent decisions.

PMAs are usually initiated when trials have already started recruiting, and are carried
out by collaborative groups including representatives from each of the participating
trials. They have tended to involve collecting individual participant data (IPD), such that
they have many features in common with retrospective IPD meta-analyses (see also
Chapter 26).
If initiated early enough, PMA provides an opportunity for trial design, data collection

and other trial processes to be standardized across the eligible ongoing trials. For
example, the investigators may agree to use the same instrument to measure a partic-
ular outcome, and to measure the outcome at the same time-points in each trial. In a
Cochrane Review of interventions for preventing obesity in children, for example, the
diversity and unreliability of some of the outcome measures made it difficult to com-
bine data across trials (Summerbell et al 2005). A PMA of this question proposed a set of
shared standards so that some of the issues raised by lack of standardization could be
addressed (Steinbeck et al 2006).
PMAs based on IPD have been conducted by trialists in cardiovascular disease (Simes

1995, WHO-ISI Blood Pressure Lowering Treatment Trialists’ Collaboration 1998), child-
hood leukaemia (Shuster and Gieser 1996, Valsecchi and Masera 1996), childhood and
adolescent obesity (Askie et al 2010, Steinbeck et al 2006) and neonatology (Askie et al
2018). There are areas such as infectious diseases, however, where the opportunity to
use PMA has largely been missed (Ioannidis and Lau 1999).
Where resources are limited, it may still be possible to undertake a prospective sys-

tematic review and meta-analysis based on aggregate data, rather than IPD, as we dis-
cuss in Section 22.3.6. In practice, these are often initiated at a later stage during the
course of the trials, so there is less opportunity to standardize conduct of the trials.
However, it is possible to harmonize data for inclusion in meta-analysis.

22.3.1.1 What is the difference between a prospective meta-analysis and a
large multicentre trial?
PMAs based on IPD are similar to multicentre clinical trials and have similar advan-
tages, including increased sample size, increased diversity of treatment settings and
populations, and the ability to examine heterogeneity of intervention effects across
multiple settings. However, whereas traditional multicentre trials implement a single
protocol across all sites to reduce variability in trial conduct among centres, PMAs allow
investigators greater flexibility in how their trial is conducted. Sites can follow a local
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protocol appropriate to local circumstances, with the local protocol being aligned with
elements of a PMA protocol that are common to all included trials.
PMAs may be an attractive alternative when a single, adequately sized trial is infea-

sible for practical or political reasons (Simes 1987, Probstfield and Applegate 1998).
They may also be useful when two or more trials addressing the same question are
started with the investigators ignorant of the existence of the other trial(s): once these
similar trials are identified, investigators can plan prospectively to combine their
results in a meta-analysis.
Variety in the design of the included trials is a potentially desirable feature of PMA as

it may improve generalizability. For example, FICSIT (Frailty and Injuries: Cooperative
Studies of Intervention Techniques) was a pre-planned meta-analysis of eight trials of
exercise-based interventions in a frail elderly population (Schechtman and Ory 2001).
The eight FICSIT sites defined their own interventions using site-specific endpoints and
evaluations and differing entry criteria (except that all participants were elderly).

22.3.1.2 Negotiating collaboration
As with retrospective IPD meta-analyses, negotiating and establishing a strong collab-
oration with the participating trialists is essential to the success of a PMA (see
Chapter 26, Sections 26.1.3 and 26.2.1). The collaboration usually has a steering group
or secretariat that manages the project on a day-to-day basis. Because the collabora-
tion must be formed before the results of any trial are known, an important focus of a
PMA’s collaborative efforts is often on reaching agreement on trial population, design
and data collection methods for each of the participating trials. Ideally, the collabora-
tive group will agree on a core common protocol and data items (including operational
definitions) that will be collected across all trials. While individual trials can include
local protocol amendments or additional data items, the investigators should ensure
that these will not compromise the core common protocol elements.
It is advisable for the collaborative group to obtain an explicit (and signed) collabo-

ration agreement from each of the trial groups. This should also encourage substantive
contributions by the individual investigators, ensure ‘buy-in’ to the concept of the PMA,
and facilitate input into the protocol.

22.3.1.3 Confidentiality of individual participant data and results
Confidentiality issues regarding data anonymity and security are similar to those for
IPD meta-analyses (see Chapter 26, Section 26.2.4). Specific issues for PMA include pla-
nning how to deal with trials as they reach completion and publish their results, and
how to manage issues relating to data and safety monitoring, including the impact of
interim analyses of individual trials in the PMA, or possibly a pooled interim analysis of
the PMA (see also Section 22.3.5).

22.3.2 Writing a protocol for a prospective meta-analysis

All PMAs should be registered on PROSPERO or a similar registry, and have a publicly avail-
ableprotocol. For anexampleprotocol, see theNeOProMCollaborationprotocol (Askie et al
2011).Developingaprotocol for aPMA is conceptually similar to theprocess for a systematic
reviewwith a traditionalmeta-analysis component (Moher et al 2015). However, some con-
siderations are unique to a PMA, as follows.
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Objectives, eligibility and outcomes As for any systematic review or meta-analysis, the
protocol for a PMA should specify its objectives and eligibility criteria for inclusion
of the trials (including trial design, participants, interventions and comparators). In
addition, it should specify which outcomes will be measured by all trials in the PMA,
and when and how these should be measured. Additionally, details of subgroup anal-
ysis variables should be specified.

Search methods Just as for a retrospective systematic review, a systematic search
should be performed to identify all eligible ongoing trials, in order to maximize preci-
sion. The protocol should describe in detail the efforts made to identify ongoing, or
planned trials, or to identify trialists with a common interest in developing a PMA,
including how potential collaborators have been (or will be) located and approached
to participate.

Trial details Details of trials already identified for inclusion should be listed in the pro-
tocol, including their trial registration identifiers, the anticipated number of partici-
pants and timelines for each participating trial. The protocol should state whether a
signed agreement to collaborate has been obtained from the appropriate representa-
tive of each trial (e.g. the sponsor or principal investigator). The protocol should include
a statement that, at the time of inclusion in the PMA, no trial results related to the PMA
research question were known to anyone outside each trial’s own data monitoring
committee. If eligible trials are identified but not included in the PMA because their
results related to the PMA research question are already known, the PMA protocol
should outline how these data will be dealt with. For example, sensitivity analyses
including data from these trials might be planned. The protocol should describe actions
to be taken if subsequent trials are located while the PMA is in progress.

Data collection and analysis The protocol should outline the plans for the collection and
analyses of data in a similar manner to that of a standard, aggregate data meta-
analysis or an IPD meta-analysis. Details of overall sample size and power calculations,
interim analyses (if applicable) and subgroup analyses should be provided. For a
prospectively planned series of trials, a sequential approach to the meta-analysis
may be reasonable (see Section 22.4).
In an IPD-PMA, the protocol should describe what will happen if the investigators of

some trials within the PMA are unable (or unwilling) to provide participant-level data.
Would the PMA secretariat, for example, accept appropriate summary data? The pro-
tocol should specify whether there is an intention to update the PMA data at regular
intervals via ongoing cycles of data collection (e.g. five yearly). A detailed statistical
analysis plan should be agreed and made public before the receipt or analysis of
any data to be included in the PMA.

Management and co-ordination The PMA protocol should outline details of project man-
agement structure (including any committees, see Section 22.3.1.2), the procedures for
datamanagement (how data are to be collected, the format required, when data will be
required to be submitted, quality assurance procedures, etc; see Chapter 26,
Section 26.2), and who will be responsible for the statistical analyses.
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Publication policy It is important to have an authorship policy in place for the PMA (e.g.
specifying that publications will be in the group name, but also including a list of indi-
vidual authors), and a policy on manuscript preparation (e.g. formation of a writing
committee, opportunities to comment on draft papers).
A unique issue that arises within the context of the PMA (which would generally not

arise for a multicentre trial or a retrospective IPD meta-analysis) is whether or not indi-
vidual trials should publish their own results separately and, if so, the timing of those
publications. In addition to contributing to the PMA, it is likely that investigators will
prefer trial-specific publications to appear before the combined PMA results are pub-
lished. It is recommended that PMA publication(s) clearly indicate the sources of the
included data and refer to prior publications of the individual included trials.

22.3.3 Data collection in a prospective meta-analysis

Participating trials in a PMA usually agree to supply individual participant data once
their individual trials are completed and published. As trialists prospectively decide
which data they will collect and in what format, the need to re-define and re-code sup-
plied data should be less problematic than is often the case with a retrospective IPD
meta-analysis.
Oncedataare receivedby thePMAsecretariat, they shouldbe rigorously checkedusing

the same procedures as for IPD meta-analyses, including checking for missing or dupli-
cated data, conducting data plausibility checks, assessing patterns of randomization,
and ensuring the information supplied is up to date (see Chapter 26, Section 26.3). Data
queries will be resolved by direct consultation with the individual trialists before being
included in the final combined dataset for analysis.

22.3.4 Data analysis in prospective meta-analysis

Most PMAs will use similar analysis methods to those employed in retrospective IPD
meta-analyses (see Chapter 26, Section 26.4). The use of participant-level data also per-
mits more statistically powerful investigations of whether intervention effects vary
according to participant characteristics, and in some cases allow prognostic modelling.

22.3.5 Interim analysis and data monitoring in prospective meta-analysis

Individual clinical trials frequently include a plan for interim analyses of data, partic-
ularly to monitor safety of the interventions. PMA offers a unique opportunity to per-
form these interim analyses using data contributed by all trials. Under the auspices of
an over-arching data safety monitoring committee (DSMC) for the PMA, available data
may be combined from all trials for an interim analysis, or assessed separately by each
trial and the results then shared amongst the DSMCs of all the participating trials.
The ability to perform combined interim analyses raises some ethical issues. Is it, for

example, appropriate to continue randomization within individual trials if an overall
net benefit of an intervention has been demonstrated in the combined analysis? When
results are not known in the subgroups of clinical interest, or for less common end-
points, should the investigators continue to proceed with the PMA to obtain further
information regarding overall net clinical benefit? If each trial has its own DSMC, then
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communication amongst committees would be beneficial in this situation, as recom-
mended by Hillman and Louis (Hillman and Louis 2003). This would be helpful, for
example, in deciding whether or not to close an individual trial early because of evi-
dence of efficacy from the combined interim data. It could be argued that knowledge
of emerging, concerning, combined safety data from all participating trials might actu-
ally reduce the chances of spurious early stopping of an individual trial. It would be
helpful, therefore, for the individual trial DSMCs within the PMA to adopt a common
agreement that individual trials should not be stopped until the aims of the PMA, with
respect to subgroups and uncommon endpoints (or ‘net clinical benefit’), are achieved.
Another possible option might be to consider limiting enrolment in the continuing

trials to participants in a particular subgroup of interest if such a decision makes clin-
ical and statistical sense. In any case, it might be appropriate to apply the concepts of
sequential meta-analysis methodology, as discussed in Section 22.4, to derive stringent
stopping rules for the PMA as individual trial results become available.

22.3.6 Prospective approaches based on aggregate data: the Framework for
Adaptive Meta-analysis (FAME)

The Framework for Adaptive Meta-analysis (FAME) is a combination of ‘traditional’ and
prospective elements that is suitable for aggregate data (rather than IPD)meta-analysis
and is responsive toemerging trial results. In theFAMEapproach, allmethodsaredefined
in a publicly available systematic review protocol ideally before all trial results are
known. The approach aims to take all eligible trials into account, including those that
have been completed (and analysed) and those that are yet to complete or report
(Tierney et al 2017). FAME can be used to anticipate the earliest opportunity for a reliable
aggregate data meta-analysis, which may be well in advance of all relevant results
becoming available. The key steps of FAME are as follows.

1) Start the systematic review process whilst most trials are ongoing or yet to
report

This makes it possible to plan the objectives, eligibility criteria, outcomes and analyses
with little or no knowledge of eligible trial results, and also to anticipate the emergence
of trial results so that completion of the review and meta-analysis can be aligned
accordingly.

2) Search comprehensively for published, unpublished and ongoing eligible trials

This ensures that the meta-analysis planning is based on all potential trial data and
that results can be placed in the context of all the current and likely future evidence.
Conference proceedings, study registers and investigator networks are therefore
important sources of information. Although unpublished and ongoing studies should
be examined for any systematic review, evidence suggests that it is not standard prac-
tice (Page et al 2016).

3) Liaise with trialists to develop and maintain a detailed understanding of these
trials

Liaising with trialists provides information on how trials are progressing and when
results are likely to be available, but it also provides information on trial design,
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conduct and analysis, bringing greater clarity to eligibility screening and accuracy to
risk-of-bias assessments (Vale et al 2013).

4) Predict if and when sufficient results will be available for reliable and robust
meta-analysis (typically using aggregate data)

The information from steps 2 and 3 about how results will emerge over time allows a
prospective assessment of the feasibility and timing of a reliable meta-analysis. A first
indicator of reliability is that the projected amount of participants or events that would
be available for the meta-analysis would constitute an ‘optimal information size’
(Pogue and Yusuf 1997). In other words they would provide sufficient power to detect
realistic effects of the intervention under investigation, on the basis of standard meth-
ods of sample size calculation. A second indicator of reliability is that the anticipated
participants or events would comprise a substantial proportion of the total eligible
(‘relative information size’). This serves to minimize the likelihood of reporting or other
data availability biases. Such predictions and decisions for FAME should be outlined in
the systematic review protocol.

5) Conduct meta-analysis and interpret results, taking account of available and
unavailable data

Interpretation should consider how representative the actual data obtained are, and
the potential impact of the results of unpublished or ongoing trials that were not
included. This is in addition to the direction and precision of the meta-analysis result
and consistency of effects across trials, as is standard.

6) Assess the value of updating the systematic review and meta-analysis in the
future

If the results of a meta-analysis are not deemed definitive, it is important to ascertain
whether there is likely to be value in updating with trial results that will emerge in the
future and, if so, whether aggregate data will suffice or IPD might be needed.
FAME has been used to evaluate reliably the effects of prostate cancer interventions

well in advance of all trial results being available (Vale et al 2016, Rydzewska et al 2017).
In these reviews, collaboration with trial investigators provided access to pre-
publication results, expediting the review process further and allowing publication
in the same time frame as key trial results, increasing the visibility and potential impact
of both. It also enabled access to additional outcome, subgroup and toxicity analyses,
which allowed a more consistent and thorough analysis than is often possible with
aggregate data. Such an approach requires a suitable non-disclosure agreement
between the review authors and the trial authors.
Additionally, FAME could be used in the living systematic review context (Crequit et al

2016, Elliott et al 2017, Nikolakopoulou et al 2018), either to provide a suitable baseline
meta-analysis, or to predict when a living update might be definitive. Combining mul-
tiple FAME reviews in a network meta-analysis (Vale et al 2018) offers an alternative to
living network meta-analysis for the timely synthesis of competing treatments (Crequit
et al 2016, Nikolakopoulou et al 2018).
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22.4 Statistical analysis of accumulating evidence

22.4.1 Statistical issues arising from repeating meta-analyses

In any prospective or updated systematic review the body of evidence may grow over
time, and meta-analyses may be repeated with the addition of new studies. If each
meta-analysis is interpreted through the use of a statistical test of significance (e.g.
categorizing a finding as ‘statistically significant’ if the P value is less than 0.05 or
‘not statistically significant’ otherwise), then on each occasion the conclusion has a
5% chance of being incorrect if the null hypothesis (that there is no difference between
experimental and comparator interventions on average) is true. Such an incorrect con-
clusion is often called a type I error. If significance tests are repeated each time a meta-
analysis is updated with new studies, then the probability that at least one of the
repeated meta-analyses will produce a P value lower than 0.05 under the null hypoth-
esis (i.e. the probability of a type I error) is somewhat higher than 5% (Berkey et al
1996). This has led some researchers to be concerned about the statistical methods
they were using when meta-analyses are repeated over time, for fear they were leading
to spurious findings.
A related concern is that we may wish to determine when there is enough evidence in

the meta-analysis to be able to say that the question is sufficiently well-answered. Tra-
ditionally, ‘enough evidence’ has been interpreted as information with enough statis-
tical power (e.g. 80% or 90% power) to detect a specific magnitude of effect using a
significance test. This requires that attention be paid to type II error, which is the
chance that a true (non-null) effect will fail to be picked up by the test. When meta-
analyses are repeated over time, statistical power may be expected to increase as
new studies are added. However, just as type I error is not controlled across repeated
analyses, neither is type II error.
Statistical methods for meta-analysis have been proposed to address these con-

cerns. They are known as sequential approaches, and are derived frommethods com-
monly used in clinical trials. The appropriateness of applying sequential methods in the
context of a systematic review has been hotly debated. We describe the main methods
in brief in Section 22.4.2, and in Section 22.4.3 we explain that the use of sequential
methods is explicitly discouraged in the context of a Cochrane Review, but may be rea-
sonable in the context of a PMA.

22.4.2 Sequential statistical methods for meta-analysis

Interim analyses are often performed in randomized trials, so the trial can be stopped
early if there is convincing evidence that the intervention is beneficial or harmful.
Sequential methods have been developed that aim to control type I and II errors in
the context of a clinical trial. These methods have been adapted for prospectively add-
ing studies to a meta-analysis, rather than prospectively adding participants to a trial.
The main methods involve pre-specification of a stopping rule. The stopping rule is

informed by considerations of (i) type I error; (ii) type II error; (c) a clinically important
magnitude of effect; and (iv) the desired properties of the stopping rule (e.g. whether it
is particularly important to avoid stopping too soon). To control type II error, it is nec-
essary to quantify the amount of information that has accumulated to date. This can be
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measured using sample size (number of participants) or using statistical information
(i.e. the sum of the inverse-variance weights in the meta-analysis).
Implementation of the stopping rule can be done in several ways. One possibility is to

perform a statistical test in the usual way but to lower the threshold for interpreting the
result as statistically significant. This penalization of the type I error rate at each anal-
ysis may be viewed as ‘spending’ (or distributing) proportions of the error over the
repeated analyses. The amount of penalization is specified to create the stopping rule,
and is referred to as an ‘alpha spending function’ (because alpha is often used as short-
hand for the acceptable type I error rate).
An alternative way of implementing a stopping rule is to plot the path of the accumu-

lating evidence. Specifically, the plot is a scatter plot of a cumulative measure of effect
magnitude (one convenient option is the sum of the study effect estimates times their
meta-analytic weights) against a cumulative measure of statistical information (a con-
venient option is the sum of the meta-analytic weights) at each update. The plotted
points are compared with a plot ‘boundary’, which is determined uniquely by the four
pre-specified considerations of a stopping rule noted above. A conclusive result is
deemedtobeachieved if apoint in theplot falls outside theboundary. Formeta-analysis,
a rectangular boundary hasbeen recommended, as this reduces the chanceof crossing a
boundary very early; this also produces a scheme that is equivalent to themost popular
alpha-spending approach proposed byO’Brien and Fleming (O’Brien and Fleming 1979).
Additional stopping boundaries can be added to test for futility, so the updating process
can be stopped if it is unlikely that a meaningful effect will be found.
Methods translate directly from sequential clinical trials to a sequential fixed-effect

meta-analysis. Random-effects meta-analyses are more problematic. For sequential
methods based on statistical weights, the between-study variation (heterogeneity) is
naturally incorporated. For methods based on sample size, adjustments can be made
to the target sample size to reflect the impact of between-study variation. Either way,
there are important technical problems with the methods because between-study var-
iation impacts on the results of a random-effects meta-analysis and it is impossible to
anticipate how much between-study variation there will be in the accumulating evi-
dence. Whereas it would be natural to expect that adding studies to a meta-analysis
increases precision, this is not necessarily the case under a random-effects model. Spe-
cifically, if a new set of studies is added to a meta-analysis among which there is sub-
stantially more heterogeneity than in the previous studies, then the estimated
between-study variance will go up, and the confidence interval for the new totality
of studies may get wider rather than narrower. Possibilities to reduce the impact of this
include: (i) using a fixed value (a prior guess) for the amount of between-study heter-
ogeneity throughout the sequential scheme; and (ii) using a high estimate of the
amount of heterogeneity during the early stages of the sequential scheme.
Sequential approaches can be inverted to produce a series of confidence intervals,

one for each update, which reflects the sequential scheme. This allows representation
of the results in a conventional forest plot. The interpretation of these confidence inter-
vals is that we can be 95% confident that all confidence intervals in the entire series of
adjusted confidence intervals (across all updates) contain the true intervention effect.
The adjusted confidence interval excludes the null value only if a stopping boundary is
crossed. This is a somewhat technical interpretation that is unlikely to be helpful in the
interpretation of results within any particular update of a review.
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There are several choices to make when deciding on a sequential approach to meta-
analysis. Two particular sets of choices have been articulated in papers by Wetterslev,
Thorlund, Brok and colleagues, and by Whitehead, Higgins and colleagues.
The first group refer to their methods as ‘trials sequential analysis’ (TSA). They use the

principle of alpha spending and articulate the desirable total amount of information in
terms of sample size (Wetterslev et al 2008, Brok et al 2009, Thorlund et al 2009). This
sample size is calculated in the samewayas if themeta-analysiswasa single clinical trial,
by setting a desired type I error, an assumed effect size, and the desired statistical power
to detect that effect. They recommended that the sample size be adjusted for heteroge-
neity, using either some pre-specified estimate of heterogeneity or the best current esti-
mate of heterogeneity in the meta-analysis. The adjustment is generally made using a
statistic called D2, which produces a larger required sample size, although the more
widely used I2 statistic may be used instead (Wetterslev et al 2009).
Whitehead and Higgins implemented a boundaries approach and represent informa-

tion using statistical information (specifically, the sum of the meta-analytic weights)
(Whitehead 1997, Higgins et al 2011). As noted, this implicitly adjusts for heterogeneity
because as heterogeneity increases, the information contained in the meta-analysis
decreases. In this approach, the cumulative information can decrease between updates
as well as increase (i.e. the path can go backwards in relation to the boundary). These
authors propose a parallel Bayesian approach to updating the estimate of between-
study heterogeneity, starting with an informative prior distribution, to reduce the risk
that the path will go backwards (Higgins et al 2011). If the prior estimate of heteroge-
neity is suitably large, the method can account for underestimation of heterogeneity
early in the updating process.

22.4.3 Using sequential approaches to meta-analysis in Cochrane Reviews

Formal sequential meta-analysis approaches are discouraged for updated meta-
analyses in most circumstances within the Cochrane context. They should not
be used for the main analyses, or to drawmain conclusions. This is for the following
reasons.

1) The results of each meta-analysis, conducted at any point in time, indicate the cur-
rent best evidence of the estimated intervention effect and its accompanying uncer-
tainty. These results need to stand on their own merit. Decision makers should use
the currently available evidence, and their decisions should not be influenced by
previous meta-analyses or plans for future updates.

2) Cochrane Review authors should interpret evidence on the basis of the estimated
magnitude of the effect of intervention and its uncertainty (usually quantified using
a confidence interval) and not on the basis of statistical significance (see Chapter 15,
Section 15.3.1). In particular, Cochrane Review authors should not draw binary inter-
pretations of intervention effects as present or absent, based on defining results as
‘significant’ or ‘non-significant’ (see Chapter 15, Section 15.3.2).

3) There are important differences between the context of an individual trial and the
context of a meta-analysis. Whereas a trialist is in control of recruitment of further
participants, the meta-analyst (except in the context of a prospective meta-analysis)
has no control over designing or affecting trials that are eligible for the meta-
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analysis, so it would be impossible to construct a set of workable stopping rules
which require a pre-planned set of interim analyses. Conversely, planned adjust-
ments for future updates may be unnecessary if new evidence does not appear.

4) Ameta-analysiswill not usually relate to a single decision or single decisionmaker, so
that a sequential adjustment will not capture the complexity of the decision making
process. Furthermore, Cochrane summarizes evidence for the benefit ofmultiple end
users including patients, health professionals, policy decision makers and guideline
developers. Different decisionmakersmay choose touse the evidence differently and
reach different decisions based on different priorities and contexts. They might not
agree with sequential adjustments or stopping rules set up by review authors.

5) Heterogeneity is prevalent in meta-analyses and random-effects models are com-
monly used when heterogeneity is present. Sequential methods have important
methodological limitations when heterogeneity is present.

It remains important for review authors to avoid over-optimistic conclusions being
drawn from a small number of studies. Review authors need to be particularly careful
not to over-interpret promising findings when there is very little evidence. Such findings
could be due to chance, to bias, or to use of meta-analytic methods that have poor
properties when there are few studies (see Chapter 10, Section 10.10.4), and might
be overturned at later updates of the review. Evaluating the confidence in the body
of evidence, for example using the GRADE framework, should highlight when there
is insufficient information (i.e. too much imprecision) for firm conclusions to be drawn.
Sequential approaches to meta-analysis may be used in Cochrane Reviews in two

situations.

1) Sequential methods may be used in the context of a prospectively planned series of
clinical trials, when the primary analysis is a meta-analysis of the findings across
trials, as discussed in Section 22.3. In this case, the meta-analysts are in control
of the production of new data and crossing a boundary in a sequential scheme
would indicate that no further data need to be collected.

2) Sequentialmethodsmaybeperformedas secondary analyses in Cochrane Reviews, to
provide an additional interpretation of the data from a specific perspective. If sequen-
tial approaches are to be applied, then (i) theymust be planned prospectively (and not
retrospectively), with a full analysis plan provided in the protocol; and (ii) the assump-
tionsunderlying thesequentialdesignmustbeclearly conveyedand justified, including
the parameters determining the design such as the clinically important effect size,
assumptions about heterogeneity, and both the type I and type II error rates.
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23

Including variants on randomized trials
Julian PT Higgins, Sandra Eldridge, Tianjing Li

KEY POINTS

• Non-standard designs, such as cluster-randomized trials and crossover trials, should
be analysed using methods appropriate to the design.

• If the authors of studies included in the review fail to account for correlations among
outcome data that arise because of the design, approximate methods can often be
applied by review authors.

• A variant of the risk-of-bias assessment tool is available for cluster-randomized trials.
Special attention should be paid to the potential for bias arising from how individual
participants were identified and recruited within clusters.

• A variant of the risk-of-bias assessment tool is available for crossover trials. Special
attention should be paid to the potential for bias arising from carry-over of effects
from one period to the subsequent period of the trial, and to the possibility of ‘period
effects’.

• To include a study with more than two intervention groups in a meta-analysis, a
recommended approach is (i) to omit groups that are not relevant to the comparison
being made, and (ii) to combine multiple groups that are eligible as the experimental
or comparator intervention to create a single pair-wise comparison. Alternatively,
multi-arm studies are dealt with appropriately by network meta-analysis.

23.1 Cluster-randomized trials

23.1.1 Introduction

In cluster-randomized trials, groups of individuals rather than individuals are rando-
mized to different interventions. We say the ‘unit of allocation’ is the cluster, or the
group. The groups may be, for example, schools, villages, medical practices or families.
Cluster-randomized trials may be done for one of several reasons. It may be to evaluate

This chapter should be cited as: Higgins JPT, Eldridge S, Li T (editors). Chapter 23: Including variants
on randomized trials. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK):
John Wiley & Sons, 2019: 569–594.

© 2019 The Cochrane Collaboration. Published 2019 by John Wiley & Sons Ltd.

569



the group effect of an intervention, for example herd-immunity of a vaccine. It may be
to avoid ‘contamination’ across interventions when trial participants are managed
within the same setting, for example in a trial evaluating training of clinicians in a clinic.
A cluster-randomized design may be used simply for convenience.
One of the main consequences of a cluster design is that participants within any one

cluster often tend to respond in a similar manner, and thus their data can no longer be
assumed to be independent. It is important that the analysis of a cluster-randomized
trial takes this issue into account. Unfortunately, many studies have in the past been
incorrectly analysed as though the unit of allocation had been the individual partici-
pants (Eldridge et al 2008). This is often referred to as a ‘unit-of-analysis error’
(Whiting-O’Keefe et al 1984) because the unit of analysis is different from the unit of
allocation. If the clustering is ignored and cluster-randomized trials are analysed as
if individuals had been randomized, resulting confidence intervals will be artificially
narrow and P values will be artificially small. This can result in false-positive conclu-
sions that the intervention had an effect. In the context of a meta-analysis, studies
in which clustering has been ignored will receive more weight than is appropriate.
In some trials, individual people are allocated to interventions that are then applied

to multiple parts of those individuals (e.g. to both eyes or to several teeth), or repeated
observations are made on a participant. These body parts or observations are then
clustered within individuals in the same way that individuals can be clustered within,
for example, medical practices. If the analysis is by the individual units (e.g. each tooth
or each observation) without taking into account that the data are clustered within par-
ticipants, then a unit-of-analysis error can occur.
There are several useful sources of information on cluster-randomized trials (Murray

and Short 1995, Donner and Klar 2000, Eldridge and Kerry 2012, Campbell and Walters
2014, Hayes and Moulton 2017). A detailed discussion of incorporating cluster-
randomized trials in a meta-analysis is available (Donner and Klar 2002), as is a more
technical treatment of the problem (Donner et al 2001). Evidence suggests that many
cluster-randomized trials have not been analysed appropriately when included in
Cochrane Reviews (Richardson et al 2016).

23.1.2 Assessing risk of bias in cluster-randomized trials

A detailed discussion of risk-of-bias issues is provided in Chapter 7, and for the most
part the Cochrane risk-of-bias tool for randomized trials, as outlined in Chapter 8,
applies to cluster-randomized trials.
A key difference between cluster-randomized trials and individually randomized

trials is that the individuals of interest (those within the clusters) may not be directly
allocated to one intervention or another. In particular, sometimes the individuals are
recruited into the study (or otherwise selected for inclusion in the analysis) after the
interventions have been allocated to clusters, creating the potential for knowledge
of the allocation to influence whether individuals are recruited or selected into the
analysis (Puffer et al 2003, Eldridge et al 2008). The bias that arises when this occurs
is referred to in various ways, but we use the term identification/recruitment bias,
which distinguishes it from other types of bias. Careful trial design can protect against
this bias (Hahn et al 2005, Eldridge et al 2009a).
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A second key difference between cluster-randomized trials and individually rando-
mized trials is that identifying who the ‘participants’ are is not always straightforward
in cluster-randomized trials. The reasons for this are that in some trials:

1) there may be no formal recruitment of participants;
2) there may be two or more different groups of participants on whom different out-

comes are measured (e.g. outcomes measured on clinicians and on patients); or
3) data are collected at two or more time points on different individuals (e.g. measur-

ing physical activity in a community using a survey, which reaches different indivi-
duals at baseline and after the intervention).

For the purposes of an assessment of risk of bias using the RoB 2 tool (see Chapter 8)
we define participants in cluster-randomized trials as those on whom investigators
seek to measure the outcome of interest.
The RoB 2 tool has a variant specifically for cluster-randomized trials. To avoid very

general language, it focuses mainly on cluster-randomized trials in which groups of
individuals form the clusters (rather than body parts or time points). Because most
cluster-randomized trials are pragmatic in nature and aim to support high-level deci-
sions about health care, the tool currently considers only the effect of assignment to
intervention (and not the effect of adhering to the interventions as they were intended).
Special issues in assessing risk of bias in cluster-randomized trials using RoB 2 are pro-
vided in Table 23.1.a.

Table 23.1.a Issues addressed in the Cochrane risk-of-bias tool for cluster-randomized trials

Bias domain
Additional or different issues compared with
individually randomized trials

Bias arising from the randomization
process • Processes for randomizing clusters vary: clusters

may be randomized sequentially, in batches or all
at once. Minimization is quite common and should
be treated as equivalent to randomization. Cluster
randomization is often performed at a single point
in time by a methodologist, who may have less
motivation or knowledge to subvert randomization.

• The number of clusters can be relatively small, so
chance imbalances are more common than in
individually randomized trials. Such chance
imbalances should not be interpreted as evidence of
risk of bias.

Bias arising from the timing of
identification and recruitment of
participants

• This bias domain is specific to cluster-randomized
trials.

• It is important to consider when individual
participants were identified and recruited in relation
to the timing of randomization.

• If identification or recruitment of any participants in
the trial happened after randomization of the
cluster, then their recruitment could have been
affected by knowledge of the intervention,
introducing bias.

(Continued)
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23.1.3 Methods of analysis for cluster-randomized trials

One way to avoid a unit-of-analysis error in a cluster-randomized trial is to conduct the
analysis at the same level as the allocation. That is, the data could be analysed as if
each cluster was a single individual, using a summary measurement from each cluster.
Then the sample size for the analysis is the number of clusters. However, this strategy
might unnecessarily reduce the precision of the effect estimate if the clusters vary in
their size.
Alternatively, statistical analysis at the level of the individual can lead to an inappro-

priately high level of precision in the analysis, unlessmethods are used to account for the
clustering in the data. The ideal information to extract froma cluster-randomized trial is a
direct estimate of the required effect measure (e.g. an odds ratio with its confidence
interval) from an analysis that properly accounts for the cluster design. Such an analysis
might be based on a multilevel model or may use generalized estimating equations,
among other techniques. Statistical advice is recommended to determine whether the

Table 23.1.a (Continued)

Bias domain
Additional or different issues compared with
individually randomized trials

• Baseline imbalances in characteristics of
participants (rather than of clusters) can suggest a
problem with identification/recruitment bias.

Bias due to deviations from intended
interventions

When the review authors’ interest is in the effect of
assignment to intervention (see Chapter 8, Section 8.4):

• If participants are not aware that they are in a trial,
then there will not be deviations from the intended
intervention that arise because of the trial context. It
is these deviations that we are concerned about in
this domain.

• If participants, carers or people delivering
interventions are aware of the assigned intervention,
then the issues are the same as for individually
randomized trials.

Bias due to missing outcome data • Data may be missing for clusters or for individuals
within clusters.

• Considerations when addressing either type of
missing data are the same as for individually
randomized trials, but review authors should ensure
that they cover both.

Bias in measurement of the outcome • If outcome assessors are not aware that a trial is
taking place, then their assessments should not be
affected by intervention assignment.

• If outcome assessors are aware of the assigned
intervention, then the issues are the same as for
individually randomized trials.

Bias in selection of the reported result • The issues are the same as for individually
randomized trials.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full risk-of-bias
tool at www.riskofbias.info.
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method used is appropriate. When the study authors have not conducted such an anal-
ysis, there are two approximate approaches that can be used by review authors to adjust
the results (see Sections 23.1.4 and 23.1.5).
Effect estimates and their standard errors from correct analyses of cluster-

randomized trials may be meta-analysed using the generic inverse-variance approach
(e.g. in RevMan).

23.1.4 Approximate analyses of cluster-randomized trials for ameta-analysis:
effective sample sizes

Unfortunately, many cluster-randomized trials have in the past failed to report appro-
priate analyses. They are commonly analysed as if the randomization was performed
on the individuals rather than the clusters. If this is the situation, approximately correct
analyses may be performed if the following information can be extracted:

• the number of clusters (or groups) randomized to each intervention group and the
total number of participants in the study; or the average (mean) size of each cluster;

• the outcome data ignoring the cluster design for the total number of individuals (e.g.
the number or proportion of individuals with events, or means and standard devia-
tions for continuous data); and

• an estimate of the intracluster (or intraclass) correlation coefficient (ICC).

The ICC is an estimate of the relative variability within and between clusters (Eldridge
and Kerry 2012). Alternatively it describes the ‘similarity’ of individuals within the same
cluster (Eldridge et al 2009b). In spite of recommendations to report the ICC in all trial
reports (Campbell et al 2012), ICC estimates are often not available in published
reports.
A common approach for review authors is to use external estimates obtained from

similar studies, and several resources are available that provide examples of ICCs
(Ukoumunne et al 1999, Campbell et al 2000, Health Services Research Unit 2004),
or use an estimate based on known patterns in ICCs for particular types of cluster
or outcome. ICCs may appear small compared with other types of correlations: values
lower than 0.05 are typical. However, even small values can have a substantial impact
on confidence interval widths (and hence weights in a meta-analysis), particularly if
cluster sizes are large. Empirical research has observed that clusters that tend to be
naturally larger have smaller ICCs (Ukoumunne et al 1999). For example, for the same
outcome, regions are likely to have smaller ICCs than towns, which are likely to have
smaller ICCs than families.
An approximately correct analysis proceeds as follows. The idea is to reduce the size of

each trial to its ‘effective sample size’ (Rao and Scott 1992). The effective sample size of a
single intervention group in a cluster-randomized trial is its original sample size divided
by a quantity called the ‘design effect’. The design effect is approximately

1 + M−1 × ICC

where M is the average cluster size and ICC is the intracluster correlation coefficient.
When cluster sizes vary, M can be estimated more appropriately in other ways
(Eldridge et al 2006). A common design effect is usually assumed across intervention
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groups. For dichotomous data, both the number of participants and the number experi-
encing the event should be divided by the same design effect. Since the resulting data
must be rounded to whole numbers for entry into meta-analysis software such as
RevMan, this approach may be unsuitable for small trials. For continuous data, only
the sample size need be reduced; means and standard deviations should remain
unchanged. Special considerations for analysis of standardized mean differences
from cluster-randomized trials are discussed by White and Thomas (White and
Thomas 2005).

23.1.4.1 Example of incorporating a cluster-randomized trial
As an example, consider a cluster-randomized trial that randomized 10 school class-
rooms with 295 children into a treatment group and 11 classrooms with 330 children
into a control group. Suppose the numbers of successes among the children, ignoring
the clustering, are:

Treatment 63/295

Control 84/330

Imagine an intracluster correlation coefficient of 0.02 has been obtained from a reliable
external source or is expected to be a good estimate, based on experience in the area.
The average cluster size in the trial is

295 + 330 10 + 11 = 29 8

The design effect for the trial as a whole is then

1 + M – 1 ICC = 1 + 29 8 – 1 × 0 02 = 1 576

The effective sample size in the treatment group is

295 1 576 = 187 2

and for the control group is

330 1 576 = 209 4

Applying the design effects also to the numbers of events (in this case, successes)
produces the following modified results:

Treatment 40 0/187 2

Control 53 3/209 4

Once trials have been reduced to their effective sample size, the data may be entered
into statistical software such as RevMan as, for example, dichotomous outcomes or
continuous outcomes. Rounding the results to whole numbers, the results from the
example trial may be entered as:

Treatment 40/187

Control 53/209
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23.1.5 Approximate analyses of cluster-randomized trials for ameta-analysis:
inflating standard errors

A clear disadvantage of the method described in Section 23.1.4 is the need to round the
effective sample sizes to whole numbers. A slightly more flexible approach, which is
equivalent to calculating effective sample sizes, is to multiply the standard error of
the effect estimate (from an analysis ignoring clustering) by the square root of the
design effect. The standard error may be calculated from the confidence interval of
any effect estimate derived from an analysis ignoring clustering (see Chapter 6,
Section 6.3.1). Standard analyses of dichotomous or continuous outcomesmay be used
to obtain these confidence intervals using standard meta-analysis software (e.g. Rev-
Man). The meta-analysis using the inflated variances may be performed using the
generic inverse-variance method.
As an example, the odds ratio (OR) from a study with the results

Treatment 63/295

Control 84/330

is OR = 0.795 (95% CI 0.548 to 1.154). Using methods described in Chapter 6
(Section 6.1.3.2), we can determine from these results that the log odds ratio is
lnOR = –0.23 with standard error 0.19. Using the same design effect of 1.576 as in
Section 23.1.4.1, an inflated standard error that accounts for clustering is given by
0.19 × √1.576 = 0.24. The log odds ratio (–0.23) and this inflated standard error (0.24)
may be used as the basis for ameta-analysis using a generic inverse-variance approach.

23.1.6 Issues in the incorporation of cluster-randomized trials

Cluster-randomized trials may, in principle, be combined with individually randomized
trials in the same meta-analysis. Consideration should be given to the possibility of
important differences in the effects being evaluated between the different types of trial.
There are often good reasons for performing cluster-randomized trials and these
should be examined. For example, in the treatment of infectious diseases an interven-
tion applied to all individuals in a community may be more effective than treatment
applied to select (randomized) individuals within the community, since it may reduce
the possibility of re-infection (Eldridge and Kerry 2012).
Authors should always identify any cluster-randomized trials in a review and explic-

itly state how they have dealt with the data. They should conduct sensitivity analyses to
investigate the robustness of their conclusions, especially when ICCs have been bor-
rowed from external sources (see Chapter 10, Section 10.14). Statistical support is
recommended.

23.1.7 Stepped-wedge trials

In a stepped-wedge trial, randomization is by cluster. However, rather than assign a
predefined proportion of the clusters to the experimental intervention and the rest
to a comparator intervention, a stepped-wedge design starts with all clusters allocated
to the comparator intervention and sequentially randomizes individual clusters (or
groups of clusters) to switch to the experimental intervention. By the end of the trial,
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all clusters are implementing the experimental intervention (Hemming et al 2015).
Stepped-wedge trials are increasingly used to evaluate health service and policy inter-
ventions, and are often attractive to policy makers because all clusters can expect to
receive (or implement) the experimental intervention.
The analysis of a stepped-wedge trial must take into account the possibility of time

trends. A naïve comparison of experimental intervention periods with comparator
intervention periods will be confounded by any variables that change over time, since
more clusters are receiving the experimental intervention during the later stages of
the trial.
The RoB 2 tool for cluster-randomized trials can be used to assess risk of bias in a

stepped-wedge trial. However, the tool does not address the need to adjust for time
trends in the analysis, which is an important additional source of potential bias in a
stepped-wedge trial.

23.1.8 Individually randomized trials with clustering

Issues related to clustering can also occur in individually randomized trials. This can
happen when the same health professional (e.g. doctor, surgeon, nurse or therapist)
delivers the intervention to a number of participants in the intervention group. This
type of clustering raises issues similar to those in cluster-randomized trials in relation
to the analysis (Lee and Thompson 2005, Walwyn and Roberts 2015, Walwyn and
Roberts 2017), and review authors should consider inflating the variance of the inter-
vention effect estimate using a design effect, as for cluster-randomized trials.

23.2 Crossover trials

23.2.1 Introduction

Parallel-group trials allocate each participant to a single intervention for comparison
with one or more alternative interventions. In contrast, crossover trials allocate each
participant to a sequence of interventions. A simple randomized crossover design is an
‘AB/BA’ design in which participants are randomized initially to intervention A or inter-
vention B, and then ‘cross over’ to intervention B or intervention A, respectively. It can
be seen that data from the first period of a crossover trial represent a parallel-group
trial, a feature referred to in Section 23.2.6. In keeping with the rest of the Handbook, we
will use E and C to refer to interventions, rather than A and B.
Crossover designs offer a number of possible advantages over parallel-group trials.

Among these are that:

1) each participant acts as his or her own control, significantly reducing between-
participant variation;

2) consequently, fewer participants are usually required to obtain the same precision
in estimation of intervention effects; and

3) every participant receives every intervention, which allows the determination of the
best intervention or preference for an individual participant.
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In some trials, randomization of interventions takes place within individuals, with dif-
ferent interventions being applied to different body parts (e.g. to the two eyes or to
teeth in the two sides of the mouth). If body parts are randomized and the analysis
is by the multiple parts within an individual (e.g. each eye or each side of the mouth)
then the analysis should account for the pairing (or matching) of parts within indivi-
duals in the same way that pairing of intervention periods is recognized in the analysis
of a crossover trial.
A readable introduction to crossover trials is given by Senn (Senn 2002). More

detailed discussion of meta-analyses involving crossover trials is provided by Elbourne
and colleagues (Elbourne et al 2002), and some empirical evidence on their inclusion in
systematic reviews by Lathyris and colleagues (Lathyris et al 2007). Evidence suggests
that many crossover trials have not been analysed appropriately when included in
Cochrane Reviews (Nolan et al 2016).

23.2.2 Assessing suitability of crossover trials

Crossover trials are suitable for evaluating interventions with a temporary effect in the
treatment of stable, chronic conditions (at least over the time period under study). They
are employed, for example, in the study of interventions to relieve asthma, rheumatoid
arthritis and epilepsy. There are many situations in which a crossover trial is not appro-
priate. These include:

1) if the medical condition evolves over time, such as a degenerative disorder, a tem-
porary condition that will resolve within the time frame of the trial, or a cyclic
disorder;

2) when an intervention (or its cessation) can lead to permanent or long-term modi-
fication (e.g. a vaccine). In this situation, either a participant will be unable (or inel-
igible) to enter a subsequent period of the trial; or a ‘carry-over’ effect is likely (see
Section 23.2.3);

3) if the elimination half-life of a drug is very long so that a ‘carry-over’ effect is likely
(see Section 23.2.3); and

4) if wash-out itself induces a withdrawal or rebound effect in the second period.

In considering the inclusion of crossover trials in meta-analysis, authors should first
address the question of whether a crossover trial is a suitable method for the condition
and intervention in question. For example, one group of authors decided that crossover
trials were inappropriate for studies in Alzheimer’s disease (although they are fre-
quently employed in the field) due to the degenerative nature of the condition, and
included only data from the first period of crossover trials in their systematic review
(Qizilbash et al 1998). The second question to be addressed is whether there is a like-
lihood of serious carry-over, which relies largely on judgement since the statistical tech-
niques to demonstrate carry-over are far from satisfactory. The nature of the
interventions and the length of any wash-out period are important considerations.
It is only justifiable to exclude crossover trials from a systematic review if the design is

inappropriate to the clinical context. Very often, however, even where the design has
been appropriate, it is difficult or impossible to extract suitable data from a crossover
trial. In Section 23.2.6 we outline some considerations and suggestions for including
crossover trials in a meta-analysis.
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23.2.3 Assessing risk of bias in crossover trials

The principal problem associated with crossover trials is that of carry-over (a type
of period-by-intervention interaction). Carry-over is the situation in which the
effects of an intervention given in one period persist into a subsequent period, thus
interfering with the effects of the second intervention. These effects may be
because the first intervention itself persists (such as a drug with a long elimination
half-life), or because the effects of the intervention persist. An extreme example of
carry-over is when a key outcome of interest is irreversible or of long duration,
such as mortality, or pregnancy in a subfertility study. In this case, a crossover
study is generally considered to be inappropriate. A carry-over effect means that
the observed difference between the treatments depends upon the order in which
they were received; hence the estimated overall treatment effect will be affected
(usually under-estimated, leading to a bias towards the null). Many crossover trials
include a period between interventions known as a wash-out period as a means of
reducing carry-over.
A second problem that may occur in crossover trials is period effects. Period effects

are systematic differences between responses in the second period compared with
responses in the first period that are not due to different interventions. Theymay occur,
for example, when the condition changes systematically over time, or if there are
changes in background factors such as underlying healthcare strategies. For an AB/
BA design, period effects can be overcome by ensuring the same number of partici-
pants is randomized to the two sequences of interventions or by including period
effects in the statistical model.
A third problem for crossover trials is that the trial might report only analyses based

on the first period. Although the first period of a crossover trial is in effect a parallel
group comparison, use of data from only the first period will be biased if, as is likely,
the decision to use first period data is based on a test for carry-over. Such a ‘two-stage
analysis’ has been discredited but is still used (Freeman 1989). This is because the test
for carry-over is affected by baseline differences in the randomized groups at the start
of the crossover trial, so a statistically significant result might reflect such baseline dif-
ferences. Reporting only the first period data in this situation is particularly problem-
atic. Crossover trials for which only first period data are available should be considered
to be at risk of bias, especially when the investigators explicitly report using a two-stage
analysis strategy.
Another potential problem with crossover trials is the risk of dropout due to their

longer duration compared with comparable parallel-group trials. The analysis techni-
ques for crossover trials with missing observations are limited.
The Cochrane risk-of-bias tool for randomized trials (RoB 2, see Chapter 8) has a

variant specifically for crossover trials. It focuses on crossover trials with two inter-
vention periods rather than with two body parts. Carry-over effects are addressed
specifically. Period effects are addressed through examination of the allocation ratio
and the approach to analysis. The tool also addresses the possibility of selective
reporting of first period results in the domain ‘Bias in selection of the reported result’.
Special issues in assessing risk of bias in a crossover trials using RoB 2 are provided in
Table 23.2.a.
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23.2.4 Using only the first period of a crossover trial

One option when crossover trials are anticipated in a review is to plan from the outset
that only data from the first periods will be used. Including only the first intervention
period of a crossover trial discards more than half of the information in the study,
and often substantially more than half. A sound rationale is therefore needed for this
approach, based on the inappropriateness of a crossover design (see Section 23.2.2),
and not based on lack of methodological expertise.
If the review intends (from the outset) to look only at the first period of any crossover

trial, then review authors should use the standard version of the RoB 2 tool for parallel
group randomized trials. Review authors must, however, be alert to the potential

Table 23.2.a Issues addressed in version 2 of the Cochrane risk-of-bias tool for randomized
crossover trials

Bias domain
Additional or different issues addressed compared with
parallel-group trials

Bias arising from the randomization
process • The issues surrounding methods of randomization are

the same as for parallel-group trials.

• If an equal proportion of participants is randomized to
each intervention sequence, then any period effects will
cancel out in the analysis (providing there is not
differential missing data).

• If unequal proportions of participants are randomized to
the different intervention sequences, then period effects
should be included in the analysis to avoid bias.

• When using baseline differences to infer a problem with
the randomization process, this should be based on
differences at the start of the first period only.

Bias due to deviations from intended
interventions • Carry-over isthekeyconcernwhenassessingriskofbias ina

crossover trial. Carry-over effects should not affect
outcomesmeasured in the second period. A long period of
wash-out between periods can avoid this but is not
essential. The importantconsideration iswhether sufficient
time passes before outcome measurement in the second
period, such that any carry-over effects have disappeared.

• All other issues are the same as for parallel-group trials.
Bias due to missing outcome data • The issues are the same as for parallel-group trials. Use

of last observation carried forward imputation may be
particularly problematic if the observations being
carried forward were made before carry-over effects had
disappeared. Some analyses of crossover trials will
automatically exclude (for an AB/BA design) all patients
with missing data in either period.

Bias in measurement of the outcome • The issues are the same as for parallel-group trials.

Bias in selection of the reported
result • An additional concern is the selective reporting of first

period data on the basis of a test for carry-over.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full risk-of-bias
tool at www.riskofbias.info.
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impact of selective reporting if first-period data are reported only when carry-over is
detected by the trialists. Omission of trials reporting only paired analyses (i.e. not
reporting data for the first period separately) may lead to bias at the meta-analysis
level. The bias will not be picked up using study-level assessments of risk of bias.

23.2.5 Methods of analysis for crossover trials

If neither carry-over nor period effects are thought to be a problem, then an appropri-
ate analysis of continuous data from a two-period, two-intervention crossover trial is a
paired t-test. This evaluates the value of ‘measurement on experimental intervention
(E)’ minus ‘measurement on control intervention (C)’ separately for each participant.
The mean and standard error of these difference measures are the building blocks
of an effect estimate and a statistical test. The effect estimate may be included in a
meta-analysis using a generic inverse-variance approach (e.g. in RevMan).
A paired analysis is possible if the data in any one of the following bullet points is

available:

• individual participant data from the paper or by correspondence with the trialist;

• the mean and standard deviation (or standard error) of the participant-level differ-
ences between experimental intervention (E) and comparator intervention (C)
measurements;

• the mean difference and one of the following: (i) a t-statistic from a paired t-test; (ii) a
P value from a paired t-test; (iii) a confidence interval from a paired analysis;

• a graph of measurements on experimental intervention (E) and comparator interven-
tion (C) from which individual data values can be extracted, as long as matched mea-
surements for each individual can be identified as such.

For details see Elbourne and colleagues (Elbourne et al 2002).
Crossover trials with dichotomous outcomes require more complicated methods and

consultation with a statistician is recommended (Elbourne et al 2002).
If results are available broken into subgroups by the particular sequence each par-

ticipant received, then analyses that adjust for period effects are straightforward (e.g.
as outlined in Chapter 3 of Senn (Senn 2002)).

23.2.6 Methods for incorporating crossover trials into a meta-analysis

Unfortunately, the reporting of crossover trials has been very variable, and the data
required to include a paired analysis in a meta-analysis are often not published
(Li et al 2015). A common situation is that means and standard deviations (or standard
errors) are available only for measurements on E and C separately. A simple approach
to incorporating crossover trials in a meta-analysis is thus to take all measurements
from intervention E periods and all measurements from intervention C periods and
analyse these as if the trial were a parallel-group trial of E versus C. This approach gives
rise to a unit-of-analysis error (see Chapter 6, Section 6.2) and should be avoided. The
reason for this is that confidence intervals are likely to be too wide, and the trial will
receive too little weight, with the possible consequence of disguising clinically impor-
tant heterogeneity. Nevertheless, this incorrect analysis is conservative, in that studies
are under-weighted rather than over-weighted. While some argue against the inclusion
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of crossover trials in this way, the unit-of-analysis error might be regarded as less seri-
ous than some other types of unit-of-analysis error.
A second approach to incorporating crossover trials is to include only data from the

first period. This might be appropriate if carry-over is thought to be a problem, or if a
crossover design is considered inappropriate for other reasons. However, it is possible
that available data from first periods constitute a biased subset of all first period data.
This is because reporting of first period data may be dependent on the trialists having
found statistically significant carry-over.
A third approach to incorporating inappropriately reported crossover trials is to

attempt to approximate a paired analysis, by imputing missing standard deviations.
We address this approach in detail in Section 23.2.7.

23.2.7 Approximate analyses of crossover trials for a meta-analysis

Table 23.2.b presents some results that might be available from a report of a crossover
trial, and presents the notation we will use in the subsequent sections. We review
straightforward methods for approximating appropriate analyses of crossover trials
to obtain mean differences or standardized mean differences for use in meta-analysis.
Review authors should consider whether imputing missing data is preferable to exclud-
ing crossover trials completely from a meta-analysis. The trade-off will depend on the
confidence that can be placed on the imputed numbers, and on the robustness of the
meta-analysis result to a range of plausible imputed results.

23.2.7.1 Mean differences
The point estimate of mean difference for a paired analysis is usually available, since it
is the same as for a parallel-group analysis (the mean of the differences is equal to the
difference in means):

MD =ME −MC

The standard error of the mean difference is obtained as

SE MD =
SDdiff

N

where N is the number of participants in the trial, and SDdiff is the standard deviation of
within-participant differences between E and C measurements. As indicated in

Table 23.2.b Some possible data available from the report of a crossover trial

Data relate to Core statistics Related, commonly reported statistics

Intervention E N, ME, SDE Standard error of ME.

Intervention C N, MC, SDC Standard error of MC.

Difference between E and C N, MD, SDdiff Standard error of MD;
Confidence interval for MD;
Paired t-statistic;
P value from paired t-test.
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Section 23.2.5, the standard error can also be obtained directly from a confidence inter-
val for MD, from a paired t-statistic, or from the P value from a paired t-test. The quan-
tities MD and SE(MD) may be entered into a meta-analysis under the generic inverse-
variance outcome type (e.g. in RevMan).
When the standard error is not available directly and the standard deviation of the

differences is not presented, a simple approach is to impute the standard deviation, as
is commonly done for other missing standard deviations (see Chapter 6,
Section 6.5.2.7). Other studies in the meta-analysis may present standard deviations
of differences, and as long as the studies use the same measurement scale, it may
be reasonable to borrow these from one study to another. As with all imputations, sen-
sitivity analyses should be undertaken to assess the impact of the imputed data on the
findings of the meta-analysis (see Chapter 10, Section 10.14).
If no information is available from any study on the standard deviations of the within-

participant differences, imputation of standard deviations can be achieved by assum-
ing a particular correlation coefficient. The correlation coefficient describes how similar
the measurements on interventions E and C are within a participant, and is a number
between –1 and 1. It may be expected to lie between 0 and 1 in the context of a cross-
over trial, since a higher than average outcome for a participant while on E will tend to
be associated with a higher than average outcome while on C. If the correlation coef-
ficient is zero or negative, then there is no statistical benefit of using a crossover design
over using a parallel-group design.
A common way of presenting results of a crossover trial is as if the trial had been a

parallel-group trial, with standard deviations for each intervention separately (SDE and
SDC; see Table 23.2.b). The desired standard deviation of the differences can be
estimated using these intervention-specific standard deviations and an imputed
correlation coefficient (Corr):

SDdiff = SD2
E + SD

2
C − 2 × Corr × SDE × SDC

23.2.7.2 Standardized mean difference
The most appropriate standardized mean difference (SMD) from a crossover trial
divides the mean difference by the standard deviation of measurements (and not
by the standard deviation of the differences). A SMD can be calculated by pooled
intervention-specific standard deviations as follows:

SMD =
MD

SDpooled

where

SDpooled =
SD2

E + SD2
C

2

A correlation coefficient is required for the standard error of the SMD:

SE SMD =
1
N
+
SMD2

2N
× 2 1−Corr
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Alternatively, the SMD can be calculated from the MD and its standard error, using an
imputed correlation:

SMD =
MD

SE MD ×
N

2 1−Corr

In this case, the imputed correlation impacts on the magnitude of the SMD effect
estimate itself (rather than just on the standard error, as is the case for MD analyses
in Section 23.2.7.1). Imputed correlations should therefore be used with great caution
for estimation of SMDs.

23.2.7.3 Imputing correlation coefficients
The value for a correlation coefficient might be imputed from another study in the meta-
analysis (see below), it might be imputed from a source outside of themeta-analysis, or it
might be hypothesized based on reasoned argument. In all of these situations, a sensi-
tivity analysis should be undertaken, trying different plausible values of Corr, to deter-
mine whether the overall result of the analysis is robust to the use of imputed
correlation coefficients.
Estimation of a correlation coefficient is possible from another study in the meta-

analysis if that study presents all three standard deviations in Table 23.2.b. The calcu-
lation assumes that the mean and standard deviation of measurements for interven-
tion E is the same when it is given in the first period as when it is given in the second
period (and similarly for intervention C).

Corr =
SD2

E + SD2
C − SD2

diff

2 × SDE × SDC

Before imputation is undertaken it is recommended that correlation coefficients are
computed for as many studies as possible and compared. If these correlations vary
substantially then sensitivity analyses are particularly important.

23.2.7.4 Example
As an example, suppose a crossover trial reports the following data:

Intervention E
(sample size 10)

ME = 7.0,
SDE = 2.38

Intervention C
(sample size 10)

MC = 6.5,
SDC = 2.21

Mean difference, imputing SD of differences (SDdiff)
The estimate of themean difference is MD = 7.0 – 6.5 = 0.5. Suppose that a typical stand-
ard deviation of differences had been observed from other trials to be 2. Then we can
estimate the standard error of MD as
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SE MD =
SDdiff

N
=

2
10

= 0 632

The numbers 0.5 and 0.632 may be entered into RevMan as the estimate and standard
error of a mean difference, under a generic inverse-variance outcome.

Mean difference, imputing correlation coefficient (Corr)
The estimate of the mean difference is again MD = 0.5. Suppose that a correlation coef-
ficient of 0.68 has been imputed. Then we can impute the standard deviation of the
differences as:

SDdiff = SD2
E + SD

2
C − 2 × Corr × SDE × SDC

= 2 382 + 2 212 − 2 × 0 68 × 2 38 × 2 21 = 1 846

The standard error of MD is then

SE MD =
SDdiff

N
=
1 8426

10
= 0 583

The numbers 0.5 and 0.583 may be entered into a meta-analysis as the estimate and
standard error of a mean difference, under a generic inverse-variance outcome. Corre-
lation coefficients other than 0.68 should be used as part of a sensitivity analysis.

Standardized mean difference, imputing correlation coefficient (Corr)
The standardized mean difference can be estimated directly from the data:

SMD =
MD

SDpooled
=

MD

SD2
E + SD2

C

2

=
0 5

2 382 + 2 212

2

= 0 218

The standard error is obtained thus:

SE SMD =
1
N
+
SMD2

2N
× 2 1−Corr =

1
10

+
0 2182

20
× 2 1−0 68 = 0 256

The numbers 0.218 and 0.256 may be entered into a meta-analysis as the estimate and
standard error of a standardized mean difference, under a generic inverse-variance
outcome.
We could also have obtained the SMD from the MD and its standard error:

SMD =
MD

SE MD ×
N

2 1−Corr

=
0 5

0 583 ×
10

2 1−0 68

= 0 217

The minor discrepancy arises due to the slightly different ways in which the two
formulae calculate a pooled standard deviation for the standardizing.
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23.2.8 Issues in the incorporation of crossover trials

Crossover trials may, in principle, be combined with parallel-group trials in the same
meta-analysis. Consideration should be given to the possibility of important differences
in other characteristics between the different types of trial. For example, crossover
trials may have shorter intervention periods or may include participants with less
severe illness. It is generally advisable to meta-analyse parallel-group and crossover
trials in separate subgroups, irrespective of whether they are also combined.
Review authors should explicitly state how they have dealt with data from crossover

trials and should conduct sensitivity analyses to investigate the robustness of their con-
clusions, especially when correlation coefficients have been borrowed from external
sources (see Chapter 10, Section 10.14). Statistical support is recommended.

23.2.9 Cluster crossover trials

A cluster crossover trial combines aspects of a cluster-randomized trial (Section 23.1.1)
and a crossover trial (Section 23.2.1). In a two-period, two-intervention cluster crosso-
ver trial, clusters are randomized to either the experimental intervention or the com-
parator intervention. At the end of the first period, clusters on the experimental
intervention cross over to the comparator intervention for the second period, and clus-
ters on the comparator intervention cross over to the experimental intervention for the
second period (Rietbergen and Moerbeek 2011, Arnup et al 2017). The clusters may
involve the same individuals in both periods, or different individuals in the two periods.
The design introduces the advantages of a crossover design into situations in which
interventions are most appropriately implemented or evaluated at the cluster level.
The analysis of a cluster crossover trial should consider both the pairing of interven-

tion periods within clusters and the similarity of individuals within clusters. Unfortu-
nately, many trials have not performed appropriate analyses (Arnup et al 2016), so
review authors are encouraged to seek statistical advice.
The RoB 2 tool does not currently have a variant for cluster crossover trials.

23.3 Studies with more than two intervention groups

23.3.1 Introduction

It is not uncommon for clinical trials to randomize participants to one of several inter-
vention groups. A review of randomized trials published in December 2000 found that a
quarter had more than two intervention groups (Chan and Altman 2005). For example,
there may be two or more experimental intervention groups with a common compar-
ator group, or two comparator intervention groups such as a placebo group and a
standard treatment group. We refer to these studies as ‘multi-arm’ studies. A special
case is a factorial trial, which addresses two or more simultaneous intervention com-
parisons using four or more intervention groups (see Section 23.3.6).
Although a systematic review may include several intervention comparisons (and

hence several meta-analyses), almost all meta-analyses address pair-wise comparisons.
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There are three separate issues to consider when faced with a study with more than two
intervention groups.

1) Determine which intervention groups are relevant to the systematic review.
2) Determine which intervention groups are relevant to a particular meta-analysis.
3) Determine how the study will be included in the meta-analysis if more than two

groups are relevant.

23.3.2 Determining which intervention groups are relevant

For a particular multi-arm study, the intervention groups of relevance to a systematic
review are all those that could be included in a pair-wise comparison of intervention
groups that would meet the criteria for including studies in the review. For example,
a review addressing only a comparison of nicotine replacement therapy versus placebo
for smoking cessation might identify a study comparing nicotine gum versus beha-
vioural therapy versus placebo gum. Of the three possible pair-wise comparisons of
interventions in this study, only one (nicotine gum versus placebo gum) addresses
the review objective, and no comparison involving behavioural therapy does. Thus,
the behavioural therapy group is not relevant to the review, and can be safely left
out of any syntheses. However, if the study had compared nicotine gum plus beha-
vioural therapy versus behavioural therapy plus placebo gum versus placebo gum
alone, then a comparison of the first two interventions might be considered relevant
(with behavioural therapy provided as a consistent co-intervention to both groups of
interest), and the placebo gum alone group might not.
As an example of multiple comparator groups, a review addressing the comparison

‘acupuncture versus no acupuncture’ might identify a study comparing ‘acupuncture
versus sham acupuncture versus no intervention’. The review authors would ask
whether, on the one hand, a study of ‘acupuncture versus sham acupuncture’ would
be included in the review and, on the other hand, a study of ‘acupuncture versus no
intervention’ would be included. If both of them would, then all three intervention
groups of the study are relevant to the review.
As a general rule, and to avoid any confusion for the reader over the identity and

nature of each study, it is recommended that all intervention groups of a multi-
intervention study be mentioned in the table of ‘Characteristics of included studies’.
However, it is necessary to provide detailed descriptions of only the intervention
groups relevant to the review, and only these groups should be used in analyses.
The same considerations of relevance apply when determining which intervention

groups of a study should be included in a particularmeta-analysis. Each meta-analysis
addresses only a single pair-wise comparison, so review authors should consider
whether a study of each possible pair-wise comparison of interventions in the study
would be eligible for the meta-analysis. To draw the distinction between the review-
level decision and the meta-analysis-level decision, consider a review of ‘nicotine ther-
apy versus placebo or other comparators’. All intervention groups of a study of ‘nico-
tine gum versus behavioural therapy versus placebo gum’ might be relevant to the
review. However, the presence of multiple interventions may not pose any problem
for meta-analyses, since it is likely that ‘nicotine gum versus placebo gum’, and ‘nico-
tine gum versus behavioural therapy’ would be addressed in different meta-analyses.
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Conversely, all groups of the study of ‘acupuncture versus sham acupuncture versus no
intervention’ might be considered eligible for the same meta-analysis. This would be
the case if the meta-analysis would otherwise include both studies of ‘acupuncture ver-
sus sham acupuncture’ and studies of ‘acupuncture versus no intervention’, treating
sham acupuncture and no intervention both as relevant comparators. We describe
methods for dealing with the latter situation in Section 23.3.4.

23.3.3 Risk of bias in studies with more than two groups

Bias may be introduced in a multiple-intervention study if the decisions regarding data
analysis are made after seeing the data. For example, groups receiving different doses
of the same intervention may be combined only after looking at the results. Also, deci-
sions about the selection of outcomes to report may bemade after comparing different
pairs of intervention groups and examining the findings. These issues would be
addressed in the domain ‘Bias due to selection of the reported result’ in the Cochrane
risk-of-bias tool for randomized trials (RoB 2, see Chapter 8).
Juszczak and colleagues reviewed 60 multiple-intervention randomized trials, of

which over a third had at least four intervention arms (Juszczak et al 2003). They found
that only 64% reported the same comparisons of groups for all outcomes, suggesting
selective reporting analogous to selective outcome reporting in a two-arm trial. Also,
20% reported combining groups in an analysis. However, if the summary data are pro-
vided for each intervention group, it does not matter how the groups had been com-
bined in reported analyses; review authors do not need to analyse the data in the same
way as the study authors.

23.3.4 How to include multiple groups from one study

There are several possible approaches to including a study with multiple intervention
groups in a particular meta-analysis. One approach that must be avoided is simply to
enter several comparisons into the meta-analysis so that the same comparator inter-
vention group is included more than once. This ‘double-counts’ the participants in the
intervention group(s) shared across more than one comparison, and creates a unit-of-
analysis error due to the unaddressed correlation between the estimated intervention
effects from multiple comparisons (see Chapter 6, Section 6.2). An important distinc-
tion is between situations in which a study can contribute several independent compar-
isons (i.e. with no intervention group in common) and when several comparisons are
correlated because they have intervention groups, and hence participants, in common.
For example, consider a study that randomized participants to four groups: ‘nicotine
gum’ versus ‘placebo gum’ versus ‘nicotine patch’ versus ‘placebo patch’. A meta-
analysis that addresses the broad question of whether nicotine replacement therapy
is effective might include the comparison ‘nicotine gum versus placebo gum’ as well
as the independent comparison ‘nicotine patch versus placebo patch’, with no unit
of analysis error or double-counting. It is usually reasonable to include independent
comparisons in a meta-analysis as if they were from different studies, although there
are subtle complications with regard to random-effects analyses (see Section 23.3.5).
Approaches to overcoming a unit-of-analysis error for a study that could contribute

multiple, correlated, comparisons include the following.
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• Combine groups to create a single pair-wise comparison (recommended).

• Select one pair of interventions and exclude the others.

• Split the ‘shared’ group into two or more groups with smaller sample size, and
include two or more (reasonably independent) comparisons.

• Include two or more correlated comparisons and account for the correlation.

• Undertake a network meta-analysis (see Chapter 11).

The recommendedmethod inmost situations is to combine all relevant experimental
intervention groups of the study into a single group, and to combine all relevant com-
parator intervention groups into a single comparator group. As an example, suppose
that a meta-analysis of ‘acupuncture versus no acupuncture’would consider studies of
either ‘acupuncture versus sham acupuncture’ or studies of ‘acupuncture versus no
intervention’ to be eligible for inclusion. Then a study with three intervention groups
(acupuncture, sham acupuncture and no intervention) would be included in the
meta-analysis by combining the participants in the ‘sham acupuncture’ group with par-
ticipants in the ‘no intervention’ group. This combined comparator group would be
compared with the ‘acupuncture’ group in the usual way. For dichotomous outcomes,
both the sample sizes and the numbers of people with events can be summed across
groups. For continuous outcomes, means and standard deviations can be combined
using methods described in Chapter 6 (Section 6.5.2.10).
The alternative strategy of selecting a single pair of interventions (e.g. choosing either

‘sham acupuncture’ or ‘no intervention’ as the comparator) results in a loss of informa-
tion and is open to results-related choices, so is not generally recommended.
A further possibility is to include each pair-wise comparison separately, but with

shared intervention groups divided out approximately evenly among the compari-
sons. For example, if a trial compares 121 patients receiving acupuncture with 124
patients receiving sham acupuncture and 117 patients receiving no acupuncture,
then two comparisons (of, say, 61 ‘acupuncture’ against 124 ‘sham acupuncture’,
and of 60 ‘acupuncture’ against 117 ‘no intervention’) might be entered into the
meta-analysis. For dichotomous outcomes, both the number of events and the total
number of patients would be divided up. For continuous outcomes, only the total
number of participants would be divided up and the means and standard deviations
left unchanged. This method only partially overcomes the unit-of-analysis error
(because the resulting comparisons remain correlated) so is not generally recom-
mended. A potential advantage of this approach, however, would be that approxi-
mate investigations of heterogeneity across intervention arms are possible (e.g. in
the case of the example here, the difference between using sham acupuncture and
no intervention as a comparator group).
Two final options are to account for the correlation between correlated comparisons

from the same study in the analysis, and to perform a network meta-analysis. The
former involves calculating an average (or weighted average) of the relevant pair-wise
comparisons from the study, and calculating a variance (and hence a weight) for the
study, taking into account the correlation between the comparisons (Borenstein et al
2008). It will typically yield a similar result to the recommended method of combining
across experimental and comparator intervention groups. Network meta-analysis
allows for the simultaneous analysis of multiple interventions, and so naturally allows
for multi-arm studies. Network meta-analysis is discussed in more detail in Chapter 11.
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23.3.5 Heterogeneity considerations with multiple-intervention studies

Two possibilities for addressing heterogeneity between studies are to allow for it in a
random-effects meta-analysis, and to investigate it through subgroup analyses or
meta-regression (Chapter 10, Section 10.11). Some complications arise when includ-
ing multiple-intervention studies in such analyses. First, it will not be possible to
investigate certain intervention-related sources of heterogeneity if intervention
groups are combined as in the recommended approach in Section 23.3.4. For exam-
ple, subgrouping according to ‘sham acupuncture’ or ‘no intervention’ as a compar-
ator group is not possible if these two groups are combined prior to the meta-
analysis. The simplest method for allowing an investigation of this difference, across
studies, is to create two or more comparisons from the study (e.g. ‘acupuncture ver-
sus sham acupuncture’ and ‘acupuncture versus no intervention’). However, if these
contain a common intervention group (here, acupuncture), then they are not inde-
pendent and a unit-of-analysis error will occur, even if the sample size is reduced
for the shared intervention group(s). Nevertheless, splitting up the sample size for
the shared intervention group remains a practical means of performing approximate
investigations of heterogeneity.
A more subtle problem occurs in random-effects meta-analyses if multiple compar-

isons are included from the same study. A random-effects meta-analysis allows for var-
iation by assuming that the effects underlying the studies in the meta-analysis follow a
distribution across studies. The intention is to allow for study-to-study variation. How-
ever, if two or more estimates come from the same study then the same variation is
assumed across comparisons within the study and across studies. This is true whether
the comparisons are independent or correlated (see Section 23.3.4). One way to over-
come this is to perform a fixed-effect meta-analysis across comparisons within a study,
and a random-effects meta-analysis across studies. Statistical support is recom-
mended; in practice the difference between different analyses is likely to be trivial.

23.3.6 Factorial trials

In a factorial trial, two (or more) intervention comparisons are carried out simultane-
ously. Thus, for example, participants may be randomized to receive aspirin or placebo,
and also randomized to receive a behavioural intervention or standard care. Most fac-
torial trials have two ‘factors’ in this way, each of which has two levels; these are called
2 × 2 factorial trials. Occasionally 3 × 2 trials may be encountered, or trials that inves-
tigate three, four, or more interventions simultaneously. Often only one of the compar-
isons will be of relevance to any particular review. The following remarks focus on the
2 × 2 case but the principles extend to more complex designs.
In most factorial trials the intention is to achieve ‘two trials for the price of one’, and

the assumption is made that the effects of the different active interventions are inde-
pendent, that is, there is no interaction (synergy). Occasionally a trial may be carried
out specifically to investigate whether there is an interaction between two treatments.
That aspect may more often be explored in a trial comparing each of two active treat-
ments on its own with both combined, without a placebo group. Such three interven-
tion group trials are not factorial trials.
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The 2 × 2 factorial design can be displayed as a 2 × 2 table, with the rows indicating
one comparison (e.g. aspirin versus placebo) and the columns the other (e.g. beha-
vioural intervention versus standard care):

Randomization of B

Behavioural
intervention (B)

Standard care
(not B)

Aspirin (A) A and B A, not B

Placebo (not A) B, not A Not A, not B

A 2 × 2 factorial trial can be seen as two trials addressing different questions. It is
important that both parts of the trial are reported as if they were just a two-arm
parallel-group trial. Thus, we expect to see the results for aspirin versus placebo,
including all participants regardless of whether they had behavioural intervention or
standard care, and likewise for the behavioural intervention. These results may be seen
as relating to the margins of the 2 × 2 table. We would also wish to evaluate whether
there may have been some interaction between the treatments (i.e. effect of A depends
on whether B or ‘not B’was received), for which we need to see the four cells within the
table (McAlister et al 2003). It follows that the practice of publishing two separate
reports, possibly in different journals, does not allow the full results to be seen.
McAlister and colleagues reviewed 44 published reports of factorial trials (McAlister

et al 2003). They found that only 34% reported results for each cell of the factorial struc-
ture. However, it will usually be possible to derive the marginal results from the results
for the four cells in the 2 × 2 structure. In the same review, 59% of the trial reports
included the results of a test of interaction. On re-analysis, 2/44 trials (6%) had
P < 0.05, which is close to expectation by chance (McAlister et al 2003). Thus, despite
concerns about unrecognized interactions, it seems that investigators are appropri-
ately restricting the use of the factorial design to those situations in which two (or
more) treatments do not have the potential for substantive interaction. Unfortunately,
many review authors do not take advantage of this fact and include only half of the
available data in their meta-analysis (e.g. including only aspirin versus placebo among
those that were not receiving behavioural intervention, and excluding the valid inves-
tigation of aspirin among those that were receiving behavioural intervention).
When faced with factorial trials, review authors should consider whether both inter-

vention comparisons are relevant to a meta-analysis. If only one of the comparisons is
relevant, then the full comparison of all participants for that comparison should be
used. If both comparisons are relevant, then both full comparisons can be included
in a meta-analysis without a need to account for the double counting of participants.
Additional considerations may apply if important interaction has been found between
the interventions.
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24

Including non-randomized studies on
intervention effects
Barnaby C Reeves, Jonathan J Deeks, Julian PT Higgins, Beverley Shea, Peter
Tugwell, George A Wells; on behalf of the Cochrane Non-Randomized Studies
of Interventions Methods Group

KEY POINTS

• For some Cochrane Reviews, the question of interest cannot be answered by rando-
mized trials, and review authors may be justified in including non-randomized studies.

• Potential biases are likely to be greater for non-randomized studies compared with
randomized trials when evaluating the effects of interventions, so results should
always be interpreted with caution when they are included in reviews and meta-
analyses.

• Non-randomized studies of interventions vary in their ability to estimate a causal
effect; key design features of studies can distinguish ‘strong’ from ‘weak’ studies.

• Biases affecting non-randomized studies of interventions vary depending on the fea-
tures of the studies.

• We recommend that eligibility criteria, data collection and assessment of included
studies place an emphasis on specific features of study design (e.g. which parts of
the study were prospectively designed) rather than ‘labels’ for study designs (such
as case-control versus cohort).

• Review authors should consider how potential confounders, and how the likelihood of
increased heterogeneity resulting from residual confounding and from other biases
that vary across studies, are addressed in meta-analyses of non-randomized studies.

24.1 Introduction

This chapter aims to support review authors who are considering including non-
randomized studies of interventions (NRSI) in a Cochrane Review. NRSI are defined here
as any quantitative study estimating the effectiveness of an intervention (harm or ben-
efit) that does not use randomization to allocate units (individuals or clusters of

This chapter should be cited as: Reeves BC, Deeks JJ, Higgins JPT, Shea B, Tugwell P, Wells GA. Chapter 24:
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individuals) to intervention groups. Such studies include those in which allocation
occurs in the course of usual treatment decisions or according to peoples’ choices
(i.e. studies often called observational). (The term observational is used in various ways
and, therefore, we discourage its use with respect to NRSI studies; see Box 24.2.a and
Section 24.2.1.3.) Review authors have a duty to patients, practitioners and policy
makers to do their best to provide these groups with a summary of available evidence
balancing harms against benefits, albeit qualified with a certainty assessment. Some
of this evidence, especially about harms of interventions, will often need to come from
NRSI.
NRSI are used by researchers to evaluate numerous types of interventions, ranging

from drugs and hospital procedures, through diverse community health interventions,
to health systems implemented at a national level. There are many types of NRSI. Com-
mon labels attached to them include cohort studies, case-control studies, controlled
before-and-after studies and interrupted-time-series studies (see Section 24.5.1 for a
discussion of why these labels are not always clear and can be problematic). We also
consider controlled trials that use inappropriate strategies of allocating interventions
(sometimes called quasi-randomized studies), and specific types of analysis of non-
randomized data, such as instrumental variable analysis and regression discontinuity
analysis, to be NRSI. We prefer to characterize NRSI with respect to specific study
design features (see Section 24.2.2 and Box 24.2.a) rather than study design labels.
A mapping of features to some commonly used study design labels can be found in
Reeves and colleagues (Reeves et al 2017).
Including NRSI in a Cochrane Review allows, in principle, the inclusion of non-

randomized studies in which the use of an intervention occurs in the course of usual
health care or daily life. These include interventions that a study participant chooses to
take (e.g. an over-the-counter preparation or a health education session). Such studies
also allow exposures to be studied that are not obviously ‘interventions’, such as nutri-
tional choices, and other behaviours that may affect health. This introduces a grey area
between evidence about effectiveness and aetiology.
An intervention review needs to distinguish carefully between aetiological and effec-

tiveness research questions related to a particular exposure. For example, nutritionists
may be interested in the health-related effects of a diet that includes a minimum of five
portions of fruit or vegetables per day (‘five-a-day’), an aetiological question. On the
other hand, public health professionals may be interested in the health-related effects
of interventions to promote a change in diet to include ‘five-a-day’, an effectiveness
question. NRSI addressing the former type of question are often perceived as being
more direct than randomized trials because of other differences between studies
addressing these two kinds of question (e.g. compared with the randomized trials, NRSI
of health behaviours may be able to investigate longer durations of follow-up and out-
comes than become apparent in the short term). However, it is important to appreciate
that they are addressing fundamentally different research questions. Cochrane
Reviews target effects of interventions, and interventions have a defined start time.
This chapter has been prepared by the Cochrane Non-Randomized Studies of Inter-

ventions Methods Group (NRSMG). It aims to describe the particular challenges that
arise if NRSI are included in a Cochrane Review. Where evidence or established theory
indicates a suitable strategy, we propose this strategy; where it does not, we sometimes
offer our recommendations about what to do. Where we do not make any
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recommendations, we aim to set out the pros and cons of alternative actions and to
identify questions for further methodological research.
Review authors who are considering including NRSI in a Cochrane Review should not

start with this chapter unless they are already familiar with the process of preparing a
systematic review of randomized trials. The format and basic steps of a Cochrane
Review should be the same irrespective of the types of study included. The reader is
referred to Chapters 1 to 15 of the Handbook for a detailed description of these steps.
Every step in carrying out a systematic review is more difficult when NRSI are included
and the review team should include one or more people with expert knowledge of the
subject and of NRSI methods.

24.1.1 Why consider non-randomized studies of interventions?

Cochrane Reviews of interventions have traditionally focused mainly on systematic
reviews of randomized trials because they are more likely to provide unbiased informa-
tion about the differential effects of alternative health interventions than NRSI. Reviews
of NRSI are generally undertaken when the question of interest cannot be answered by
a review of randomized trials. Broadly, we consider that there are two main justifica-
tions for including NRSI in a systematic review, covered by the flow diagram shown in
Figure 24.1.a:

1) To provide evidence of the effects (benefit or harm) of interventions that can
feasibly be studied in randomized trials, but for which available randomized trials
address the review question indirectly or incompletely (an element of the GRADE
approach to assessing the certainty of the evidence, see Chapter 14, Section
14.2) (Schünemann et al 2013). Such non-randomized evidence might address,
for example, long-term or rare outcomes, different populations or settings, or ways
of delivering interventions that better match the review question.

2) To provide evidence of the effects (benefit or harm) of interventions that cannot be
randomized, or that are extremely unlikely to be studied in randomized trials. Such
non-randomized evidence might address, for example, population-level interven-
tions (e.g. the effects of legislation; Macpherson and Spinks 2008) or interventions
about which prospective study participants are likely to have strong preferences,
preventing randomization (Li et al 2016).

A third justification for including NRSI in a systematic review is reasonable, but is
unlikely to be a strong reason in the context of a Cochrane Review:

3) To examine the case for undertaking a randomized trial by providing an explicit eval-
uation of the weaknesses of available NRSI. The findings of a review of NRSI may
also be useful to inform the design of a subsequent randomized trial (e.g. through
the identification of relevant subgroups).

Two other reasons sometimes described for including NRSI in systematic reviews are:

4) When an intervention effect is very large.
5) To provide evidence of the effects (benefit or harm) of interventions that can feasibly

be studied in randomized trials, but for which only a small number of randomized
trials is available (or likely to be available).
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We urge caution in invoking either of these justifications. Reason 4, that an effect is
large, is implicitly a result-driven or post-hoc argument, since some evidence or opinion
would need to be available to inform the judgement about the likely size of the effect.
Whilst it can be argued that large effects are less likely to be completely explained by
bias than small effects (Glasziou et al 2007), clinical and economic decisions still need
to be informed by unbiased estimates of the magnitude of these large effects (Reeves
2006). Randomized trials are the appropriate design to quantify large effects (and the
trials need not be large if the effects are truly large). Of course, there may be ethical
opposition to randomized trials of interventions already suspected to be associated
with a large benefit, making it difficult to randomize participants, and interventions
postulated to have large effects may also be difficult to randomize for other reasons
(e.g. surgery versus no surgery). However, the justification for a systematic review
including NRSI in these circumstances can be classified as reason 2 above (i.e. interven-
tions that are unlikely to be randomized).

For each PICO (outcome domain) defined in the protocol,
is there evidence that:

No

Yes

Yes

Yes

Yes

No

No

No

Are there insufficient RCTs addressing the PICO?

Do available RCTs address the PICO indirectly (with respect to protocol-
specified intervention, comparator, outcomes or setting?

Do available NRSI address the PICO directly (with respect to the

protocol-specified intervention, comparator, outcomes or setting?

Include NRSI (+/– RCTs)

Do available NRSI have the study design features required to

address the PICO without critical risk of bias?

ONLY INCLUDE

RCTs

Figure 24.1.a Algorithm to decide whether a review should include non-randomized studies of an
intervention or not
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The appropriateness of reason 5 depends to a large extent on expectations of how the
reviewwill be used in practice. Most Cochrane Reviews seek to identify highly trustworthy
evidence (typically only randomized trials) and if none is found then the review can be
published as an ‘empty review’. However, as Cochrane Reviews also seek to inform clin-
ical and policy decisions, it can be necessary to draw on the ‘best available’ evidence
rather than the ‘highest tier’ of evidence for questions that have a high priority. While
acknowledging the priority to inform decisions, it remains important that the challenges
associated with appraising, synthesizing and interpreting evidence from NRSI, as dis-
cussed in the remainder of this chapter, are well-appreciated and addressed in this sit-
uation. See also Section 24.2.1.3 for further discussion of these issues. Reason 5 is a less
appropriate justification in a review that is not a priority topic where there is a paucity of
evidence from randomized trials alone; in such instances, the potential of NRSI to inform
the review question directly and without a critical risk of bias are paramount.
Review authors may need to apply different eligibility criteria in order to answer dif-

ferent review questions about harms as well as benefits (Chapter 19, Section 19.2.2). In
some reviews the situation may be still more complex, since NRSI specified to answer
questions about benefits may have different design features from NRSI specified to
answer questions about harms (see Section 24.2). A further complexity arises in relation
to the specification of eligible NRSI in the protocol and the desire to avoid an empty
review (depending on the justification for including NRSI).
Whenever review authors decide that NRSI are required to answer one or more review

questions, the review protocol must specify appropriate methods for reviewing NRSI. If a
review aims to include both randomized trials and NRSI, the protocol must specify meth-
ods appropriate for both. Since methods for reviewing NRSI can be complex,we recom-
mend that review authors scope the available NRSI evidence, after registering a title
but in advance of writing a protocol, allowing review authors to check that relevant NRSI
exist and to specify NRSI with the most appropriate study design features in the protocol
(Reeves et al 2013). If the registered title is broadly conceived, this may require detailed
review questions to be formulated in advance of scoping: these are the PICOs for each
synthesis as discussed in Chapter 3 (Section 3.2). Scoping also allows the directness of
the available evidence tobeassessedagainst specific reviewquestions (see Figure 24.1.a).
Basing protocol decisions on scoping creates a small risk that different kinds of
studies are found to be necessary at a later stage to answer the review questions. In such
instances, we recommend completing the review as specified and including other
studies in a planned update, to allow timelines for the completion of a review to be set.
An alternative approach is to write a protocol that describes the review methods to

be used for both randomized trials and NRSI (and all types of NRSI) and to specify the
study design features of eligible NRSI after carrying out searches for both types of
study. We recommend against this approach in a Cochrane Review, largely to minimize
the work required to write the protocol, carry out searches and examine study reports,
and to allow timelines for the completion of a review to be set.

24.1.2 Key issues about the inclusion of non-randomized studies of
interventions in a Cochrane Review

Randomized trials are the preferred design for studying the effects of healthcare
interventions because, in most circumstances, a high-quality randomized trial is
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the study design that is least likely to be biased. All Cochrane Reviews must con-
sider the risk of bias in individual primary studies, whether randomized trials or
NRSI (see Chapters 7, 8 and 25). Some biases apply to both randomized trials
and NRSI. However, some biases are specific (or particularly important) to NRSI,
such as biases due to confounding or selection of participants into the study
(see Chapter 25). The key advantage of a high-quality randomized trial is its ability
to estimate the causal relationship between an experimental intervention (relative
to a comparator) and outcome. Review authors will need to consider (i) the
strengths of the design features of the NRSI that have been used (such as noting
their potential to estimate causality, in particular by inspecting the assumptions
that underpin such estimation); and (ii) the execution of the studies through a care-
ful assessment of their risk of bias. The review team should be constituted so that it
can judge suitability of the design features of included studies and implement a
careful assessment of risk of bias.
Potential biases are likely to be greater for NRSI compared with randomized trials

because some of the protections against bias that are available for randomized trials
are not established for NRSI. Randomization is an obvious example. Randomization
aims to balance prognostic factors across intervention groups, thus preventing con-
founding (which occurs when there are common causes of intervention group assign-
ment and outcome). Other protections include a detailed protocol and a pre-specified
statistical analysis plan which, for example, should define the primary and secondary
outcomes to be studied, their derivation from measured variables, methods for man-
aging protocol deviations and missing data, planned subgroup and sensitivity analyses
and their interpretation.

24.1.3 The importance of a protocol for a Cochrane Review that includes
non-randomized studies of interventions

Chapter 1 (Section 1.5) establishes the importance of writing a protocol before
carrying out the review. Because the methodological choices made during a review
including NRSI are complex and may affect the review findings, a protocol is
even more important for such a review. The rationale for including NRSI (see
Section 24.1.1) should be documented in the protocol. The protocol should include
much more detail than for a review of randomized trials, pre-specifying key method-
ological decisions about the methods to be used and the analyses that are planned.
The protocol needs to specify details that are not as relevant for randomized trials
(e.g. potential confounding domains, important co-interventions, details of the risk-
of-bias assessment and analysis of the NRSI), as well as providing more detail about
standard steps in the review process that are more difficult when including NRSI (e.g.
specification of eligibility criteria and the search strategy for identifying eligible
studies).
We recognize that it may not be possible to pre-specify all decisions about the meth-

ods used in a review. Nevertheless, review authors should aim to make all decisions
about the methods for the review without reference to the findings of primary studies,
and report methodological decisions that had to be made or modified after collecting
data about the study findings.
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24.2 Developing criteria for including non-randomized
studies of interventions

24.2.1 What is different when including non-randomized studies of
interventions?

24.2.1.1 Evaluating benefits and harms
Cochrane Reviews aim to quantify the effects of healthcare interventions, both bene-
ficial and harmful, and both expected and unexpected. The expected benefits of an
intervention can often be assessed in randomized trials. Randomized trials may also
report some of the harms of an intervention, either those that were expected and which
a trial was designed to assess, or those that were not expected but which were col-
lected in a trial as part of standard monitoring of safety. However, many serious harms
of an intervention are rare or do not arise during the follow-up period of randomized
trials, preventing randomized trials from providing high-quality evidence about these
effects, even when combined in a meta-analysis (see Chapter 19 for further discussion
of adverse events). Therefore, one of the most important reasons to include NRSI in a
review is to assess potential unexpected or rare harms of interventions (reason 1 in
Section 24.1.1).
Although widely accepted criteria for selecting appropriate studies for evaluating

rare or long-term adverse and unexpected effects have not been established, some
design features are preferred to reduce the risk of bias. In cohort studies, a preferred
design feature is the ascertainment of outcomes of interest (e.g. an adverse event) from
the onset of an exposure (i.e. the start of intervention); these are sometimes referred to
as inception cohorts. The relative strengths and weaknesses of different study design
features do not differ in principle between beneficial and harmful outcomes, but the
choice of study designs to include may depend on both the frequency of an outcome
and its importance. For example, for some rare or delayed adverse outcomes only case
series or case-control studies may be available. NRSI with some study design features
that are more susceptible to bias may be acceptable for evaluation of serious adverse
events in the absence of better evidence, but the risk of bias must still be assessed and
reported.
Confounding (see Chapter 25, Section 25.2.1) may be less of a threat to the validity of

a reviewwhen researching rare harms or unexpected effects of interventions than when
researching expected effects, since it may be argued that ‘confounding by indication’
mainly influences treatment decisions with respect to outcomes about which the clin-
icians are primarily concerned. However, confounding can never be ruled out because
the same factors that are confounders for the expected effects may also be direct con-
founders for the unexpected effects, or be correlated with factors that are confounders.
A related issue is the need to distinguish between quantifying and detecting an effect

of an intervention. Quantifying the intended benefits of an intervention – maximizing
the precision of the estimate and minimizing susceptibility to bias – is critical when
weighing up the relative merits of alternative interventions for the same condition.
A review should also try to quantify the harms of an intervention, minimizing suscep-
tibility to bias as far as possible. However, if a review can establish beyond reasonable
doubt that an intervention causes a particular harm, the precision and susceptibility to
bias of the estimated effect may not be essential. In other words, the seriousness of the
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harm may outweigh any benefit from the intervention. This situation is more likely to
occur when there are competing interventions for a condition.

24.2.1.2 Including both randomized trials and non-randomized
studies of interventions
When both randomized trials and NRSI are identified that appear to address the same
underlying research question, it is important to check carefully that this is indeed the
case. There are often systematic differences between randomized trials and NRSI
in the PICO elements (MacLehose et al 2000), which may become apparent when
considering the directness (e.g. applicability or generalizability) of the primary studies
(see Chapter 14, Section 14.2.2).
A NRSI can be viewed as an attempt to emulate a hypothetical randomized trial

answering the same question. Hernán and Robins have referred to this as a ‘target’
trial; the target trial is usually a hypothetical pragmatic randomized trial comparing
the health effects of the same interventions, conducted on the same participant
group and without features putting it at risk of bias (Hernán and Robins 2016). Impor-
tantly, a target randomized trial need not be feasible or ethical. This concept is the
foundation of the risk-of-bias assessment for NRSI, and helps a review author to dis-
tinguish between the risk of bias in a NRSI (see Chapter 25) and a lack of directness
of a NRSI with respect to the review question (see Chapter 14, Section 14.2.2). A lack
of directness among randomized trials may be a motivation for including NRSI that
address the review question more directly. In this situation, review authors need to rec-
ognize that discrepancies in intervention effects between randomized trials and NRSI
(and, potentially, between NRSI with different study design features) may arise either
from differential risk of bias or from differences in the specific PICO questions evaluated
by the primary studies.
A single review may include different types of study to address different outcomes,

for example, randomized trials for evaluating benefits and NRSI to evaluate harms; see
Section 24.2.1.1 and Chapter 19 (Section 19.2). Scoping in advance of writing a protocol
should allow review authors to identify whether NRSI are required to address directly
one or more of the PICO questions for a review comparison. In time, as a review is
updated, the NRSI may be dropped if randomized trials addressing these questions
become available.

24.2.1.3 Determining which non-randomized studies of
interventions to include
A randomized trial is a prospective, experimental study design specifically involving ran-
dom allocation of participants to interventions. Although there are variations in rando-
mized trial design (see Chapter 23), they constitute a distinctive study category. By
contrast, NRSI embrace a number of fundamentally different design principles, several
of which were originally conceived in the context of aetiological epidemiology; some
studies combine different principles. As we discuss in Section 24.2.2, study design labels
such as ‘cohort’ or ‘prospective study’ are not consistently applied. The diversity of NRSI
designs raises two related questions. First, should all NRSI relevant to a PICO question
for a planned synthesis be included in a review, irrespective of their study design fea-
tures? Second, if review authors do not include all NRSI, what study design features
should be used as criteria to decide which NRSI to include and which to exclude?
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NRSI vary with respect to their intrinsic ability to estimate the causal effect of an
intervention (Reeves et al 2017, Tugwell et al 2017). Therefore, to reach reliable conclu-
sions, review authors should include only ‘strong’ NRSI that can estimate causality with
minimal risk of bias. It is not helpful to include primary studies in a review when the
results of the studies are highly likely to be biased even if there is no better evidence
(except for justification 3, i.e. to examine the case for performing a randomized trial by
describing the weakness of the NRSI evidence; see Section 24.1.1). This is because a
misleading effect estimate from a systematic review may be more harmful to future
patients than no estimate at all, particularly if the people using the evidence to make
decisions are unaware of its limitations (Doll 1993, Peto et al 1995). Systematic reviews
have a privileged status in the evidence base (Reeves et al 2013), typically sitting
between primary research studies and guidelines (which frequently cite them). There
may be long-term undesirable consequences of reviewing evidence when it is inade-
quate: an evidence synthesis may make it less likely that less biased research will
be carried out in the future, increasing the risk that more poorly informed decisions
will be made than would otherwise have been the case (Stampfer and Colditz 1991,
Siegfried et al 2005).
There is not currently a general framework for deciding which kinds of NRSI will be

used to answer a specific PICO question. One possible strategy is to limit included
NRSI to those that have used a strong design (NRSI with specified design features;
Reeves et al 2017, Tugwell et al 2017). This should give reasonably valid effect esti-
mates, subject to assessment of risk of bias. An alternative strategy is to include the
best available NRSI (i.e. those with the strongest design features among those that
have been carried out) to answer the PICO question. In this situation, we recommend
scoping available NRSI in advance of finalizing study eligibility for a specific review
question and defining eligibility with respect to study design features (Reeves et al
2017). Widespread adoption of the first strategy might result in reviews that consist-
ently include NRSI with the same design features, but some reviews would include
no studies at all. The second strategy would lead to different reviews including
NRSI with different study design features according to what is available. Whichever
strategy is adopted, it is important to explain the choice of included studies in the
protocol. For example, review authors might be justified in using different eligibility
criteria when reviewing the harms, compared with the benefits, of an intervention
(see Chapter 19, Section 19.2).
We advise caution in assessing NRSI according to existing ‘evidence hierarchies’

for studies of effectiveness (Eccles et al 1996, National Health and Medical Research
Council 1999, Oxford Centre for Evidence-based Medicine 2001). These appear to
have arisen largely by applying hierarchies for aetiological research questions to
effectiveness questions and refer to study design labels. NRSI used for studying
the effects of interventions are very diverse and complex (Shadish et al 2002)
and may not be easily assimilated into existing evidence hierarchies. NRSI with dif-
ferent study design features are susceptible to different biases, and it is often
unclear which biases have the greatest impact and how they vary between health-
care contexts. We recommend including at least one expert with knowledge of the
subject and NRSI methods (with previous experience of estimating an intervention
effect from NRSI similar to the ones of interest) on a review team to help to address
these complexities.
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24.2.2 Guidance and resources available to support review authors

Review authors should scope the available NRSI evidence between deciding on the spe-
cific synthesis PICOs that the review will address and finalizing the review protocol (see
Section 24.1.1). Review authors may need to consult with stakeholders about the spe-
cific PICO questions of interest to ensure that scoping is informative. With this informa-
tion, review authors can then use the algorithm (Figure 24.1.a) to decide whether the
review needs to include NRSI and for which questions, enabling review authors to jus-
tify their decision(s) to include or exclude NRSI in their protocol. It will be important to
ensure that the review team includes informedmethodologists. Review authors intend-
ing to review the adverse effects (harms) of an intervention should consult Chapter 19.
We recommend that review authors use explicit study design features (NB: not study

design labels) when deciding which types of NRSI to include in a review. A checklist of
study design features was first drawn up for the designs most frequently used to eval-
uate healthcare interventions (Higgins et al 2013). This checklist has since been revised
to include designs often used to evaluate health systems (Reeves et al 2017) and com-
bines the previous two checklists (for studies with individual and cluster-level alloca-
tion, respectively). Thirty-two items are grouped under seven headings, characterizing
key features of strong and weak study designs (Box 24.2.a). The paper also sets out
which features are associated with NRSI study design labels (acknowledging that these
labels can be used inconsistently). We propose that the checklist be used in the pro-
cesses of data collection and as part of the assessment of the studies (Sections
24.4.2 and 24.6.2).

Box 24.2.a Checklist of study features. Responses to each item should be recorded as:
yes, no, or can’t tell (Reeves et al 2017). Reproduced with permission of Elsevier

1) Was the intervention/comparator (answer ‘yes’ to more than one item, if applicable):

• allocated to (provided for/administered to/chosen by) individuals?

• allocated to (provided for/administered to/chosen by) clusters of individuals?a

• clustered in the way it was provided (by practitioner or organizational unit)?b

2) Were outcome data available (answer ‘yes’ to only one item):

• after intervention/comparator only (same individuals)?

• after intervention/comparator only (not all same individuals)?

• before (once) AND after intervention/comparator (same individuals)?

• before (once) AND after intervention/comparator (not all same individuals)?

• multiple times before AND multiple times after intervention/comparator (same
individuals)?

• multiple times before AND multiple times after intervention/comparator (not all
same individuals)?

3) Was the intervention effect estimated by (answer ‘yes’ to only one item):

• change over time (same individuals at different time-points)?

• change over time (not all same individuals at different time-points)?

• difference between groups (of individuals or clusters receiving either intervention
or comparator)c?

24 Non-randomized studies

604



4) Did the researchers aim to control for confounding (design or analysis) (answer ‘yes’
to only one item):

• using methods that control in principle for any confounding?

• using methods that control in principle for time invariant unobserved
confounding?

• using methods that control only for confounding by observed covariates?
5) Were groups of individuals or clusters formed by (answer ‘yes’ to more than one item,

if applicable)d:

• randomization?

• quasi-randomization?

• explicit rule for allocation based on a threshold for a variable measured on a con-
tinuous or ordinal scale or boundary (in conjunction with identifying the variable
dimension, below)?

• some other action of researchers?

• time differences?

• location differences?

• healthcare decision makers/practitioners?

• participants’ preferences?

• policy maker?

• on the basis of outcome?e

• some other process? (specify)
6) Were the following features of the study carried out after the study was designed

(answer ‘yes’ to more than one item, if applicable):

• characterization of individuals/clusters before intervention?

• actions/choices leading to an individual/cluster becoming a member of a group?e

• assessment of outcomes?
7) Were the following variables measured before intervention (answer ‘yes’ to more

than one item, if applicable):

• potential confounders?

• outcome variable(s)?
a This item describes ‘explicit’ clustering. In randomized controlled trials, participants can be allocated
individually or by virtue of ‘belonging to a cluster such as a primary care practice or a village.
b This item describes ‘implicit’ clustering. In randomized controlled trials, participants can be allocated
individually but with the intervention being delivered in clusters (e.g. group cognitive therapy); similarly,
in a cluster-randomized trial (by general practice), the provision of an intervention could also be
clustered by therapist, with several therapists providing ‘group’ therapy.
c A study should be classified as ‘yes’ for this feature, even if it involves comparing the extent of change
over time between groups.
d The distinction between these options is to do with the exogeneity of the allocation.
e For (nested) case-control studies, group refers to the case/control status of an individual. This option
is not applicable when interventions are allocated to (provided for/administered to/chosen by) clusters.
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Some Cochrane Reviews have limited inclusion of NRSI by study design labels, some-
times in combination with considerations of methodological quality. For example,
Cochrane Effective Practice and Organisation of Care accepts protocols that include
interrupted time series (ITS) and controlled before-and-after (CBA) studies, and speci-
fies some minimum criteria for these types of studies. The risks of using design labels
are highlighted by a recent review that showed that Cochrane Reviews inconsistently
labelled CBA and ITS studies, and included studies that used these labels in highly
inconsistent ways (Polus et al 2017). We believe that these issues will be addressed
by applying the study feature checklist.
Our proposal is that:

1) the review team decides which study design features are desirable in a NRSI to
address a specific PICO question;

2) scoping will indicate the study design features of the NRSI that are available; and
3) the review team sets eligibility criteria based on study design features that represent

an appropriate balance between the priority of the question and the likely strength
of the available evidence.

When both randomized trials and NRSI of an intervention exist in relation to a specific
PICO question and, for one or more of the reasons given in Section 24.1.1, both are
defined as eligible, the results for randomized trials and for NRSI should be presented
and analysed separately. Alternatively, if there is an adequate number of randomized
trials to inform the main analysis for a review question, comments about relevant NRSI
can be included in the Discussion section of a review although the reader needs to be
reassured that NRSI studies are not selectively cited.

24.3 Searching for non-randomized studies of interventions

24.3.1 What is different when including non-randomized
studies of interventions?

24.3.1.1 Identifying non-randomized studies in searches
Searching for NRSI is less straightforward than searching for randomized trials. A broad
search strategy –with search strings for the population and disease characteristics, the
intervention and possibly the comparator – can potentially identify all evidence about
an intervention. When a review aims to include randomized trials only, various
approaches are available to focus the search strategy towards randomized trials
(see Chapter 4, Section 4.4):

1) implement the search within resources, such as the Cochrane Central Register of
Controlled Trials (CENTRAL), that are ‘rich’ in randomized trials;

2) use methodological filters and indexing fields, such as publication type in MEDLINE,
to limit searches to studies that are likely to be randomized trials; and

3) search trials registers.

Restricting the search to NRSI with specific study design features is more difficult. Of
the above approaches, only 1 is likely to be helpful. Some Cochrane Review Groups
maintain specialized trials registers that also include NRSI, only some of which will also
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be found in CENTRAL, and authors of Cochrane Reviews can search these registers
where they are likely to be relevant (e.g. the register of Cochrane Effective Practice
and Organisation of Care). There are no databases of NRSI similar to CENTRAL.
Some review authors have tried to develop and validate methodological filters for

NRSI (strategy 2) but with limited success because NRSI design labels are not reliably
indexed by bibliographic databases and are used inconsistently by authors of primary
studies (Wieland and Dickersin 2005, Fraser et al 2006, Furlan et al 2006). Furthermore,
study design features, which are the preferred approach to determining eligibility of
NRSI for a review, suffer from the same problems. Review authors have also sought
to optimize search strategies for adverse effects (see Chapter 19, Section 19.3)
(Golder et al 2006c, Golder et al 2006b). Because of the time-consuming nature of sys-
tematic reviews that include NRSI, attempts to develop search strategies for NRSI have
not investigated large numbers of review questions. Therefore, review authors should
be cautious about assuming that previous strategies can be applied to new topics.
Finally, although trials registers such as ClinicalTrials.gov do include some NRSI, their

coverage is very low so strategy 3 is unlikely to be very fruitful.
Searching using ‘snowballing’methods may be helpful, if one or more publications of

relevance or importance are known (Wohlin 2014), although it is likely to identify other
evidence about the research question in general rather than studies with similar design
features.

24.3.1.2 Non-reporting biases for non-randomized studies
We are not aware of evidence that risk of bias due to missing evidence affects rando-
mized trials and NRSI differentially. However, it is difficult to believe that publication
bias could affect NRSI less than randomized trials, given the increasing number of safe-
guards associated with carrying out and reporting randomized trials that act to prevent
reporting biases (e.g. pre-specified protocols, ethical approval including progress and
final reports, the CONSORT statement (Moher et al 2001), trials registers and indexing of
publication type in bibliographic databases). These safeguards are much less applica-
ble to NRSI, which may not have been executed according to a pre-specified protocol,
may not require explicit ethical approval, are unlikely to be registered, and do not
always have a research sponsor or funder. The likely magnitude and determinants
of publication bias for NRSI are not known.

24.3.1.3 Practical issues in selecting non-randomized studies for inclusion
Section 24.2.1.3 points out that NRSI include diverse study design features, and that
there is difficulty in categorizing them. Assuming that review authors set specific cri-
teria against which potential NRSI should be assessed for eligibility (e.g. study fea-
tures), many of the potentially eligible NRSI will report insufficient information to
allow them to be classified.
There is a further problem in defining exactly when a NRSI comes into existence. For

example, is a cohort study that has collected data on the interventions and outcome of
interest, but that has not examined their association, an eligible NRSI? Is computer out-
put in a filing cabinet that includes a calculated odds ratio for the relevant association
an eligible NRSI? Consequently, it is difficult to define a ‘finite population of NRSI’ for a
particular review question. Many NRSI that have been done may not be traceable at all,
that is, they are not to be found even in the proverbial ‘bottom drawer’.
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Given these limitations of NRSI evidence, it is tempting to question the benefits of
comprehensive searching for NRSI. It is possible that the studies that are the hardest
to find are the most biased – if being hard to find is associated with design features that
are susceptible to bias – to a greater extent than has been shown for randomized trials
for some topics. It is likely that search strategies can be developed that identify eligible
studies with reasonable precision (see Chapter 4, Section 4.4.3) and are replicable, but
which are not comprehensive (i.e. lack sensitivity). Unfortunately, the risk of bias to
review findings with such strategies has not been researched and their acceptability
would depend on pre-specifying the strategy without knowledge of influential results,
which would be difficult to achieve.

24.3.2 Guidance and resources available to support review authors

We do not recommend limiting search strategies by index terms relating to study design
labels. However, review authors may wish to contact information specialists with
expertise in searching for NRSI, researchers who have reported some success in devel-
oping efficient search strategies for NRSI (see Section 24.3.1) and other review authors
who have carried out Cochrane Reviews (or other systematic reviews) of NRSI for review
questions similar to their own.
When searching for NRSI, review authors are advised to search for studies investigat-

ing all effects of an intervention and not to limit search strategies to specific outcomes
(Chapter 4, Section 4.4.2). When searching for NRSI of specific rare or long-term (usually
adverse or unintended) outcomes of an intervention, including free text and MeSH
terms for specific outcomes in the search strategy may be justified (see Chapter 19,
Section 19.3).
Review authors should check with their Cochrane Review Group editors whether the

Group-specific register includes NRSI with particular study design features and should
seek the advice of information retrieval experts within the Group and in the Information
Retrieval Methods Group (see also Chapter 4).

24.4 Selecting studies and collecting data

24.4.1 What is different when including non-randomized studies?

Search results obtained using search strategies without study design filters are often
much more numerous, and contain large numbers of irrelevant records. Also, abstracts
of NRSI reports often do not provide adequate detail about NRSI study design features
(which are likely to be required to judge eligibility), or some secondary outcomes meas-
ured (such as adverse effects). Therefore, more so than when reviewing randomized
trials, very many full reports of studies may need to be obtained and read in order
to identify eligible studies.
Review authors need to collect the same types of data required for a systematic

review of randomized trials (see Chapter 5, Section 5.3) and will also need to collect
data specific to the NRSI. For a NRSI, review authors should extract the estimate of
intervention effect together with a measure of precision (e.g. a confidence interval)
and information about how the estimate was derived (e.g. the confounders controlled
for). Relevant results can then be meta-analysed using standard software.
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If both unadjusted and adjusted intervention effects are reported, then adjusted
effects should be preferred. It is straightforward to extract an adjusted effect estimate
and its standard error for a meta-analysis if a single adjusted estimate is reported for a
particular outcome in a primary NRSI. However, some NRSI report multiple adjusted
estimates from analyses including different sets of covariates. If multiple adjusted
estimates of intervention effect are reported, the one that is judged to minimize
the risk of bias due to confounding should be chosen (see Chapter 25, Section 25.2.1).
(Simple numerators and denominators, or means and standard errors, for intervention
and control groups cannot control for confounding unless the groups have been
matched on all important confounding domains at the design stage.)
Anecdotally, the experience of review authors is that NRSI are poorly reported so that

the required information is difficult to find, and different review authors may extract
different information from the same paper. Data collection forms may need to be cus-
tomized to the research question being investigated. Restricting included studies to
those that share specific features can help to reduce their diversity and facilitate the
design of customized data collection forms.
As with randomized trials, results of NRSI may be presented using different measures

of effect and uncertainty or statistical significance. Before concluding that informa-
tion required to describe an intervention effect has not been reported, review
authors should seek statistical advice about whether reported information can
be transformed or used in other ways to provide a consistent effect measure
across studies so that this can be analysed using standard software (see
Chapter 6). Data collection sheets need to be able to handle the different kinds of infor-
mation about study findings that review authors may encounter.

24.4.2 Guidance and resources available to support review authors

Data collection for each study needs to cover the following.

1) Data about study design features to demonstrate the eligibility of included studies
against criteria specified in the review protocol. The study design feature checklist
can help to do this (see Section 24.2.2). When using this checklist, whether to decide
on eligibility or for data extraction, the intention should be to document what
researchers did in the primary studies, rather than what researchers called their
studies or think they did. Further guidance on using the checklist is included with
the description of the tool (Reeves et al 2017).

2) Variables measured in a study that characterize confounding domains of interest;
the ROBINS-I tool provides a template for collecting this information (see
Chapter 25, Section 25.3) (Sterne et al 2016).

3) The availability of data for experimental and comparator intervention groups, and
about the co-interventions; the ROBINS-I tool provides a template for collecting
information about co-interventions (see Chapter 25).

4) Data to characterize the directness with which the study addresses the review ques-
tion (i.e. the PICO elements of the study). We recommend that review authors record
this information, then apply a simple template that has been published for doing
this (Schünemann et al 2013, Wells et al 2013), judging the directness of each
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element as ‘sufficient’ on a 4-point categorical scale. (This tool could be used for
scoping and can be applied to randomized trials as well as NRSI.)

5) Data describing the study results (see Section 24.6.1). Capturing these data is likely
to be challenging and data collection will almost certainly need to be customized to
the research question being investigated. Review authors are strongly advised to
pilot the methods they plan to use with studies that cover the expected diversity;
developing the data collection form may require several iterations. It is almost
impossible to finalize these forms in advance. Methods developed at the outset
(e.g. forms or database) may need to be amended to record additional important
information identified when appraising NRSI but overlooked at the outset. Review
authors should record when required data are not available due to poor reporting,
as well as data that are available. Data should be captured describing both unad-
justed and adjusted intervention effects.

24.5 Assessing risk of bias in non-randomized studies

24.5.1 What is different when including non-randomized studies?

Biases in non-randomized studies are a major threat to the validity of findings from a
review that includes NRSI. Key challenges affecting NRSI include the appropriate con-
sideration of confounding in the absence of randomization, less consistent develop-
ment of a comprehensive study protocol in advance of the study, and issues in the
analysis of routinely collected data.
Assessing the risk of bias in a NRSI has long been a challenge and has not always been

performed or performed well. Indeed, two studies of systematic reviews that included
NRSI have commented that only a minority of reviews assessed the methodological
quality of included studies (Audigé et al 2004, Golder et al 2006a).
The process of assessing risk of bias in NRSI is hampered in practice by the quality of

reporting of many NRSI, and – in most cases – by the lack of availability of a protocol.
A protocol is a tool to protect against bias; when registered in advance of a study start-
ing, it proves that aspects of study design and analysis were considered in advance of
starting to recruit (or acquiring historical data), and that data definitions and methods
for standardizing data collection were defined. Primary NRSI rarely report whether the
methods are based on a protocol and, therefore, these protections often do not apply
to NRSI. An important consequence of not having a protocol is the lack of constraint on
researchers with respect to ‘cherry-picking’ outcomes, subgroups and analyses to
report; this can be a source of bias even in randomized trials where protocols exist
(Chan et al 2004).

24.5.2 Guidance and resources available to support review authors

The recommended tool for assessing risk of bias in NRSI included in Cochrane Reviews
is the ROBINS-I tool, described in detail in Chapter 25 (Sterne et al 2016). If review
authors choose not to use ROBINS-I, they should demonstrate that their chosen
method of assessment covers the range of biases assessed by ROBINS-I.
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The ROBINS-I tool involves some preliminary work when writing the protocol.
Notably, review authors will need to specify important confounding domains and
co-interventions. There is no established method for identifying a pre-specified set
of important confounding domains. The list of potential confounding domains should
not be generated solely on the basis of factors considered in primary studies included
in the review (at least, not without some form of independent validation), since the
number of suspected confounders is likely to increase over time (hence, older studies
may be out of date) and researchers themselves may simply choose to measure con-
founders considered in previous studies. Rather, the list should be based on evidence
(although undertaking a systematic review to identify all potential prognostic factors is
extreme) and expert opinion from members of the review team and advisors with con-
tent expertise.
The ROBINS-I assessment involves consideration of several bias domains. Each

domain is judged as low, moderate, serious or critical risk of bias. A judgement of
low risk of bias for a NRSI using ROBINS-I equates to a low risk-of-bias judgement
for a high-quality randomized trial. Few circumstances around a NRSI are likely to give
a similar level of protection against confounding as randomization, and few NRSI have
detailed statistical analysis plans in advance of carrying out analyses. We therefore con-
sider it very unlikely that any NRSI will be judged to be at low risk of bias overall.
Although the bias domains are common to all types of NRSI, specific issues can arise

for certain types of study, such as analyses of routinely collected data, pharmaco-
epidemiological studies. Review authors are advised to consider carefully whether a
methodologist with knowledge of the kinds of study to be included should be recruited
to the review team to help to identify key areas of weakness.

24.6 Synthesis of results from non-randomized studies

24.6.1 What is different when including non-randomized studies?

Review authors should expect greater heterogeneity in a systematic review of NRSI
than a systematic review of randomized trials. This is partly due to the diverse ways
in which non-randomized studies may be designed to investigate the effects of inter-
ventions, and partly due to the increased potential for methodological variation
between primary studies and the resulting variation in their risk of bias. It is very dif-
ficult to interpret the implications of this diversity in the analysis of primary studies.
Some methodological diversity may give rise to bias, for example different methods
for measuring exposure and outcome, or adjustment for more versus fewer important
confounding domains. There is no established method for assessing how, or the extent
to which, these biases affect primary studies (but see Chapters 7 and 25).
Unlike for randomized trials, it will usually be appropriate to analyse adjusted,

rather than unadjusted, effect estimates (i.e. analyses should be selected that
attempt to control for confounding). Review authors may have to choose between
alternative adjusted estimates reported for one study and should choose the one
that minimizes the risk of bias due to confounding (see Chapter 25, Section
25.2.1). In principle, any effect measure used in meta-analysis of randomized trials
can also be used in meta-analysis of non-randomized studies (see Chapter 6). The
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odds ratio will commonly be used as it is the only effect measure for dichotomous
outcomes that can be estimated from case-control studies, and is estimated when
logistic regression is used to adjust for confounders.
One danger is that a very large NRSI of poor methodological quality (e.g. based on

routinely collected data) may dominate the findings of other smaller studies at less
risk of bias (perhaps carried out using customized data collection). Review authors
need to remember that the confidence intervals for effect estimates from larger NRSI
are less likely to represent the true uncertainty of the observed effect than are the
confidence intervals for smaller NRSI (Deeks et al 2003), although there is no way
of estimating or correcting for this. Review authors should exclude from analysis
any NRSI judged to be at critical risk of bias and may choose to include only studies
that are at moderate or low risk of bias, specifying this choice a priori in the review
protocol.

24.6.2 Guidance and resources available to support review authors

24.6.2.1 Combining studies
If review authors judge that included NRSI are at low to moderate overall risk of biases
and relatively homogeneous in other respects, then they may combine results across
studies using meta-analysis (Taggart et al 2001). Decisions about combining results at
serious risk of bias are more difficult to make, and any such syntheses will need to be
presented with very clear warnings about the likelihood of bias in the findings. As
stated earlier, results considered to be at critical risk of bias using the ROBINS-I tool
should be excluded from analyses.
Estimated intervention effects for NRSI with different study design features can be

expected to be influenced to varying degrees by different sources of bias (see
Section 24.6). Results from NRSI with different combinations of study design features
should be expected to differ systematically, resulting in increased heterogeneity. There-
fore, we recommend that NRSI that have very different design features should be
analysed separately. This recommendation implies that, for example, randomized
trials and NRSI should not be combined in a meta-analysis, and that cohort studies
and case-control studies should not be combined in a meta-analysis if they address
different research questions.
An illustration of many of these points is provided by a review of the effects of some

childhood vaccines on overall mortality. The authors analysed randomized trials sep-
arately from NRSI. However, they decided that the cohort studies and case-control
studies were asking sufficiently similar questions to be combined in meta-analyses,
while results from any NRSI that were judged to be at a very high risk of bias were
excluded from the syntheses (Higgins et al 2016). In many other situations, it may
not be reasonable to combine results from cohort studies and case-control studies.
Meta-analysis methods based on estimates and standard errors, and in particular the

generic inverse-variance method, will be suitable for NRSI (see Chapter 10,
Section 10.3). Given that heterogeneity between NRSI is expected to be high because
of their diversity, the random-effects meta-analysis approach should be the default
choice; a clear rationale should be provided for any decision to use the fixed-effect
method.
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24.6.2.2 Analysis of heterogeneity
The exploration of possible sources of heterogeneity between studies should be part of
any Cochrane Review, and is discussed in detail in Chapter 10 (Section 10.11). Non-
randomized studies may be expected to be more heterogeneous than randomized
trials, given the extra sources of methodological diversity and bias. Researchers do
not always make the same decisions concerning confounding factors, so the extent
of residual confounding is an important source of heterogeneity between studies.
There may be differences in the confounding factors considered, the method used
to control for confounding and the precise way in which confounding factors were
measured and included in analyses.
The simplest way to display the variation in results of studies is by drawing a forest

plot (see Chapter 10, Section 10.2.1). Providing that sufficient intervention effect esti-
mates are available, it may be valuable to undertake meta-regression analyses to iden-
tify important determinants of heterogeneity, even in reviews when studies are
considered too heterogeneous to combine. Such analyses could include study design
features believed to be influential, to help to identify methodological features that sys-
tematically relate to observed intervention effects, and help to identify the subgroups
of studies most likely to yield valid estimates of intervention effects. Investigation of
key study design features should preferably be pre-specified in the protocol, based
on scoping.

24.6.2.3 When combining results is judged not to be appropriate
Before undertaking a meta-analysis, review authors should ask themselves the stand-
ard question about whether primary studies are ‘similar enough’ to justify combining
results (see Chapter 9, Section 9.3.2). Forest plots allow the presentation of estimates
and standard errors for each study, and in most software (including RevMan) it is pos-
sible to omit summary estimates from the plots, or include them only for subgroups of
studies. Providing that effect estimates from the included studies can be expressed
using consistent effect measures, we recommend that review authors display individ-
ual study results for NRSI with similar study design features using forest plots, as a
standard feature. If consistent effect measures are not available or calculable, then
additional tables should be used to present results in a systematic format (see also
Chapter 12, Section 12.3).
If the features of studies are not sufficiently similar to combine in a meta-analysis

(which is expected to be the norm for reviews that include NRSI), we recommend dis-
playing the results of included studies in a forest plot but suppressing the summary
estimate (see Chapter 12, Section 12.3.2). For example, in a review of the effects of cir-
cumcision on risk of HIV infection, a forest plot illustrated the result from each study
without synthesizing them (Siegfried et al 2005). Studies may be sorted in the forest
plot (or shown in separate forest plots) by study design feature, or their risk of bias.
For example, the circumcision studies were separated into cohort studies, cross-
sectional studies and case-control studies. Heterogeneity diagnostics and investiga-
tions (e.g. testing and quantifying heterogeneity, the I2 statistic and meta-regression
analyses) are worthwhile even when a judgement has been made that calculating a
pooled estimate of effect is not (Higgins et al 2003, Siegfried et al 2003).
Non-statistical syntheses of quantitative intervention effects (see Chapter 12) are

challenging, however, because it is difficult to set out or describe results without being
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selective or emphasizing some findings over others. Ideally, authors should set out in
the review protocol how they plan to use narrative synthesis to report the findings of
primary studies.

24.7 Interpretation and discussion

24.7.1 What is different when including non-randomized studies?

As highlighted at the outset, review authors have a duty to summarize available evi-
dence about interventions, balancing harms against benefits and qualified with a cer-
tainty assessment. Some of this evidence, especially about harms of interventions, will
often need to come from NRSI. Nevertheless, obtaining definitive results about the
likely effects of an intervention based on NRSI alone can be difficult (Deeks et al
2003). Many reviews of NRSI conclude that an ‘average’ effect is not an appropriate
summary (Siegfried et al 2003), that evidence from NRSI does not provide enough cer-
tainty to demonstrate effectiveness or harm (Kwan and Sandercock 2004) and that ran-
domized trials should be undertaken (Taggart et al 2001). Inspection of the risk-of-bias
judgements for the individual domains addressed by the ROBINS-I tool should help
interpretation, and may highlight the main ways in which NRSI are limited (Sterne
et al 2016).
Challenges arise at all stages of conducting a review of NRSI: deciding which study

design features should be specified as eligibility criteria, searching for studies, asses-
sing studies for potential bias, and deciding how to synthesize results. A review author
needs to satisfy the reader of the review that these challenges have been adequately
addressed, or should discuss how and why they cannot bemet. In this section, the chal-
lenges are illustrated with reference to issues raised in the different sections of this
chapter. The Discussion section of the review should address the extent to which
the challenges have been met.

24.7.1.1 Have important and relevant studies been included?
Even if the choice of eligible study design features can be justified, it may be difficult to
show that all relevant studies have been identified because of poor indexing and incon-
sistent use of study design labels or poor reporting of design features by researchers.
Comprehensive search strategies that focus only on the health condition and interven-
tion of interest are likely to result in a very long list of bibliographic records including
relatively few eligible studies; conversely, restrictive strategies will inevitably miss some
eligible studies. In practice, available resources may make it impossible to process the
results from a comprehensive search, especially since review authors will often have to
read full papers rather than abstracts to determine eligibility. The implications of using
a more or less comprehensive search strategy are not known.

24.7.1.2 Has the risk of bias to included studies been adequately assessed?
Interpretation of the results of a review of NRSI should include consideration of the
likely direction and magnitude of bias, although this can be challenging to do. Some
of the biases that affect randomized trials also affect NRSI but typically to a greater
extent. For example, attrition in NRSI is often worse (and poorly reported), intervention
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and outcome assessment are rarely conducted according to standardized protocols,
outcomes are rarely assessed blind to the allocation to intervention and comparator,
and there is typically little protection against selection of the reported result. Too often
these limitations of NRSI are seen as part of doing a NRSI, and their implications for risk
of bias are not properly considered. For example, some users of evidence may consider
NRSI that investigate long-term outcomes to have ‘better quality’ than randomized
trials of short-term outcomes, simply on the basis of their directness without appraising
their risk of bias; long-term outcomes may address the review question(s) more
directly, but may do so with a considerable risk of bias.
We recommend using the ROBINS-I tool to assess the risk of bias because of the con-

sensus among a large team of developers that it covers all important bias domains. This
is not true of any other tool to assess the risk of bias in NRSI. The importance of indi-
vidual bias domains may vary according to the review question; for example, confound-
ing may be less likely to arise in NRSI studies of long-term or adverse effects, or some
public health primary prevention interventions.
As with randomized trials, one clue to the presence of bias is notable between-study

heterogeneity. Although heterogeneity can arise through differences in participants,
interventions and outcome assessments, the possibility that bias is the cause of het-
erogeneity in reviews of NRSI must be seriously considered. However, lack of hetero-
geneity does not indicate lack of bias, since it is possible that a consistent bias applies
in all studies.
Predicting the direction of bias (within each bias domain) is an optional element of

the ROBINS-I tool. This is a subject of ongoing research which is attempting to gather
empirical evidence on factors (such as study design features and intervention type) that
determine the size and direction of the biases. The ability to predict both the likelymag-
nitude of bias and the likely direction of bias would greatly improve the usefulness of
evidence from systematic reviews of NRSI. There is currently some evidence that in lim-
ited circumstances the direction, at least, can be predicted (Henry et al 2001).

24.7.2 Evaluating the strength of evidence provided by reviews that include
non-randomized studies

Assembling the evidence from NRSI on a particular health question enables informed
debate about its meaning and importance, and the certainty that can be attributed to
it. Critically, there needs to be a debate about whether the findings could be mislead-
ing. Formal hierarchies of evidence all place NRSI lower than randomized trials, but
above those of clinical opinion (Eccles et al 1996, National Health and Medical Research
Council 1999, Oxford Centre for Evidence-based Medicine 2001). This emphasizes the
general concern about biases in NRSI, and the difficulties of attributing causality to
the observed associations between intervention and outcome.
In preference to these traditional hierarchies, the GRADE approach is recommended

for assessing the certainty of a body of evidence in Cochrane Reviews, and is summar-
ized in Chapter 14 (Section 14.2). There are four levels of certainty: ‘high’, ‘moderate’,
‘low’ and ‘very low’. A collection of studies begins with an assumption of ‘high’ certainty
(with the introduction of ROBINS-I, this includes collections of NRSI) (Schünemann et al
2018). The certainty is then rated down in the presence of serious concerns about
study limitations (risk of bias), indirectness of evidence, heterogeneity, imprecision
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or publication bias. In practice, the final rating for a body of evidence based on NRSI is
typically rated as ‘low’ or ‘very low’.
Application of the GRADE approach to systematic reviews of NRSI requires expertise

about the design of NRSI due to the nature of the biases that may arise. For example,
the strength of evidence for an association may be enhanced by a subset of primary
studies that have tested considerations about causality not usually applied to rando-
mized trial evidence (Bradford Hill 1965), or use of negative controls (Jackson et al
2006). In some contexts, little prognostic information may be known, limiting identifi-
cation of possible confounding (Jefferson et al 2005).
Whether the debate concludes that the evidence from NRSI is adequate for informed

decision making or that there is a need for randomized trials will depend on the value
placed on the uncertainty arising through use of potentially biased NRSI, and the col-
lective value of the observed effects. The GRADE approach interprets certainty as the
certainty that the effect of the intervention is large enough to reach a threshold for
action. This value may depend on the wider healthcare context. It may not be possible
to include assessments of the value within the review itself, and it may become evident
only as part of the wider debate following publication.
For example, is evidence from NRSI of a rare serious adverse effect adequate to

decide that an intervention should not be used? The evidence has low certainty
(due to a lack of randomized trials) but the value of knowing that there is the possibility
of a potentially serious harm is considerable, and may be judged sufficient to withdraw
the intervention. (It is worth noting that the judgement about withdrawing an interven-
tion may depend on whether equivalent benefits can be obtained from elsewhere with-
out such a risk; if not, the intervention may still be offered but with full disclosure of the
potential harm.) Where evidence of benefit is also uncertain, the value attached to a
systematic review of NRSI of harm may be even greater.
In contrast, evidence of a small benefit of a novel intervention from a systematic

review of NRSI may not be sufficient for decision makers to recommend widespread
implementation in the face of the uncertainty of the evidence and the costs arising from
provision of the intervention. In these circumstances, decision makers may conclude
that randomized trials should be undertaken to improve the certainty of the evidence
if practicable and if the investment in the trial is likely to be repaid in the future.

24.7.3 Guidance for potential review authors

Carrying out a systematic review of NRSI is likely to require complex decisions, often
necessitating members of the review team with content knowledge and methodolog-
ical expertise about NRSI at each stage of the review. Potential review authors should
therefore seek to collaborate with methodologists, irrespective of whether a review
aims to investigate harms or benefits, short-term or long-term outcomes, frequent
or rare events.
Review teamsmay be keen to include NRSI in systematic reviews in areas where there

are few or no randomized trials because they have the ambition to improve the
evidence-base in their specialty areas (a key motivation for many Cochrane Reviews).
However, for reviews of NRSI to estimate the effects of an intervention on short-term
and expected outcomes, review authors should also recognize that the resources
required to do a systematic review of NRSI are likely to be much greater than for a
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systematic review of randomized trials. Inclusion of NRSI to address some review ques-
tions will be invaluable in addressing the broad aims of a review; however, the conclu-
sions in relation to some review questions are likely to be much weaker and may make
a relatively small contribution to the topic. Therefore, review authors and Cochrane
Review Group editors need to decide at an early stage whether the investment of
resources is likely to be justified by the priority of the research question.
Bringing together the required team of healthcare professionals and methodologists

may be easier for systematic reviews of NRSI to estimate the effects of an intervention
on long-term and rare adverse outcomes, for example when considering the side
effects of drugs. A review of this kind is likely to provide important missing evidence
about the effects of an intervention in a priority area (i.e. adverse effects). However,
these reviews may require the input of additional specialist authors, for example with
relevant content pharmacological expertise. There is a pressing need in many health
conditions to supplement traditional systematic reviews of randomized trials of effec-
tiveness with systematic reviews of adverse (unintended) effects. It is likely that these
systematic reviews will usually need to include NRSI.
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Assessing risk of bias in a
non-randomized study
Jonathan AC Sterne, Miguel A Hernán, Alexandra McAleenan, Barnaby C Reeves,
Julian PT Higgins

KEY POINTS

• The Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) tool is recom-
mended for assessing the risk of bias in non-randomized studies of interventions
included in Cochrane Reviews.

• Review authors should specify important confounding domains and co-interventions
of concern in their protocol.

• At the start of a ROBINS-I assessment of a study, review authors should describe a
‘target trial’, which is a hypothetical pragmatic randomized trial of the interven-
tions compared in the study, conducted on the same participant group and with-
out features putting it at risk of bias.

• Assessment of risk of bias in a non-randomized study should address
pre-intervention, at-intervention, and post-intervention features of the study. The
issues related to post-intervention features are similar to those in randomized trials.

• Many features of ROBINS-I are shared with the RoB 2 tool for assessing risk of bias in
randomized trials. It focuses on a specific result, is structured into a fixed set of
domains of bias, includes signalling questions that inform risk of bias judgements
and leads to an overall risk-of-bias judgement.

• Based on answers to the signalling questions, judgements for each bias domain,
and for overall risk of bias, can be ‘Low’, ‘Moderate’, ‘Serious’ or ‘Critical’ risk
of bias.

• The full guidance documentation for the ROBINS-I tool, including the latest variants
for different study designs, is available at www.riskofbias.info.
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25.1 Introduction

Cochrane Reviews often include non-randomized studies of interventions (NRSI), as
discussed in detail in Chapter 24. Risk of bias should be assessed for each included
study (see Chapter 7). The Risk Of Bias In Non-randomized Studies of Interventions
(ROBINS-I) tool (Sterne et al 2016) is recommended for assessing risk of bias in a NRSI:
it provides a framework for assessing the risk of bias in a single result (an estimate of
the effect of an experimental intervention compared with a comparator intervention on
a particular outcome). Many features of ROBINS-I are shared with the RoB 2 tool for
assessing risk of bias in randomized trials (see Chapter 8).
Evaluating risk of bias in results of NRSI requires both methodological and content

expertise. The process is more involved than for randomized trials, and the participa-
tion of both methodologists with experience in the relevant study designs or design
features, and health professionals with knowledge of prognostic factors that influence
intervention decisions for the target patient or population group, is recommended (see
Chapter 24). At the planning stage, the review question must be clearly articulated, and
important potential problems in NRSI relevant to the review should be identified. This
includes a preliminary specification of important confounders and co-interventions
(see Section 25.3.1). Each study should then be carefully examined, considering all
the ways in which its results might be put at risk of bias.
In this chapter we summarize the biases that can affect NRSI and describe the main

features of the ROBINS-I tool. Since the initial version of the tool was published in 2016
(Sterne et al 2016), developments to it have continued. At the time of writing, a new
version is under preparation, with variants for several types of NRSI design. The full
guidance documentation for the ROBINS-I tool, including the latest variants for dif-
ferent study designs, is available at www.riskofbias.info.

25.1.1 Defining bias in a non-randomized study

We define bias as the systematic difference between the study results obtained from an
NRSI and a pragmatic randomized trial (both with a very large sample size), addressing
the same question and conducted on the same participant group, that had no flaws in
its conduct. Defined in this way, bias is distinct from issues of indirectness (applicabil-
ity, generalizability or transportability to types of individuals who were not included in
the study; see Chapter 14) and distinct from chance. For example, restricting the study
sample to individuals free of comorbidities may limit the utility of its findings because
they cannot be generalized to clinical practice, where comorbidities are common. How-
ever, such restriction does not bias the results of the study in relation to individuals free
of comorbidities.
Evaluations of risk of bias in the results of NRSI are thus facilitated by considering

each NRSI as an attempt to emulate (mimic) a hypothetical ‘target’ randomized trial
(see also Section 25.3.2). This is the hypothetical pragmatic randomized trial that com-
pares the health effects of the same interventions, conducted on the same participant
group and without features putting it at risk of bias (Institute of Medicine 2012, Hernán
and Robins 2016). Importantly, a target randomized trial need not be feasible or ethical.
For example, there would be no problem specifying a target trial that randomized
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individuals to receive tobacco cigarettes or no cigarettes to examine the effects of
smoking, even though such a trial would not be ethical in practice. Similarly, there
would be no problem specifying a target trial that randomized multiple countries to
implement a ban on smoking in public places, even though this would not be feasible
in practice.

25.2 Biases in non-randomized studies

When a systematic review includes randomized trials, its results correspond to the causal
effects of the interventions studied provided that the trials have no bias. Randomization
is used to avoid an influence of either known or unknown prognostic factors (factors that
predict the outcome, such as severity of illness or presence of comorbidities) on inter-
vention group assignment. There is greater potential for bias in NRSI than in randomized
trials. A key concern is the possibility of confounding (see Section 25.2.1). NRSI may also
be affected by biases that are referred to in the epidemiological literature as selection
bias (see Section 25.2.2) and information bias (see Section 25.2.3). Furthermore, we are
at least as concerned about reporting biases aswe are when including randomized trials
(see Section 25.2.4).

25.2.1 Confounding

Confounding occurs when there are common causes of the choice of intervention and
the outcome of interest. In the presence of confounding, the association between inter-
vention and outcome differs from its causal effect. This difference is known as con-
founding bias. A confounding domain (or, more loosely, a ‘confounder’) is a pre-
intervention prognostic factor (i.e. a variable that predicts the outcome of interest) that
also predicts whether an individual receives one or the other interventions of interest.
Some common examples are severity of pre-existing disease, presence of comorbid-
ities, healthcare use, physician prescribing practices, adiposity, and socio-economic
status.
Investigators measure specific variables (often also referred to as confounders) in an

attempt to control fully or partly for these confounding domains. For example, baseline
immune function and recent weight loss may be used to adjust for disease severity;
hospitalizations and number of medical encounters in the six months preceding base-
line may be used to adjust for healthcare use; geographic measures to adjust for phy-
sician prescribing practices; body mass index and waist-to-hip ratio to adjust for
adiposity; and income and education to adjust for socio-economic status.
The confounding domains that are important in the context of particular interven-

tions may vary across study settings. For example, socio-economic status might be
an important confounder in settings where cost or having insurance cover affects
access to health care, but might not introduce confounding in studies conducted in
countries in which access to the interventions of interest is universal and therefore
socio-economic status does not influence intervention received.
Confounding may be overcome, in principle, either by design (e.g. by restricting eligi-

bility to individuals who all have the same value of the baseline confounders) or –more
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commonly – through statistical analyses that adjust (‘control’) for the confounder(s).
Adjusting for factors that are not confounders, and in particular adjusting for
variables that could be affected by intervention (‘post-intervention’ variables), may
introduce bias.
In practice, confounding is not fully overcome. First, residual confounding occurs

when a confounding domain is measured with error, or when the relationship between
the confounding domain and the outcome or exposure (depending on the analytic
approach being used) is imperfectly modelled. For example, in a NRSI comparing
two antihypertensive drugs, we would expect residual confounding if pre-intervention
blood pressure was measured three months before the start of intervention, but
the blood pressures used by clinicians to decide between the drugs at the point of
intervention were not available in our dataset. Second, unmeasured confounding
occurs when a confounding domain has not been measured at all, or is not controlled
for in the analysis. This would be the case if no pre-intervention blood pressure
measurements were available, or if the analysis failed to control for pre-intervention
blood pressure despite it being measured. Unmeasured confounding can usually
not be excluded, because we are seldom certain that we know all the confounding
domains.
When NRSI are to be included in a review, review authors should attempt to pre-

specify important confounding domains in their protocol. The identification of poten-
tial confounding domains requires subject-matter knowledge. For example, experts on
surgery are best-placed to identify prognostic factors that are likely to be related to the
choice of a surgical strategy. We recommend that subject-matter experts be included in
the team writing the review protocol, and we encourage the listing of confounding
domains in the review protocol, based on initial discussions among the review authors
and existing knowledge of the literature.

25.2.2 Selection bias

Selection bias occurs when some eligible participants, or some follow-up time of some
participants, or some outcome events, are excluded in a way that leads to the associ-
ation between intervention and outcome in the NRSI differing from the association that
would have been observed in the target trial. This phenomenon is distinct from that of
confounding, although the term selection bias is sometimes used to mean confound-
ing. Selection biases occur in NRSI either due to selection of participants or follow-up
time into the study (addressed in the ‘Bias in selection of participants into the study’
domain), or selection of participants or follow-up time out of the study (addressed
in the ‘Bias due to missing data’ domain).
Our use of the term ‘selection bias’ is intended to refer only to bias that would arise

even if the effect of interest were null, that is, biases that are internal to the study, and
not to issues of indirectness (generalizability, applicability or transferability to people
who were excluded from the study) (Schünemann et al 2013).
Selection bias occurs when selection of participants or follow-up time is related to

both intervention and outcome. For example, studies of folate supplementation dur-
ing pregnancy to prevent neural tube defects in children were biased because they only
included mothers and children if children were born alive (Hernán et al 2002). The bias
arose because having a live birth (rather than a stillbirth or therapeutic abortion, for
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which outcome data were not available) is related to both the intervention (because
folate supplementation increases the chance of a live birth) and the outcome (because
the presence of neural tube defects makes a live birth less likely) (Velie and Shaw 1996,
Hernán et al 2002).
Selection bias can also occur when some follow-up time is excluded from the anal-

ysis. For example, there is potential for bias when prevalent users of an intervention
(those already receiving the intervention), rather than incident (new) users are included
in analyses comparing themwith non-users. This is a type of selection bias that has also
been termed inception bias or lead time bias. If participants are not followed from
assignment of the intervention (inception), as they would be in a randomized trial, then
a period of follow-up has been excluded, and individuals who experienced the outcome
soon after starting the intervention will be missing from analyses.
Selection bias may also arise because ofmissing data due to, among other reasons,

attrition (loss to follow-up), missed appointments, incomplete data collection and by
participants being excluded from analysis by primary investigators. In NRSI, data may
be missing for baseline characteristics (including interventions received or baseline
confounders), for pre-specified co-interventions, for outcome measurements, for other
variables involved in the analysis or a combination of these. Specific considerations for
missing data broadly follow those established for randomized trials and described in
the RoB 2 tool for randomized trials (see Chapter 8).

25.2.3 Information bias

Bias may be introduced if intervention status is misclassified, or if outcomes are mis-
classified or measured with error. Such bias is often referred to as information bias or
measurement bias. Errors in classification (or measurement) may be non-differential
or differential, and in general we are more concerned about such errors when they are
differential. Differential misclassification of intervention status occurs when mis-
classifications are related to subsequent outcome or to risk of the outcome. Differen-
tial misclassification (or measurement error) in outcomes occurs when it is related
to intervention status.
Misclassification of intervention status is seldom a problem in randomized trials

and other experimental studies, because interventions are actively assigned by the
researcher and their accurate recording is a key feature of the study. However, in obser-
vational studies information about interventions allocated or received must be ascer-
tained. To prevent differential misclassification of intervention status it is important
that, wherever possible, interventions are defined and categorized without knowledge
of subsequent outcomes. A well-known example of differential misclassification, when
knowledge of subsequent outcomes might affect classification of interventions, is
recall bias in a case-control study: cases may be more likely than controls to recall
potentially important events or report exposure to risk factors they believe to be
responsible for their disease. Differential misclassification of intervention status can
occur in cohort studies if it is obtained retrospectively. This can happen if information
(or availability of information) on intervention status is influenced by outcomes: for
example a cohort study in elderly people in which the outcome is dementia, and par-
ticipants’ recall of past intervention status at study inception was affected by pre-
existingmild cognitive impairment. Such problems can be avoided if information about
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intervention status is collected at the time of the intervention and the information is
complete and accessible to those undertaking the NRSI.
Bias in measurement of the outcome is often referred to as detection bias. Exam-

ples of situations in which such bias can arise are if (i) outcome assessors are aware of
intervention status (particularly when assessment of the outcome is subjective);
(ii) different methods (or intensities of observation) are used to assess outcomes in
the different intervention groups; and (iii) measurement errors are related to interven-
tion status (or to a confounder of the intervention-outcome relationship). Blinding of
outcome assessors aims to prevent systematic differences in measurements between
intervention groups but is frequently not possible or not performed in NRSI.

25.2.4 Reporting bias

Concerns over selection of the reported results from NRSI reflect the same concerns as
for randomized trials (see Chapter 7 and Chapter 8, Section 8.7). Selective reporting typ-
ically arises from a desire for findings to be newsworthy, or sufficiently noteworthy to
merit publication: this could be the case if previous evidence (or a prior hypothesis) is
either supported or contradicted. Although there is a lack of empirical evidence of selec-
tive reporting in NRSI compared with randomized trials, it is difficult to imagine that the
problem is any less serious for NRSI. Many NRSI do not have written protocols, andmany
are exploratory so – by design – involve inspecting many associations between interven-
tion and outcome.
Selection of the reported result will lead to bias if it is based on the P value, magni-

tude or direction of the intervention effect estimate. Bias due to selection of the out-
come measure occurs when an effect estimate for a particular outcome is selected
from among multiple measurements, for example when a measurement is made at
a number of time points or using multiple scales. Bias due to selection of the analysis
occurs when the reported results are selected from intervention effects estimated in
multiple ways, such as analyses of both change scores and post-intervention scores
adjusted for baseline, or multiple analyses with adjustment for different sets of poten-
tial confounders. Finally, there may be selective reporting of a subgroup of partici-
pants, selected from a larger NRSI, for which results are reported on the basis of a more
interesting finding.
The separate issue of bias due to missing results, where non-reporting of study out-

comes or whole studies is related to the P value, magnitude or direction of the inter-
vention effect estimate, is addressed outside the framework of the ROBINS-I tool, and is
described in detail in Chapter 13.

25.3 The ROBINS-I tool

25.3.1 At protocol stage: listing the confounding domains and the possible
co-interventions

Review authors planning a ROBINS-I assessment should list important confounding
domains in their protocol. Relevant confounding domains are the prognostic factors
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(predictors of the outcome) that also predict whether an individual receives one or the
other intervention of interest.
Review authors are also encouraged to list important co-interventions in their pro-

tocol. Relevant co-interventions are the interventions or exposures that individuals
might receive after or with initiation of the intervention of interest, which are related
to the intervention received and which are prognostic for the outcome of interest.
Therefore, co-interventions are a type of confounder, which we consider separately
to highlight its importance.
Important confounders and co-interventions are likely to be identified both through

the knowledge of subject-matter experts who are members of the review team, and
through initial (scoping) reviews of the literature. Discussions with health professionals
who make intervention decisions for the target patient or population groups may also
be helpful. Assessment of risk of bias may, for some domains, rely heavily on expert
opinion rather than empirical data: this means that consensus may not be reached
among experts with different opinions. Nonetheless use of ROBINS-I should help struc-
ture discussions about risk of bias and make disagreements explicit.

25.3.2 Specifying a target trial specific to the study

ROBINS-I requires that review authors explicitly identify the interventions that would be
compared in the hypothetical target trial that the NRSI is trying to emulate (see
Section 25.1.1). Often the description of these interventions will require subject-matter
knowledge, because information provided by the investigators of the observational study
is insufficient todefine the target trial. For example, NRSI authorsmay refer to ‘use of ther-
apy [A],’whichdoes not directly correspond to the intervention ‘prescribe therapy [A]’ that
wouldbe tested inan intention-to-treat analysis of the target trial. Meaningful assessment
of risk of bias is problematic in the absence of well-defined interventions.

25.3.3 Specifying the nature of the effect of interest

In the target trial, the effect of interest will be either the effect of assignment to the inter-
ventions at baseline, regardless of the extent to which the interventions were received as
intended, or the effect of adhering to the interventions as specified in the study protocol
(seeChapter8,Section8.2.2).Riskofbiaswill beassessed in relationtooneof theseeffects.
The choice of effect of interest is adecisionof the reviewauthors. However, itmaybe influ-
enced by the analyses that produced the NRSI result being assessed, because the result
may correspond more closely to one of the effects of interest and would, therefore, be at
greater risk of bias with respect to the alternative effect of interest.
In a randomized trial, these two effects may be interpreted as the intention-to-treat

(ITT) effect and the per protocol effect (see also Chapter 8, Section 8.2.2). Analogues
of these effects can be defined for NRSI. For example, the ITT effect can be approxi-
mated by the effect of prescribing experimental intervention versus prescribing compar-
ator intervention. When prescription information is not available, the ITT effect can be
approximated by the effect of starting the experimental intervention versus starting
comparator intervention, which corresponds to the ITT effect in a trial in which parti-
cipants assigned to an intervention always start the intervention. An analogue of the
effect of adhering to the intervention as described in the trial protocol is (starting and)
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adhering to experimental intervention versus (starting and) adhering to comparator
intervention unless medical reasons (e.g. toxicity) indicate discontinuation.
For both NRSI and randomized trials, unbiased estimation of the effect of adhering to

sustained interventions (interventions that continue over time, such as daily ingestion
of a drug intervention) requires appropriate adjustment for prognostic factors (‘time-
varying confounders’) that predict deviations from the intervention after the start of
follow-up (baseline). Review authors should seek specialist advice when assessing
intervention effects estimated using methods that adjust for time-varying confounding.
When the effect of interest is that of assignment to the intervention (or starting inter-

vention at baseline), risk-of-bias assessments need not be concerned with post-
baseline deviations from intended interventions that reflect the natural course of
events. For example, a departure from an allocated intervention that was clinically nec-
essary because of a sudden worsening of the patient’s condition does not lead to bias.
The only post-baseline deviation that may lead to bias are the potentially biased
actions of researchers arising from the experimental context. Observational studies
estimating the effect of assignment to intervention from routine data should therefore
have no concerns about post-baseline deviations from intended interventions.
By contrast, when the effect of interest is adhering to the intended intervention, risk-

of-bias assessments of both NRSI and randomized trials should consider post-baseline
deviations from the intended interventions, including lack of adherence and differences
in additional interventions (co-interventions) between intervention groups.

25.3.4 Domains of bias

The domains included in ROBINS-I cover all types of bias that are currently understood
to affect the results of NRSI. Each domain is mandatory, and no additional domains
should be added. Table 25.3.a lists the bias domains covered by the tool for most types
of NRSI. Versions of the tool are available, or in development, for several types of NRSI,
and the variant selected should be appropriate to the key features of the study being
assessed (see latest details at www.riskofbias.info).
In commonwith RoB 2 (Chapter 8, Section 8.2.3), the tool comprises, for each domain:

1) a series of ‘signalling questions’;
2) a judgement about risk of bias for the domain, which is facilitated by an algorithm

that maps responses to the signalling questions to a proposed judgement;
3) free text boxes to justify responses to the signalling questions and risk-of-bias

judgements; and
4) an option to predict (and explain) the likely direction of bias.

The signalling questions aim to elicit information relevant to the risk-of-bias judge-
ment for the domain, and work in the same way as for RoB 2 (see Chapter 8,
Section 8.2.3). The response options are:

• yes;

• probably yes;

• probably no;

• no;

• no information.
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Table 25.3.a Bias domains included in the ROBINS-I tool

Bias domain Category of bias Explanation

Pre-intervention domains

Bias due to confounding Confounding Baseline confounding occurs when one or more
prognostic variables (factors that predict the
outcome of interest) also predicts the intervention
received at baseline. ROBINS-I can also address
time-varying confounding, which occurs when
post-baseline prognostic factors affect the
intervention received after baseline.

Bias in selection of
participants into the
study

Selection bias When exclusion of some eligible participants, or
the initial follow-up time of some participants,
or some outcome events, is related to both
intervention and outcome, there will be an
association between interventions and outcome
even if the effect of interest is truly null. This
type of bias is distinct from confounding.
A specific example is bias due to the inclusion of
prevalent users, rather than new users, of an
intervention.

At-intervention domain

Bias in classification of
interventions

Information bias Bias introduced by either differential or non-
differential misclassification of intervention status.
Non-differential misclassification is unrelated to
the outcome and will usually bias the estimated
effect of intervention towards the null. Differential
misclassification occurs when misclassification of
intervention status is related to the outcome or the
risk of the outcome.

Post-intervention domains

Bias due to deviations
from intended
interventions

Confounding Bias that arises when there are systematic
differences between experimental intervention
and comparator groups in the care provided,
which represent a deviation from the intended
intervention(s). Assessment of bias in this
domain will depend on the effect of interest
(either the effect of assignment to intervention or
the effect of adhering to intervention).

Bias due to missing data Selection bias Bias that arises when later follow-up is missing for
individuals initially included and followed (e.g.
differential loss to follow-up that is affected by
prognostic factors); bias due to exclusion of
individuals with missing information about
intervention status or other variables such as
confounders.

(Continued)
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Based on these responses to the signalling questions, the options for a domain-level
risk-of-bias judgement are ‘Low’, ‘Moderate’, ‘Serious’ or ‘Critical’ risk of bias, with
an additional option of ‘No information’ (see Table 25.3.b). These differ from the
risk-of-bias judgements for the RoB 2 tool (Chapter 8, Section 8.2.3).
Note that a judgement of ‘Low risk of bias’ corresponds to the absence of bias in a

well-performed randomized trial, with regard to the domain being considered. This cat-
egory thus provides a reference for risk-of-bias assessment in NRSI in particular for the
‘pre-intervention’ and ‘at-intervention’ domains. Because of confounding, we antici-
pate that only rarely will design or analysis features of a non-randomized study lead
to a classification of low risk of bias when studying the intended effects of interventions
(on the other hand, confounding may be a less serious concern when studying unin-
tended effects of intervention (Institute of Medicine 2012)). By contrast, since random-
ization does not protect against post-intervention biases, we expect more overlap
between assessments of randomized trials and assessments of NRSI for the post-
intervention domains. Nonetheless other features of randomized trials that are usually
not feasible in NRSI, such as blinding of participants, health professionals or outcome
assessors, may make NRSI more at risk of post-intervention biases.

Table 25.3.a (Continued)

Bias domain Category of bias Explanation

Bias in measurement of
the outcome

Information bias Bias introduced by either differential or non-
differential errors in measurement of outcome
data. Such bias can arise when outcome assessors
are aware of intervention status, if different
methods are used to assess outcomes in different
intervention groups, or if measurement errors are
related to intervention status or effects.

Bias in selection of the
reported result

Reporting bias Selective reporting of results from among multiple
measurements of the outcome, analyses or
subgroups in a way that depends on the findings.

Table 25.3.b Reaching a risk-of-bias judgement for an individual bias domain

Risk-of-bias
judgement Interpretation

Low risk of bias The study is comparable to a well-performed randomized trial with regard to
this domain.

Moderate risk
of bias

The study is sound for a non-randomized study with regard to this domain but
cannot be considered comparable to a well-performed randomized trial.

Serious risk
of bias

The study has some important problems in this domain.

Critical risk
of bias

The study is too problematic in this domain to provide any useful evidence on
the effects of intervention.

No information No information onwhich to base a judgement about risk of bias for this domain.
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As for RoB 2, a free text box alongside the signalling questions and judgements pro-
vides space for review authors to present supporting information for each response.
Brief, direct quotations from the text of the study report should be used whenever
possible.
The tool includes an optional component to judge the direction of the bias for each

domain and overall. For some domains, the bias is most easily thought of as being
towards or away from the null. For example, suspicion of selective non-reporting of
statistically non-significant results would suggest bias away from the null. However,
for other domains (in particular confounding, selection bias and forms of measurement
bias such as differential misclassification), the bias needs to be thought of as an
increase or decrease in the effect estimate to favour either the experimental interven-
tion or comparator compared with the target trial, rather than towards or away from
the null. For example, confounding bias that decreases the effect estimate would be
towards the null if the true risk ratio were greater than 1, and away from the null if
the risk ratio were less than 1. If review authors do not have a clear rationale for judging
the likely direction of the bias, they should not attempt to guess it and should leave this
response blank.

25.3.5 Reaching an overall risk-of-bias judgement for a result

The response options for an overall risk-of-bias judgement for a result, across all
domains, are the same as for individual domains. Table 25.3.c shows the approach
to mapping risk-of-bias judgements within domains to an overall judgement for the
outcome.
Judging a result to be at a particular level of risk of bias for an individual domain

implies that the result has an overall risk of bias at least this severe. For example, a

Table 25.3.c Reaching an overall risk-of-bias judgement for a specific outcome

Overall
risk-of-bias
judgement Interpretation Criterion

Low risk of
bias

The study is comparable to a well-performed
randomized trial.

The study is judged to be at low
risk of bias for all domains for this
result.

Moderate
risk of bias

The study appears to provide sound
evidence for a non-randomized study but
cannot be considered comparable to a well-
performed randomized trial.

The study is judged to be at low or
moderate risk of bias for all
domains.

Serious risk
of bias

The study has one or more important
problems.

The study is judged to be at serious
risk of bias in at least one domain,
but not at critical risk of bias in any
domain.

Critical risk
of bias

The study is too problematic to provide any
useful evidence and should not be included
in any synthesis.

The study is judged to be at critical
risk of bias in at least one domain.
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judgement of ‘Serious’ risk of bias within any domain implies that the concerns iden-
tified have serious implications for the result overall, irrespective of which domain is
being assessed. In practice this means that if the answers to the signalling questions
yield a proposed judgement of ‘Serious’ or ‘Critical’ risk of bias, review authors should
consider whether any identified problems are of sufficient concern to warrant this
judgement for that result overall. If this is not the case, the appropriate action would
be to retain the answers to the signalling questions but override the proposed default
judgement and provide justification.
‘Moderate’ risk of bias in multiple domains may lead review authors to decide on an

overall judgement of ‘Serious’ risk of bias for that outcome or group of outcomes, and
‘Serious’ risk of bias in multiple domains may lead review authors to decide on an over-
all judgement of ‘Critical’ risk of bias.
Once an overall judgement has been reached for an individual study result, this infor-

mation should be presented in the review and reflected in the analysis and conclusions.
For discussion of the presentation of risk-of-bias assessments and how they can be
incorporated into analyses, see Chapter 7. Risk-of-bias assessments also feed into
one domain of the GRADE approach for assessing certainty of a body of evidence,
as discussed in Chapter 14.

25.4 Risk of bias in follow-up (cohort) studies

As discussed in Chapter 24 (Section 24.2), labels such as ‘cohort study’ can be incon-
sistently applied and encompass many specific study designs. For this reason, these
terms are generally discouraged in Cochrane Reviews in favour of using specific fea-
tures to describe how the study was designed and analysed. For the purposes of
ROBINS-I, we define a category of studies, which we refer to as follow-up studies, that
refers to studies in which participants are followed up from the start of intervention up
to a later time for ascertainment of outcomes of interest. This includes inception cohort
studies (in which participants are identified at the start of intervention), non-
randomized controlled trials, many analyses of routine healthcare databases, and ret-
rospective cohort studies.
The issues covered by ROBINS-I for follow-up studies are summarized in Table 25.4.a.

A distinctive feature of a ROBINS-I assessment of follow-up studies is that it addresses
both baseline confounding (the most familiar type) and time-varying confounding.
Baseline confounding occurs when one or more pre-intervention prognostic factors
predict the intervention received at start of follow-up. A pre-intervention variable is
one that is measured before the start of interventions of interest. For example, a cohort
study comparing two antiretroviral drug regimens for HIV should control for CD4 cell
count measured before the start of antiretroviral therapy, because this is strongly prog-
nostic for the outcomes AIDS and death, and is also likely to influence choice of reg-
imen. Baseline confounding is likely to be an issue in most NRSI.
In some NRSI, particularly those based on routinely collected data, participants

switch between the interventions being compared over time, and the follow-up time
from these individuals is divided between the intervention groups according to the
intervention received at any point in time. If post-baseline prognostic factors affect
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Table 25.4.a Bias domains included in the ROBINS-I tool for follow-up studies, with a summary of the
issues addressed

Bias domain Issues addressed*

Bias due to confounding Whether:

• the review author should consider baseline confounding only,
or both baseline confounding and time-varying confounding
(arising in studies in which follow-up time is split according to
the intervention being received);

• all important confounding domains were controlled for;

• the confounding domains were measured validly and reliably
by the variables available; and

• appropriate analysis methods were used to control for the
confounding.

Bias in selection of participants
into the study

Whether:

• selection of participants into the study (or into the analysis)
was based on participant characteristics observed after the
start of intervention;

• (if applicable) these characteristics were associated with
intervention and influenced by outcome (or a cause of the
outcome);

• start of follow-up and start of intervention were the
same; and

• (if applicable) adjustment techniques were used to correct for
the presence of selection biases.

Bias in classification of
interventions

Whether:

• intervention status was classified correctly for all (or nearly
all) participants;

• information used to classify intervention groups was
recorded at the start of the intervention; and

• classification of intervention status could have been
influenced by knowledge of the outcome or risk of the
outcome.

Bias due to deviations from
intended interventions

When the review authors’ interest is in the effect of assignment to
intervention (see Section 25.3.3):
Whether:

• there were deviations from the intended intervention
because of the experimental context (i.e. deviations that do
not reflect usual practice); and, if so, whether they were
balanced between groups and likely to have affected the
outcome.

When the review authors’ interest is in the effect of adhering to
intervention (see Section 25.3.3):
Whether:

• important co-interventions were balanced across
intervention groups;

• failures in implementing the intervention could have affected
the outcome and were unbalanced across intervention
groups;

(Continued)
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the interventions to which the participants switch, then this can lead to time-varying
confounding. For example, suppose a study of patients treated for HIV partitions
follow-up time into periods during which patients were receiving different antiretroviral
regimens and compares outcomes during these periods in the analysis. Post-baseline

Table 25.4.a (Continued)

Bias domain Issues addressed*

• study participants adhered to the assigned intervention
regimen and if not whether non-adherence was unbalanced
across intervention groups; and

• (if applicable) an appropriate analysis was used to estimate
the effect of adhering to the intervention.

Bias due to missing data Whether:

• the number of participants omitted from the analysis due to
missing outcome data was small;

• the number of participants omitted from the analysis due to
missing data on intervention status was small;

• the number of participants omitted from the analysis due to
missing data on other variables needed for the analysis
was small;

• (if applicable) there was evidence that the result was not
biased by missing outcome data; and

• (if applicable) missingness in the outcome was likely to
depend on the true value of the outcome (e.g. because of
different proportions of missing outcome data, or different
reasons for missing outcome data, between intervention
groups).

Bias in measurement of the
outcome

Whether:

• the method of measuring the outcome was inappropriate;

• measurement or ascertainment of the outcome could have
differed between intervention groups;

• outcome assessors were aware of the intervention received
by study participants; and

• (if applicable) assessment of the outcome could have been
influenced by knowledge of intervention received; and
whether this was likely.

Bias in selection of the reported
result

Whether:

• the numerical result being assessed is likely to have been
selected, on the basis of the results, from multiple outcome
measurements within the outcome domain;

• the numerical result being assessed is likely to have been
selected, on the basis of the results, from multiple analyses
of the data; and

• the numerical result being assessed is likely to have been
selected, on the basis of the results, from multiple subgroups
of a larger cohort.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full ROBINS-I
tool at www.riskofbias.info.
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CD4 cell counts might influence switches between the regimens of interest. When such
post-baseline prognostic variables are affected by the interventions themselves (e.g.
antiretroviral regimen may influence post-baseline CD4 count), we say that there is
treatment-confounder feedback. This implies that conventional adjustment (e.g.
Poisson or Cox regression models) is not appropriate as a means of controlling for
time-varying confounding. Other post-baseline prognostic factors, such as adverse
effects of an intervention, may also predict switches between interventions.
Note that a change from the baseline intervention may result in switching to an inter-

vention other than the alternative of interest in the study (i.e. from experimental inter-
vention to something other than the comparator intervention, or from comparator
intervention to something other than the experimental intervention). If follow-up time
is re-allocated to the alternative intervention in the analysis that produced the result
being assessed for risk of bias, then there is a potential for bias arising from time-
varying confounding. If follow-up time was not allocated to the alternative interven-
tion, then the potential for bias is considered either (i) under the domain ‘Bias due
to deviations from intended interventions’ if interest is in the effect of adhering to inter-
vention and the follow-up time on the subsequent intervention is included in the analysis,
or (ii) under ‘Bias due to missing data’ if the follow-up time on the subsequent interven-
tion is excluded from the analysis.

25.5 Risk of bias in uncontrolled before-after studies
(including interrupted time series)

In some studiesmeasurements of the outcome variable are made both before and after
an intervention takes place. Themeasurements may bemade on individuals, clusters of
individuals, or administrative entities according to the unit of analysis of the study.
There may be only one unit, several units or many units. Here, we consider only uncon-
trolled studies in which all units contributing to the analysis received the (same) inter-
vention. Controlled versions of these studies are covered in Section 25.6.
This category of studies includes interrupted time series (ITS) studies (Kontopantelis

et al 2015, Polus et al 2017). ITS studies collect longitudinal data measured at an aggre-
gate level (across participants within one ormore units), with severalmeasurement times
before implementation of the intervention, and several measurement times after imple-
mentation of the intervention. These studies might be characterized as uncontrolled,
repeated cross-sectional designs, where the population of interest may be defined geo-
graphically or through interaction with a health service, and measures of activity or out-
comes may include different individuals at each time point. A specific time point known
as the ‘interruption’ defines the distinction between ‘before’ (or ‘pre-intervention’) and
‘after’ (or ‘post-intervention’) time points. Specifying the exact time of this interruption
can be challenging, especially when an intervention hasmany phases or when periods of
preparation of the interventionmay result in progressive changes in outcomes (e.g. when
there are debates and processes leading to a new law or policy). The data from an ITS are
typically a single time series, andmay be analysed using time series methods (e.g. ARIMA
models). In an ITS analysis, the ‘comparator group’ is constructed by making assump-
tions about the trajectory of outcomes had there been no intervention (or interruption),
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based on patterns observed before the intervention. The intervention effect is estimated
by comparing the observed outcome trajectory after intervention with the assumed tra-
jectory had there been no intervention.
The category also includes studies in which multiple individuals are each measured

before and after receiving an intervention: there may be several pre- and post-
intervention measurements. These studies might be characterized as uncontrolled, lon-
gitudinal designs (alternatively they may be referred to as repeated measures studies,
before-after studies, pre-post studies or reflexive control studies). One special case is
a study with a single pre-intervention outcome measurement and a single post-
intervention outcome measurement for each of multiple participants. Such a study will
usually be judged to be at serious or critical risk of bias because it is impossible to deter-
mine whether pre-post changes are due to the intervention rather than other factors.
The main issues addressed in a ROBINS-I evaluation of an uncontrolled before-after

study are summarized below and in Table 25.5.a. We address issues only for the effect
of assignment to intervention, since we do not expect uncontrolled before-after studies
to examine the effect of starting and adhering to the intended intervention.

• There is a possibility that extraneous events or changes in context occur around the
time at which the intervention is introduced. Bias will be introduced if these external
forces influence the outcome. This issue is addressed under the first domain of
ROBINS-I (‘Bias due to confounding’).

• There should be sufficient data to extrapolate from outcomes before the intervention
into the future. ‘Sufficient’ means enough time points, over a sufficient period of
time, to characterize trends and patterns. This issue is also addressed under ‘Bias
due to confounding’.

• ITS analyses require specification of a specific time point (the ‘interruption’) before
which there was no intervention (pre-intervention period) and after which there
has been an intervention (the post-intervention period). However, interventions do
not happen instantaneously, so this time point may be before, or after, some impor-
tant features of the intervention were implemented. The time point could be selected
to maximize the apparent effect: this issue is covered primarily in the domain ‘Bias in
classification of the intervention’ but is also relevant to ‘Bias in selection of the
reported result’ since researchers could conduct analyses with different interruption
points and report that which maximizes the support for their hypothesis).

• The interruption time point might be before important features of the intervention
have been implemented, so that there is a delay before the intervention is fully effec-
tive. Such lagging of effects should not be regarded as bias, but is rather an issue of
applicability of some of the measurement times. Lagging effects can be accommo-
dated in analyses if sufficient post-intervention measurements are available, for
example by excluding data from a phase-in period of the intervention.

• The interruption time point might be after important features of the intervention
have been implemented: for example, if anticipation of a policy change alters
people’s behaviour so that there is early impact of the intervention before its main
implementation. Such effects will attenuate differences between pre- and post-
intervention outcomes. We address this issue as a type of contamination of the
pre-intervention period by aspects of the intervention and consider it under ‘Bias
due to deviations from the intended intervention’.
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• Changes in administrative procedures related to collection of outcome data (e.g.
bookkeeping, changes to success criteria) may coincide with the intervention.
This is addressed under ‘Bias in measurement of the outcome’. Further outcome
measurement issues include ‘evaluation apprehension’, for example, when aware-
ness of past responses to questionnaires influences subsequent responses.

Table 25.5.a Bias domains included in the ROBINS-I tool for (uncontrolled) before-after studies, with a
summary of the issues addressed

Bias domain
Additional or different issues addressed compared with
follow-up studies*

Bias due to confounding Whether:

• measurements of outcomes were made at sufficient
pre-intervention time points to permit characterization
of pre-intervention trends and patterns;

• there are extraneous events or changes in context around
the time of the intervention that could have influenced the
outcome; and

• the study authors used an appropriate analysis method that
accounts for time trends and patterns, and controls for all the
important confounding domains.

Bias in selection of participants
into the study • The issues are similar to those for follow-up studies. For

studies that prospectively follow a specific group of units
from pre-intervention to post-intervention, selection bias is
unlikely. For repeated cross-sectional surveys of a
population, there is the potential for selection bias even if
the study is prospective.

Bias in classification of
interventions • Whether specification of the distinction between

pre-intervention time points and post-intervention time
points could have been influenced by the outcome data.

Bias due to deviations from
intended interventions

Assuming the review authors’ interest is in the effect of
assignment to intervention (see Section 25.3.3):

• Whether the effects of any preparatory (pre-interruption)
phases of the intervention were appropriately
accounted for.

Bias due to missing data • Whether outcome data were missing for whole clusters
(units of multiple individuals) as well as for individual
participants.

Bias in measurement of the
outcome

Whether:

• methods of outcome assessment were comparable before
and after the intervention; and

• there were changes in systematic errors in measurement of
the outcome coincident with implementation of the
intervention.

Bias in selection of the reported
result • The issues are the same as for follow-up studies.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full ROBINS-I
tool at www.riskofbias.info.
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• The intervention might cause attrition from the framework or system used to meas-
ure outcomes. This is a bias due to selection out of the study, and is addressed in the
domain ‘Bias due to missing data’.

25.6 Risk of bias in controlled before-after studies

Studies in which: (i) units are non-randomly allocated to a group that receives an inter-
vention or to an alternative group that receives nothing or a comparator intervention;
and (ii) at least one measurement of the outcome variable is made in both groups
before and after implementation of the intervention are often known as controlled
before-after studies (CBAs) (Eccles et al 2003, Polus et al 2017). The comparator
group(s) may be contemporaneous or not. This category also includes controlled
interrupted time series (CITSs) (Lopez Bernal et al 2018). The units included in the
study may be individuals, clusters of individuals, or administrative units. The interven-
tion may be at the level of the individual unit or at some aggregate (cluster) level. Stud-
ies may follow the same units over time (sometimes referred to as within-person or
within-unit longitudinal designs) or look at (possibly) different units at the different
time points (sometimes referred to as repeated cross-sectional designs, where the pop-
ulation of interest may be defined geographically or through interaction with a health
service, and may include different individuals over time).
A common analysis of CBA studies is a ‘difference in differences’ analysis, in which

before-after differences in the outcome (possibly averaged over multiple units) are con-
trasted between the intervention and comparator groups. The outcomemeasurements
before and after intervention may be single observations, means, or measures of trend
or pattern. The assumption underlying such an analysis is that the before-after change
in the intervention group is equivalent to the before-after change in the comparator
group, except for any causal effects of the intervention; that is, that the pre-post inter-
vention difference in the comparator group reflects what would have happened in the
intervention group had the intervention not taken place.
Themain issues addressed in a ROBINS-I evaluation of a controlled before-after study

are summarized below and in Table 25.6.a.

• The occurrence of extraneous events around the time of intervention may differ
between the intervention and comparator groups. This is addressed under ‘Bias
due to confounding’.

• Trends and patterns of the outcome over time may differ between the intervention
and comparator groups. The plausibility of this threat to validity can be assessed if
more than one pre-intervention measurement of the outcome is available: the more
measurements, the better the pre-intervention trends can be modelled and com-
pared between groups. This issue is also addressed under ‘Bias due to confounding’.

• If the definition of the intervention and comparator groups depends on pre-
intervention outcome measurements (e.g. if individuals with high values are selected
for intervention and those with low values for the comparator), regression to the
mean may be confused with a treatment effect. The plausibility of this threat can
be assessed by having more than one pre-intervention measurement. This is
addressed under ‘Bias due to confounding’.
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• There is a risk of selection bias in repeated cross-sectional surveys if the types of par-
ticipants/units included in repeated surveys changes over time, and such changes
differ between intervention and comparator groups. Changes might occur contem-
poraneously with the intervention if it causes (or requires) attrition from the meas-
urement framework. These issues are addressed under ‘Bias due to selection of
participants into the study’ and ‘Bias due to missing data’.

• Outcome measurement methods might change between pre- and post-intervention
periods. This issue may complicate analyses if it occurs in the intervention and

Table 25.6.a Bias domains included in the ROBINS-I tool for controlled before-after studies, with a
summary of the issues addressed

Bias domain
Additional or different issues addressed compared with follow-
up studies*

Bias due to confounding Whether:

• measurements of outcomes were made at sufficiently many
time points, in both the intervention and comparator groups,
to permit characterization of pre-intervention trends and
patterns;

• any extraneous events or changes in context around the time
of the intervention that could have influenced the outcome
were experienced equally by both intervention groups; and

• pre-intervention trends and patterns in outcomes were
analysed appropriately and found to be similar across the
intervention and comparator groups.

Bias in selection of participants
into the study • The issues are similar to those for follow-up studies. For

repeated cross-sectional surveys of a population, there is
the potential for selection bias if changes in the types of
participants/units included in repeated surveys differ
between intervention and comparator groups.

Bias in classification of
interventions • Whether classification of time points as before versus after

intervention could have been influenced by post-
intervention outcome data.

Bias due to deviations from
intended interventions

Assuming the review authors’ interest is in the effect of
assignment to intervention (see Section 25.3.3):

• The issues are the same as for follow-up studies.
Bias due to missing data • Whether outcome data were missing for whole clusters as

well as for individual participants.

Bias in measurement of the
outcome

Whether:

• methods of outcome assessment were comparable across
intervention groups and before and after the
intervention; and

• there were changes in systematic errors in measurement of
the outcome coincident with implementation of the
intervention.

Bias in selection of the reported
result • The issues are the same as for follow-up studies.

∗ For the precise wording of signalling questions and guidance for answering each one, see the full ROBINS-I
tool at www.riskofbias.info.
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comparator groups at the same time but is a threat to validity if it differs between
them. This is addressed under ‘Bias due to measurement of the outcome’.

• Poor specification of the time point before which there was no intervention and after
which there has been an intervention may introduce bias. This is addressed under
‘Bias in classification of interventions’.

25.7 Chapter information

Authors: Jonathan AC Sterne, Miguel A Hernán, Alexandra McAleenan, Barnaby
C Reeves, Julian PT Higgins

Acknowledgements: ROBINS-I was developed by a large collaborative group, and we
acknowledge the contributions of Jelena Savović, Nancy Berkman, Meera Viswanathan,
David Henry, Douglas Altman, Mohammed Ansari, Rebecca Armstrong, Isabelle
Boutron, Iain Buchan, James Carpenter, An-Wen Chan, Rachel Churchill, Jonathan
Deeks, Roy Elbers, Atle Fretheim, Jeremy Grimshaw, Asbjørn Hróbjartsson, Jemma
Hudson, Jamie Kirkham, Evan Kontopantelis, Peter Jüni, Yoon Loke, Luke McGuinness,
JoMcKenzie, LaurenceMoore, Matt Page, Theresa Pigott, Stephanie Polus, Craig Ramsay,
Deborah Regidor, Eva Rehfuess, Hannah Rothstein, Lakhbir Sandhu, Pasqualina
Santaguida, Holger Schünemann, Beverley Shea, Sasha Shepperd, Ian Shrier, Hilary
Thomson, Peter Tugwell, Lucy Turner, Jeffrey Valentine, Hugh Waddington, Elizabeth
Waters, George Wells, Penny Whiting and David Wilson.

Funding: Development of ROBINS-I was funded by a Methods Innovation Fund grant
from Cochrane and by Medical Research Council (MRC) grant MR/M025209/1. JACS, BCR
and JPTH are members of the National Institute for Health Research (NIHR) Biomedical
Research Centre at University Hospitals Bristol NHS Foundation Trust and the Univer-
sity of Bristol, the NIHR Collaboration for Leadership in Applied Health Research and
Care West (CLAHRC West) at University Hospitals Bristol NHS Foundation Trust, and the
MRC Integrative Epidemiology Unit at the University of Bristol. JACS and JPTH received
funding from NIHR Senior Investigator awards NF-SI-0611-10168 and NF-SI-0617-10145,
respectively. JPTH and AM are funded in part by Cancer Research UK (grant C18281/
A19169). The views expressed are those of the authors and not necessarily those of
the NHS, the NIHR, the Department of Health, the MRC or Cancer Research UK.

25.8 References

Eccles M, Grimshaw J, Campbell M, Ramsay C. Research designs for studies evaluating the
effectiveness of change and improvement strategies. Quality and Safety in Health Care
2003; 12: 47–52.

Hernán MA, Hernandez-Diaz S, Werler MM, Mitchell AA. Causal knowledge as a prerequisite
for confounding evaluation: an application to birth defects epidemiology. American
Journal of Epidemiology 2002; 155: 176–184.

25 Risk of bias in a non-randomized study

640



Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is
not available. American Journal of Epidemiology 2016; 183: 758–764.

Institute of Medicine. Ethical and Scientific Issues in Studying the Safety of Approved Drugs.
Washington (DC): The National Academies Press; 2012.

Kontopantelis E, Doran T, Springate DA, Buchan I, Reeves D. Regression based quasi-
experimental approach when randomisation is not an option: interrupted time series
analysis. BMJ 2015; 350: h2750.

Lopez Bernal J, Cummins S, Gasparrini A. The use of controls in interrupted time series
studies of public health interventions. International Journal of Epidemiology 2018; 47:
2082–2093.

Polus S, Pieper D, Burns J, Fretheim A, Ramsay C, Higgins JPT, Mathes T, Pfadenhauer LM,
Rehfuess EA. Heterogeneity in application, design, and analysis characteristics was found
for controlled before-after and interrupted time series studies included in Cochrane
reviews. Journal of Clinical Epidemiology 2017; 91: 56–69.

Schünemann HJ, Tugwell P, Reeves BC, Akl EA, Santesso N, Spencer FA, Shea B, Wells G,
Helfand M. Non-randomized studies as a source of complementary, sequential or
replacement evidence for randomized controlled trials in systematic reviews on the
effects of interventions. Research Synthesis Methods 2013; 4: 49–62.

Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman
DG, Ansari MT, Boutron I, Carpenter JR, Chan AW, Churchill R, Deeks JJ, Hróbjartsson A,
Kirkham J, Jüni P, Loke YK, Pigott TD, Ramsay CR, Regidor D, Rothstein HR, Sandhu L,
Santaguida PL, Schünemann HJ, Shea B, Shrier I, Tugwell P, Turner L, Valentine JC,
Waddington H, Waters E, Wells GA, Whiting PF, Higgins JPT. ROBINS-I: a tool for assessing
risk of bias in non-randomized studies of interventions. BMJ 2016; 355: i4919.

Velie EM, Shaw GM. Impact of prenatal diagnosis and elective termination on prevalence
and risk estimates of neural tube defects in California, 1989–1991. American Journal of
Epidemiology 1996; 144: 473–479.

25.8 References

641



26

Individual participant data
Jayne F Tierney, Lesley A Stewart, Mike Clarke; on behalf of the Cochrane Individual
Participant Data Meta-analysis Methods Group

KEY POINTS

• Individual participant data (IPD) reviews are a specific type of systematic review that
involve the collection, checking and re-analysis of the original data for each participant
in each study. Data may be obtained either from study investigators or via data-sharing
repositories or platforms.

• IPD reviews should be considered when the available published or other aggregate
data do not permit a good quality review, or are insufficient for a thorough analysis.
In certain situations, aggregate data synthesis might be an appropriate first step.

• The IPD approach can bring substantial improvements to the quality of data available
and offset inadequate reporting of individual studies. Risk of bias can be assessed
more thoroughly and IPD enables more detailed and flexible analysis than is possible
in systematic reviews of aggregate data.

• Access to IPD offers scope to analyse data and report results in many different ways, so
analytical methods should be pre-specified in detail and reporting should follow the
PRISMA-IPD guideline.

• Most commonly, IPD reviews are carried out by a collaborative group, comprising a
project management team, the researchers who contribute their study data, and
an advisory group.

• An IPD reviewusually takes longer and costsmore thana conventional systematic review
of the same question, and requires a range of skills to obtain, manage and analyse data.
Thus, they are difficult to do without dedicated time and funding.

26.1 Introduction

26.1.1 What is an IPD review?

Systematic reviews incorporating individual participant data (IPD) include the original
data from each eligible study. The IPD will usually contain de-identified demographic

This chapter should be cited as: Tierney JF, Stewart LA, Clarke M. Chapter 26: Individual participant data.
In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook
for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019: 643–658.
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information for each participant such as age, sex, nature of their health condition, as well
as information about treatments or tests received and outcomes observed (Stewart et al
1995, Stewart and Tierney 2002). These data can then be checked and analysed centrally
and, if appropriate, combined in meta-analyses (Stewart et al 1995, Stewart and Tierney
2002). Most commonly, IPD are sought directly from the study investigators, but access
through data-sharing platforms and data repositories may increase in the coming years.
Advantages of an IPD approach are summarized in Table 26.1.a. Compared with

aggregate data, the collection of IPD can bring about substantial improvements to

Table 26.1.a Advantages of the IPD approach to systematic review and meta-analysis. Adapted
from Tierney et al (2015a). (https://journals.plos.org/plosmedicine/article?id=10.1371/journal.
pmed.1001855 licensed under CC BY 4.0).

Aspect of systematic
review/meta-analysis Advantages of the IPD approach

Study inclusion Asking the IPD collaborative group (of study investigators and other experts
in the clinical field) to supplement list of identified studies.*
Clarify study eligibility with trial investigators.*

Data quality Include studies that are unpublished or not reported in full.
Include unreported data (e.g. more outcomes per study, and more complete
information on those outcomes, data on participants excluded from study
analyses).
Check the integrity of study IPD and resolve any queries with investigators.
Derive standardized outcome definitions across studies or translate different
definitions to a common scale.
Derive standardized classifications of participant characteristics or their
disease/condition or translate different definitions to a common scale.
Update follow-up of time-to-event or other outcomes beyond that reported.

Risk of bias Clarify study design, conduct and analysis methods with trial investigators.*
Check risk of bias of study IPD and obtain extra data where necessary.

Analysis Analyse all important outcomes.
Determine validity of analysis assumptions with IPD (e.g. proportionality of
hazards for a Cox model).
Derive measures of effect directly from the IPD.
Use a consistent unit of analysis for each study.
Apply a consistent method of analysis for each study.
Conduct more detailed analysis of time-to-event outcomes (e.g. generating
Kaplan-Meier curves).
Achieve greater power for assessing interactions between effects of
interventions and participant or disease/condition characteristics.
Conduct more complex analyses not (usually) possible with aggregate data
(e.g. simultaneous assessment of the relationship between multiple study
and/or participant characteristics and effects of interventions).
Use non-standard models or measures of effect.
Account for missing data at the patient level (e.g. using multiple imputation).
Use IPD to address secondary clinical questions (e.g. to explore the natural
history of disease, prognostic factors or surrogate outcomes).

Interpretation Discuss implications for clinical practice and research with amultidisciplinary
group of collaborators including study investigators who supplied data.

∗ These may also be done for non-IPD reviews.
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the quantity and quality of data, for example, through the inclusion of more trials, par-
ticipants and outcomes (Debray et al 2015a, Tierney et al 2015a). A Cochrane Method-
ology Review of empirical research shows some of these advantages (Tudur Smith et al
2016). IPD also affords greater scope and flexibility in the analyses, including the ability
to investigate how participant-level covariates such as age or severity of disease might
alter the impact of the treatment, exposure or test under investigation (Debray et al
2015a, Debray et al 2015b, Tierney et al 2015a). With such better-quality data and anal-
ysis, IPD reviews can help to provide in-depth explorations and robust meta-analysis
results, which may differ from those based on aggregate data (Tudur Smith et al
2016). Not surprisingly then, IPD reviews have had a substantial impact on clinical prac-
tice and research, but could be better used to inform treatment guidelines (Vale et al
2015), and new studies (Tierney et al 2015b). However, IPD reviews can take longer than
other reviews; those evaluating the effects of therapeutic interventions typically taking
at least two years to complete. Also, they usually require a skilled team with dedicated
time and specific funding.
This chapter provides an overview of the IPD approach to systematic reviews, to help

authors decide whether collecting IPD might be useful and feasible for their review. As
most IPD reviews have assessed the efficacy of interventions, and have been based on
randomized trials, this is the focus of the chapter. However, the approach also offers par-
ticular advantages for the synthesis of diagnostic and prognostic studies (Debray et al
2015a) and many of the principles described will apply to these sorts of synthesis.
The chapter does not provide detailed guidance on practical or statistical methods,
which are summarized elsewhere (Stewart et al 1995, Stewart and Tierney 2002, Debray
et al 2015b, Tierney et al 2015a). Therefore, anyone contemplating carrying out their first
IPD meta-analysis as part of a Cochrane Review should seek appropriate advice and
guidance from experienced researchers through the IPD Meta-analysis Methods Group.

26.1.2 How do IPD and standard Cochrane Review methods differ?

The general approach to an IPD review is the same as for an aggregate data systematic
review, and the only substantial differences relate to data collection, checking and
analysis (Stewart and Tierney 2002). Thus, a detailed protocol should be prepared
and include: the objectives for the review; the specific questions to be addressed;
the reasons why IPD are being sought; study and any participant eligibility criteria;
which descriptive, baseline and outcome data will be collected and how this will be
managed, and the planned analyses, as well as other standard review methods.
Because IPD reviews offer the potential for a greater number of analyses, they pose
a greater risk of data being interrogated repeatedly until the desired results are
obtained. Therefore, it is particularly important that analyses methods are pre-
specified in the protocol, or a separate analysis plan.
Involving the investigators responsible for the primary studies can highlight addi-

tional eligible studies done by or known to them, and help to clarify the design and
conduct of included studies, thereby improving the reliability of risk of bias assess-
ments (Vale et al 2013). Moreover, the ability to directly check IPD and seek additional
data may alleviate some of the biases associated with aggregate data reviews (Stewart
et al 2005).

26.1 Introduction
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The project should culminate in the preparation and dissemination of a structured
report, following PRISMA-IPD (Stewart et al 2015) where possible. This is a stand-alone
extension to PRISMA that is geared to the IPD approach and, while it focuses on reviews
of efficacy, many elements are applicable to other types of IPD review.
Systematic reviews based on IPD require expertise in data management and statis-

tical analysis, as well as skills in managing research collaborations, and they often take
longer and require more resource than a conventional aggregate data systematic
review of the same question. Therefore, IPD reviews are difficult to conduct in review
authors’ ‘spare time’, and are likely to require dedicated resources and staff.

26.1.3 How are IPD reviews organized?

IPD reviews are usually carried out as collaborative projects whereby all study inves-
tigators contributing data from their studies, together with the research team manag-
ing and carrying out the project, become part of an active collaboration (Stewart et al
1995, Stewart and Tierney 2002). Ideally, this collaboration should be structured so as
to keep the research team at ‘arm’s length’ from the trialists’ group. Such a groupmight
comprise a project team who lead and are responsible for all aspects of design and
conduct; an advisory group who provide clinical and methodological guidance and
aid strategic decisions; and the trialists, who provide trial information and IPD and
comment on the draft manuscript. Projects led solely by study investigators, or by a
single group or company with a vested interest, are at greater risk of (real or perceived)
bias, and findings of such projects may be viewed as less credible.
Often, the research team convenes a meeting of all collaborators to present and dis-

cuss preliminary results, and can draw on these discussions when drafting manu-
scripts. Results are usually published in the name of the collaborative group, with
all collaborators being listed as co-authors of the review publication, and all contribu-
tions and conflicts should be clearly described therein.

26.1.4 Which healthcare areas have used IPD reviews?

IPD meta-analyses have an established history in cardiovascular disease and cancer
(Clarke et al 1998), where the methodology has been developing steadily since the late
1980s, and most are still conducted in these fields (Simmonds et al 2015). However, IPD
have also been collected for systematic reviews in many other fields (Simmonds et al
2005, Simmonds et al 2015), including diabetes, infections, mental health, dementia,
epilepsy, hernia and respiratory disease. The Cochrane IPD Meta-analysis Methods
Group website (https://methods.cochrane.org/ipdma/) includes publications of ongo-
ing and completed IPD reviews conducted by members of the Group.

26.1.5 When is an IPD review appropriate?

Generally, IPD reviews should be considered in circumstances where the available pub-
lished or other aggregate data do not permit a good quality review. Specifically, it is
worth considering carefully what value the collection of IPD will bring over the tradi-
tional aggregate data approach, in terms of the aims, data quantity and quality, and
analyses required (Tudur Smith et al 2015) (Table 26.1.a). This means it will often be
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necessary to conduct or consult an aggregate data systematic review as a first step
(Tudur Smith et al 2015). Alternatively, if it is known that a key objective is to explore
subpopulations and potential effect modification, then proceeding directly to an IPD
review and meta-analysis may be warranted.
Another important consideration is whether sufficient IPD are likely to be available to

permit credible analysis. For example, some study data may have been destroyed or
lost, some outcomes, such as adverse effects or quality of life may not have been col-
lected systematically for all studies, or study investigators may not wish to collaborate
(although this may not be known at the outset). Also, it may not be possible to com-
plete an IPD review in a suitable time frame for the question of interest and, in some
situations, the additional resource required may be prohibitive. Weighing up these
various factors will help determine when the IPD approach is likely to bring most
benefit.
Before embarking on an IPD review, review authors need to think carefully about

which skills and resources will be required for the project to succeed, and seek advice
and training. The Cochrane IPD Meta-analysis Methods Group is a good first point of
contact.

26.2 Collecting IPD

26.2.1 Obtaining data from the original researchers

Typically, systematic reviews based on IPD are international collaborative projects
anchored on addressing one or more pre-specified questions (Stewart et al 1995,
Stewart and Tierney 2002). They might be initiated by systematic review authors in
collaboration with clinicians, but increasingly they may arise from trialists’ consortia
or via specific calls from funders.
Negotiating and maintaining collaboration with study investigators from different

countries, settings and disciplines can take considerable time and effort. For exam-
ple, it can be difficult to trace the people responsible for eligible studies, and they
may be initially reluctant to participate in the meta-analysis. Often the first
approach will be by email or letter to the principal investigator, inviting collabora-
tion, explaining the project, describing what participation will entail and how the
meta-analysis will be managed and published. A protocol is generally supplied at
this stage to provide more detailed information, but data are not usually sought
in the first correspondence. It may also be necessary to establish additional contact
with the data centre or research organization responsible for management of the
study data, and to whom data queries will be sent; the principal investigator can
advise who would be most appropriate.
In encouraging study investigators to take part in the IPD review, it is important to be

as supportive and flexible as possible, to take the time required to build relationships
and to keep all collaborators involved and informed of progress. Regular newsletters,
e-mail updates or a website can be useful, especially as the project may take place over
a prolonged period. A randomized trial has examined different ways establishing these
connections and obtaining the IPD (Veroniki et al 2016, Veroniki et al 2019).

26.2 Collecting IPD
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26.2.2 Obtaining data from sources other than the original researchers

A number of initiatives are helping to increase the availability of IPD from both
academic and industry-led studies, either through generic data sharing platforms such
as Yale Open Data, Clinical Study Data Request, DataSphere or Vivli. These have been in
response to calls from federal agencies (e.g. NIH), funders (e.g. MRC), journal editors,
the AllTrials campaign and Cochrane tomake results and IPD from clinical studies more
readily available.
As the focus of these efforts is to make the data from individual studies available,

formatting and coding are not necessarily standard or consistent across the different
study datasets. Some platforms offer fully unrestricted access to IPD and others mod-
erated access, with release subject to approval of a project proposal. Also, while some
sources allow transfer of IPD directly to the research team conducting the review,
others limit the use of IPD to within a secure area within a platform. Therefore, for
any given review, the availability of study IPD from these platforms may be patchy,
the modes of access variable, and the usual process of re-formatting and re-coding
data in a consistent way will likely be required. Thus, although promising, as yet they
do not provide a viable alternative to the traditional collaborative IPD approach. As the
culture of data sharing gathers pace, the increased availability and accessibility of IPD
should benefit the production of IPD reviews.

26.2.3 Establishing ‘topic-based’ repositories with the original researchers

An alternative to an IPD review with a narrow focus, or broad-based data sharing repo-
sitories, is to establish a retrospective or prospective repository of IPD from all studies of
relevance to a particular healthcare area or topic. Previously, such repositories have been
built from existing collaborative IPD reviews and generate a unique resource for looking
investigating clinical questions in depth and potentially tackling additional questions.
For instance, since 1985, the Early Breast Cancer Trialists’ Collaborative Group has

amassed the majority of trials in early breast cancer and collected extended follow-
up, in order to evaluate the effects of all the key interventions in the long term
(http://gas.ndph.ox.ac.uk/ebctcg). For example, they have shown that womenwith oes-
trogen-receptor positive breast cancer still face a substantial risk of cancer recurrence
more than 20 years after their endocrine treatment (Pan et al 2017). The ACCENT repos-
itorybuilt onexisting colorectal cancer IPD reviewshasbeenused to identifydisease-free
survival as a surrogate for overall survival (Sargent et al 2007), and show the prognostic
impact of baseline body mass index on survival (Sinicrope et al 2013), and a network
meta-analysis of multiple IPD reviews of drug monotherapy for epilepsy, shows the
most suitable first-line treatments for partial onset and generalized tonic-clonic
seizures (Nevitt et al 2017).
A considerable advantage of such repositories is that data items can be coded to a

common format from the outset, facilitating subsequent re-use of data, and the IPD
can be checked by those with topic expertise. The benefits of working with study inves-
tigators are also retained. Of course, the retention and re-use of IPD should comply with
the same data security and confidentiality measures as for the original review, and new
ethics approval and data use agreements should be sought if required. It is vitally impor-
tant that any new analyses follow a new pre-specified protocol and/or analysis plan.
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26.2.4 Data security and confidentiality

Study investigators naturally expect there to be safeguards that ensure their study data
will be transferred, stored and used appropriately. For this reason, a data sharing or
data use agreement between the original investigators and the IPD review team is usu-
ally required. The details of such agreements vary, but most will state that data will be
held securely, accessed only by authorizedmembers of the project team and will not be
copied or distributed elsewhere. It is also important to request that individual partici-
pants are adequately de-identified in the supplied data, by removing or recoding iden-
tifiers, and data use agreements should prohibit researchers from attempting to re-
identify individuals. The degree of de-identification required may be dictated by the
data protection legislation of the country fromwhich the study originates. For example,
it may be necessary to also remove or redact free-text verbatim terms, and remove
explicit information on the dates of events. Note that full anonymization, whereby
all links between the de-identified datasets and the original datasets are destroyed,
limits the utility of IPD for systematic reviews and therefore is not recommended. All
participant data should be transferred via a secure data transfer site or by encrypted
email.
Historically, ethical review was not sought for IPD reviews, on the premise that they

were addressing the same research question as the original studies for which partici-
pants already gave their informed consent. However, evolving data protection regula-
tions (e.g. the EU General Data Protection Regulation) and changing attitudes to data
sharing mean that, in some circumstances, formal ethical approval will be required by
the Institutes holding IPD and be expected by those supplying data. This should be
explored with the ethics committee/board under whose jurisdiction the research team
operate, and even if formal review is not required, it may be useful to send written con-
firmation of this to those providing data. It is perhaps more likely that ethical review
will be required if review authors are using IPD to address a different question from the
original studies, or when seeking data from a research study that was not subject to
prior ethical review and did not obtain formal patient consent, such as clinical audit
data. This does not imply, however, that new consent will need to be obtained from
the participants in the original study; de-identification of data usually means this is
not necessary. Moreover, in many circumstances it would be difficult or impossible
to obtain consent retrospectively, for example in older studies (because participants
would be difficult to trace) or, in studies of life-limiting conditions (because many par-
ticipants will have died).

26.2.5 Deciding which data items to collect

When deciding on the data items (or variables) to collect for an IPD review, it is sensible
to consider the planned analyses carefully. This minimizes the possibility that informa-
tion essential to the analyses will not be sought or that data will be collected unnec-
essarily. Understandably, the original researchers may be aggrieved if they go to the
trouble of providing data that are not subsequently analysed and reported.
In addition, the aim should be tomaximize the quality of the data and so enhance the

analyses. For example, data on all participants and outcomes included in studies
should be sought irrespective of whether they were part of the reported analyses. Thus,
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before embarking on data collection, it is worthwhile checking the study protocols and/
or with the original researchers to determine which data are actually available. In many
cases it will only be necessary to collect outcomes and participant characteristics as
defined in the individual studies. However, additional variables might be required to
provide greater granularity (e.g. subscales in quality of life instruments), or to allow
outcomes or other variables to be defined in a consistent way for each study. For exam-
ple, to redefine pre-eclampsia according to a common definition, data on systolic and
diastolic blood pressure and proteinurea are needed (Askie et al 2007).
IPD provides the most practical way to synthesize data for time-to-event outcomes,

such as time to recovery, time free of seizures, or time to death. Therefore, it is impor-
tant to collect data on whether an event (e.g. death) has happened, the date of the
event (e.g. date of death) and the date of last follow-up for those not experiencing
an event. As a bare minimum, whether an event happened and the time that each indi-
vidual spent ‘event-free’ may suffice. IPD also allows follow-up to be updated some-
times substantially beyond the point of publication (Stewart et al 1995, Stewart and
Tierney 2002), which has been particularly important in evaluating the long-term
effects of therapies in the cancer field (Pan et al 2017).

26.2.6 Obtaining sufficient data

It is not always possible to obtain all the desired data for an IPD review. For example, it
might be difficult to obtain IPD for all relevant trials because trial investigators cannot
be traced or no longer have access to the data. If investigators do not respond or refuse
to participate, it might be to suppress unfavourable results, and therefore not including
such trials could bias the meta-analysis. On the other hand, if it is to avoid providing
trials of poor quality, then not including these trials might make a meta-analysis more
robust. Aiming to obtain a large proportion of the eligible trials and participants will
both counter bias (Tierney et al 2015a) and enable exploration of any quality issues
(Ahmed et al 2012), and so will help to provide a reliable and precise assessment of
the effects of an intervention. Another factor is whether the IPD will likely provide suf-
ficient power to detect an effect reliably, but to date this has received little attention
(Ensor et al 2018).

26.3 Managing and checking IPD

26.3.1 Re-coding and re-defining data

Inevitably, the different studies included in an IPD review will have collected and
defined data in different ways. However, it is relatively straightforward to re-code data
items into a common format and it should be possible to harmonize, for example, defi-
nitions of staging, grading, ranking or other scoring systems in a consistent way, to
facilitate pooling of data across studies. Thus, as well as giving investigators clear
instructions on which data are needed and the process for secure data transfer, the
preferred data format and coding for each variable should be supplied (Stewart
et al 1995). Of course, if study investigators are unwilling or unable to prepare data
according to this pre-specified format, the review team should accept data in
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whichever format is most convenient, and recode it as necessary. A copy of the data, as
supplied, should be archived before carrying out conversions or modifications to the
data, and it is vital that any alterations made are properly logged.

26.3.2 Checking the completeness and integrity of incoming data

The aims of checking and ‘cleaning’ data are to ensure that included data are accu-
rate, valid and internally consistent (Stewart et al 1995, Stewart and Tierney 2002,
Tierney et al 2015a). Independent scrutiny of data by the review team may also
increase project credibility. When data files are first received, it is important to con-
firm that they can be read and loaded into the central storage/analysis system. For
example, if data arrive electronically, they should be checked to ensure that the files
can be opened and that data are for the correct study. Furthermore, it is useful to
confirm that all participants recruited or randomized are included, and that there
are no obvious omissions or duplicates in the sequence of patient identifiers. More
in-depth checks for missing, invalid, out of range or inconsistent items might high-
light, for example, records of unusually old or young patients or those with abnor-
mally high or low levels of important biomarkers.
Also, the data supplied should be checked against any relevant study publications or

results repositories to highlight any inconsistencies in, for example, the distribution of
baseline characteristics, the number of participants and the outcome results. However,
it should be borne inmind that differences might arise because of continued enrolment
or further follow-up subsequent to publication.

26.3.3 Checking the risk of bias of included studies

Just as for other types of systematic review, assessing risk of bias of included studies
(Higgins et al 2011, Sterne et al 2016) is recommended for IPD reviews. With the collab-
orative IPD approach, additional information obtained from protocols, codebooks and
forms supplied by study investigators can increase the clarity of risk of bias assess-
ments compared to those based on study reports (Mhaskar et al 2012, Vale et al
2013). Also, checking the IPD directly can provide further insight into potential biases,
some of which might be reduced or not transpire when updated or additional data are
obtained. These checks are best established for reviews of randomized trials (Stewart
et al 1995, Stewart and Tierney 2002, Tierney et al 2015a) and are outlined next.

26.3.3.1 Checking randomization and allocation sequence concealment
For randomized trials it is important to check the IPD to ensure that the methods of
randomization and allocation sequence concealment appear appropriate, so as to
guard against the inclusion of non-randomized studies or participants. The pattern
of treatment allocation can be checked directly, and in various ways, for any unusual
patterns (Stewart et al 1995, Stewart and Tierney 2002, Tierney et al 2015a).

26.3.3.2 Checking for attrition
IPD should be checked to ensure that data on all or as many randomized participants
as possible are included for each outcome, and that they are assigned to their allocated
intervention. This helps to minimize bias associated with the dropout of participants or
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their exclusion from study analyses (Tierney and Stewart 2005), and allows an intention-
to-treat analysis of all randomized participants, avoiding the potential bias of a per-
protocol analysis.

26.3.3.3 Checking outcomes included
An IPD review should collect all the outcomes of relevance to the review question
whether reported or not. This will help to overcome the biases that can be associated
with differential reporting of outcomes (Kirkham et al 2010), and provide a more bal-
anced view of benefits and harms. Precisely because some measured outcomes may
not be reported, it is worth checking the study protocol, trial registry entry and with
investigators to firmly establish which outcomes might be available (Dwan et al 2011).
For time-to-event outcomes, where events are observed over a prolonged period, for

example survival in cancer trials, it is important to also check that follow-up is sufficient
and balanced by randomized group. By requesting follow-up that is as up to date as
possible, and which may be substantially beyond the results reported in trial publica-
tions, transitory effects can be avoided and any benefits or harms of interventions that
take a long time to accrue, such as late side effects of treatment or late recurrence of
disease, can be picked up. For example, in an IPD meta-analysis of chemotherapy for
soft tissue sarcoma (Sarcoma Meta-analysis Collaboration 1997), the median follow-up
for trials reporting it ranged from 16 to 64 months, but increased to between 74 and
204 months when updated IPD were obtained (Stewart et al 2005).

26.3.4 Assessing the overall quality of a study

For any individual study, the results of the data and risk of bias checks should be con-
sidered together in order to build up an overall picture of the quality of the data sup-
plied and study design and conduct. Any concerns should be brought diplomatically to
the attention of the responsible study team, and any subsequent changes or updates to
study data should be properly recorded. Many data issues turn out to be simple errors
or misunderstandings that have minimal impact on the study or meta-analysis results
(Burdett and Stewart 2002), and major problems are rare. However, these checks serve
to improve understanding of the peculiarities of each study, and safeguard against
occurrences of major problems in study data (Burdett and Stewart 2002). If such pro-
blems exist, or it is anticipated that the design or conduct of a study might introduce
significant bias into the meta-analysis, it may need to be excluded.

26.4 Analysis of IPD

26.4.1 Analysis advantages

Having access to IPD for each study enables checking of analytical assumptions, thor-
ough exploration of the data and consistent analysis across trials (Table 26.1.a). Also,
outcomes and measures of risk and effect are derived directly from analysis of the IPD,
so there is no need to rely on interpreting information and analyses presented in pub-
lished reports, or to combine summary statistics from studies that have been analysed
in different ways. Re-analysis of IPD also avoids any problems or limitations with the
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original analyses. For example, it should be possible to carry out analyses according to
intention-to-treat principles, even if the original/published trial analyses did not, use
more appropriate effect measures, and perform sophisticated analyses to account
for missing data.
As IPD offers the potential to analyse data in many different ways, it is particularly

important that all methods relating to analysis are pre-specified in detail in the review
protocol or analysis plan (Tierney et al 2015a) and are clearly reported in publications
(Stewart et al 2015). This should include: outcomes and their definitions; methods for
checking IPD and assessing risk of bias of included studies; methods for evaluating
treatments effects, risks or test accuracy (including those for exploring variations by
trial or patient characteristics) and methods for quantifying and accounting for heter-
ogeneity. Unplanned analyses can still play an important role in explaining or adding to
the results, but such exploratory analyses should be justified and clearly reported
as such.
Statistical methods for the analysis of IPD can be complex and are described in more

detail elsewhere (Debray et al 2015b). These methods are less well developed for prog-
nostic or diagnostic test accuracy reviews than for interventions reviews based on
randomized trials, so we outline some key principles for the re-analysis of IPD from
randomized trials.

26.4.2 Assessing overall effects of interventions

It is important to stratify or account for clustering of participants in an IPD meta-
analysis (Abo-Zaid et al 2013), because participants will have been recruited according
to different study protocols. Combining IPD across studies, as though part of single
‘mega’ trial, could lead to biased comparisons of interventions and over-precise esti-
mates of effect (Tierney et al 2015a). To date, most IPDmeta-analyses have used a two-
stage approach to analysis (Simmonds et al 2005, Bowden et al 2011, Simmonds et al
2015), whereby each individual study is analysed independently in the first stage,
reducing the IPD to summary statistics (i.e. aggregate data). In the second stage, these
are combined to provide a pooled estimate of effect, in much the same way as for a
conventional systematic review (Simmonds et al 2005). Thus, standard statistics and
forest plots can be produced.
A one-stage model is typically a regression that estimates intervention effects, while

stratifying by study (e.g. including an indicator variable for each study), but does
require a higher degree of statistical expertise to implement, and interpretation is
not as straightforward as the more familiar two-stage approach. Although one- and
two-stage meta-analyses often produce similar results, variations do occur, but may
arise because of different modelling assumptions rather than the choice of one- versus
two-stage (Burke et al 2017, Morris et al 2018). Yet, for some, a one-stage model seems
preferable, and their use has increased dramatically in recent years (Simmonds et al
2015, Fisher et al 2017). As it is difficult to derive standard meta-analysis statistics
directly from a one-stage model, a compromise is to do one-stage analysis to obtain
estimates of effect, and a two-stage analysis to obtain further statistics and forest plots.
Whichever approach is taken, it is important that the choice is specified in advance or
that results for both approaches are reported (Stewart et al 2012).
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26.4.3 Assessing if effects vary by trial characteristics

Exploring whether intervention effects vary by study characteristics is an important
aspect of any meta-analysis, and can be readily investigated with IPD, using the same
analytical approaches that are used for aggregate data (Deeks et al 2011). Thus, sub-
group analysis might be used, whereby studies are grouped according to a particular
characteristic such as drug type, and the effects compared indirectly between these
groups. Alternatively, meta-regression might be used to explore whether the overall
effect of an intervention varies in relation to a study treatment characteristic such
as drug dose.

26.4.4 Assessing if effects vary by participant characteristics

Collecting IPD is the most reliable and often the only way to investigate whether inter-
vention effects vary by participant characteristics, for example, whether an intervention
is more or less effective in women compared to men (Stewart et al 1995, Stewart and
Tierney 2002). Again, this can be done in two stages. In the first stage, interactions
between gender and the intervention effect at the individual participant-level are esti-
mated within each study, and in the second stage these interactions are pooled across
studies using standard meta-analysis techniques; so-called ‘within-trial’ interactions
(Fisher et al 2011, Fisher et al 2017). In the widely used ‘subgroup analysis’ approach,
each study is first split into subgroups, say men and women, and a meta-analysis of
effects in men is compared with a meta-analysis of effects in women. Unfortunately,
this approach conflates within and across-trial interactions, so is susceptible to bias
and might best be avoided (Fisher et al 2011, Fisher et al 2017). Alternatively, a one-
stage approach can be used, but to avoid bias, again care must be taken to distinguish
within-study interactions from any between-study interactions (Riley et al 2008, Fisher
et al 2011).
Importantly, and irrespective of the analytical method, where multiple subgroups

have been investigated and/or subgroups effects lack biological plausibility, results
should be viewed with caution (Clarke and Halsey 2011). Where there is no particular
evidence that trial or participant characteristics impact on the results, emphasis should
be placed on the overall effects.

26.4.5 Software for IPD meta-analysis

Owing to the complexity and range of analyses possible with IPD, it is difficult for any
software to accommodate fully all the analyses and plots required. One-stage meta-
analysis typically requires mixed-effects or multilevel regression modelling, which
can be achieved in a range of statistical software (Debray et al 2015b). For the first stage
of a two-stage approach, these packages can also be used, and the summary statistics
then combined in the second stage using either a standard meta-analysis command
(e.g. metan command in Stata), or input into a separate meta-analysis package such
as RevMan. The user-written Stata package ipdmetan (Fisher 2015) has been developed
to facilitate two-stage IPD meta-analysis, by allowing the user to specify both the
regression model to apply to each study in the first stage, and the meta-analytical
method to apply in the second stage.
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26.5 Reporting IPD reviews

Where possible, IPD reviews should be reported in accordance with the PRISMA-IPD
guideline (Stewart et al 2015). This was developed as a standalone extension to PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (Moher et al
2009), to ensure that specific features of the IPD approach are addressed, such as
the reporting of the methods used to obtain, check and synthesize IPD, and to deal with
studies for which IPDwere not available. PRISMA-IPD is, however, geared to IPD reviews
of efficacy, but much of it is also relevant to IPD reviews of, for example, diagnostic,
prognostic and observational studies (Stewart et al 2015).

26.6 Appraising the quality of IPD reviews

Although clearly they offer considerable advantages, and their use has increased across a
range of healthcare areas (Simmonds et al 2015), not all IPD reviews are done or reported
to the same standard (Riley et al 2010, Ahmed et al 2012). Moreover, the process of col-
lecting, checking and analysing IPD is more complex than for aggregate data, and there
are usuallymanymore analyses to be reported, so it canbedifficult to judge the quality of
IPD reviews. This may, in turn, hinder their conduct, dissemination and influence guide-
lines (Vale et al 2015) and new trials (Tierney et al 2015b). For example, an ad hoc IPD
meta-analysis of randomized trials (e.g. from a single institution or company) may not
include all studies of relevance, and therefore might give a biased or otherwise unrepre-
sentative view of the effects of a particular intervention. By contrast, the quality of the
included studies might be a more important determinant of reliability in an IPD meta-
analysis of prognosis or diagnosis (Debray et al 2015a). Therefore, guidance has been pre-
pared to help researchers, clinicians, patients, policy makers, funders and publishers
understand, appraise and make best use of IPD reviews of randomized trials (Tierney
et al 2015a), and diagnostic and prognostic modelling studies (Debray et al 2015a).
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non-randomized studies 612
prediction intervals 264
sequential 562
small-study effects 367
subgroup differences 267
Tau-squared 261, 264

random-effects meta-regression 268
randomization 212–14, 600
bias arising from 209, 213–14, 571, 579
individual participant data 651
methods 213

randomized trials
adverse effects 498–9, 601
bias domains 208–11, 209–10
cluster crossover trials 585
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interpretation 153, 412, 413–14
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